Counting integer partitions with the method of maximum entropy

Joint work with Marcus Michelen and Will Perkins

Gwen McKinley
October 8, 2020
University of California, San Diego
Outline

- **Big idea:** a different technique ("principle of maximum entropy") allows us to approach an old problem (enumerating integer partitions) with new intuition and a more powerful/flexible solution.
- Sketch of the method for a classical example (Hardy-Ramanujan asymptotic partition formula)
- Variations on the classical problem
- Our result
- Time permitting, a few ideas from the proof of one part (Local CLT)
Definition

A *partition* of a positive integer n is a representation of n as an unordered sum of positive integers.

Example:

- $5 + 2 + 1$ and $4 + 2 + 1 + 1$ are both partitions of 8.
- $5 + 2 + 1$ and $1 + 2 + 5$ are the *same* partition of 8.
Definition

A *partition* of a positive integer n is a representation of n as an unordered sum of positive integers.

Question: How many different partitions of n are there? Write $P(n)$ for the set of partitions of n, and $p(n)$ for the number. E.g. $p(4) = 5$:

- 4
- 3 + 1
- 2 + 2
- 2 + 1 + 1
- 1 + 1 + 1 + 1
Definition

A *partition* of a positive integer n is a representation of n as an unordered sum of positive integers.

Problem: How many different partitions of n are there? Write $P(n)$ for the set of partitions of n, and $p(n)$ for the number.

For the first few values, $p(n)$ is

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297

In general, **very hard**! No closed form known.
Problem 2.0: Find asymptotic behavior of $p(n)$ as $n \to \infty$.

Theorem (Hardy and Ramanujan, 1918)

$$p(n) = \frac{1 + o(1)}{4\sqrt{3n}} e^{\pi \sqrt{\frac{2}{3} \sqrt{n}}}.$$
Counting partitions

Theorem (Hardy and Ramanujan, 1918)

\[p(n) = \frac{1 + o(1)}{4\sqrt{3n}} e^{\pi \sqrt{\frac{2}{3} \sqrt{n}}}. \]

Question: Intuitive explanation? Even just for the exponent?

• Original proof: *circle method*.
• Extract \(p(n) \) from generating function with Cauchy’s residue formula. \(\Rightarrow \) need to evaluate nasty complex integral.
• Our idea: *principle of maximum entropy*.

Warning! Fuzzy math ahead.
Maximum entropy

• **Probabilistic approach**: try to understand partitions of n by looking at some probability distribution on partitions of any integer.

• Which distribution to choose?

• Jaynes’ principle of maximum entropy: “best” distribution has *maximum entropy* among all distributions that give a partition of n in expectation.

• Best how?
LET'S TALK ABOUT THAT
Maximum entropy

Definition

Given a discrete random variable X, the entropy of X is

$$H(X) := \sum_x \Pr(X = x) \log \left(\frac{1}{\Pr(X = x)} \right).$$

Measures the amount of “randomness” or “information” in X.

Fact

On a finite set S, the uniform distribution has the largest entropy of any distribution: $\log |S|$.

So $|S| = e^{H(X)}$ if X is uniform. Not any easier!
Fact: If X is uniform on $P(n)$, we have $p(n) = e^{H(X)}$.

Entropy of uniform distribution too hard to compute :(But what about an almost uniform distribution?

Hope: maybe we can find a distribution X (on partitions of any integer) that’s...

- constant(ish) on $P(n)$,
- fairly concentrated on $P(n)$,
- and where we can compute its entropy.

Then maybe $p(n) \approx e^{H(X)}$. Very sketchy.
Idea: Want an “almost uniform” distribution X on partitions of any integer where we can compute $H(X)$. Hope that $p(n) \approx e^{H(X)}$.

What’s the “best” distribution? Try Jaynes’ principle of maximum entropy. Here, it says:

Find the maximum entropy distribution $X = (X_1, X_2, \ldots)$ on $\mathbb{N} \times \mathbb{N} \times \ldots$ (where $X_k =$ multiplicity of k) subject to

$$\mathbb{E} \left[\sum_{k \geq 1} k \cdot X_k \right] = n.$$
Problem: Find max entropy $X = (X_1, X_2, \ldots)$ subject to
$$\mathbb{E} \left[\sum_{k \geq 1} k \cdot X_k \right] = n.$$

Start with any distribution (Y_1, Y_2, \ldots).

- **Fact 1:** “Decoupling” the marginals Y_k increases entropy.
- **Fact 2:** Replacing any Y_k with a geometric r.v. with mean $\mu_k = \mathbb{E}[Y_k]$ increases entropy.

\Rightarrow Max entropy (X_1, X_2, \ldots) has independent geometric X_k’s.
Just need the right sequence of means (μ_1, μ_2, \ldots).

New problem: Find right sequence of means (μ_1, μ_2, \ldots) to maximize the entropy of the corresponding distribution (X_1, X_2, \ldots) of independent geometric random variables, subject to $\sum_{k \geq 1} k \cdot \mu_k = n$.

Fact

A geometric r.v. with mean μ has entropy

$$G(\mu) := (\mu + 1) \log(\mu + 1) - \mu \log \mu.$$

Corresponds to a discrete optimization problem:

Maximize $\sum_{k \geq 1} G(\mu_k)$, subject to $\sum_{k \geq 1} k \cdot \mu_k = n$.

Maximum entropy

Maximize \[\sum_{k \geq 1} G(\mu_k), \]
subject to \[\sum_{k \geq 1} k \cdot \mu_k = n. \]

Rescale by writing \(m(x) := \mu x \sqrt{n} \), “massage” the sums algebraically, and interpret them as Riemann sums. Then as \(n \to \infty \), approximately a continuous optimization problem:

Maximize \[\sqrt{n} \cdot \int_0^\infty G(m(x)) \, dx, \]
subject to \[\int_0^\infty x \cdot m(x) \, dx = 1. \]
Maximum entropy

Maximize \(\sum_{k \geq 1} G(\mu_k) \),

subject to \(\sum_{k \geq 1} k \cdot \mu_k = n \).

Rescale by writing \(m(x) := \mu_x \sqrt{n} \), “massage” the sums algebraically, and interpret them as Riemann sums. Then as \(n \to \infty \), approximately a continuous optimization problem:

Maximize \(\sqrt{n} \cdot \int_0^\infty G(m(x)) \, dx \),

subject to \(\int_0^\infty x \cdot m(x) \, dx = 1 \).
Maximum entropy

Maximize \(\int_{0}^{\infty} G(m(x)) \, dx \),

subject to \(\int_{0}^{\infty} x \cdot m(x) \, dx = 1 \).

Pretty easy! Can use Lagrange multipliers (continuous “calculus of variations” version). Solve to find the optimizer,
\[
m^*(x) = \frac{1}{e \sqrt[6]{\pi} x - 1},
\]
and plug in to get our final answer:

\[
H(X) = \sum_{k \geq 1} G(\mu_k) \approx \sqrt{n} \cdot \int_{0}^{\infty} G(m^*(x)) \, dx = \sqrt{n} \cdot \pi \sqrt{\frac{2}{3}}.
\]

Look familiar? :)
Recap: Wanted to find max entropy distribution X on partitions with expected sum n. Hoped that $p(n) \approx e^{H(X)}$.

We’ve approximated $e^{H(X)} \approx e^{\pi \sqrt{\frac{2}{3}} \sqrt{n}}$. Correct exponential term in Hardy-Ramanujan!

Method: Solve continuous optimization problem (approximates \sum with \int).

Can we make this less sketchy?
Wanted to find max entropy distribution X on partitions with expected sum n. Hoped that $p(n) \approx e^{H(X)}$.

Question: How close to the truth is this assumption?

Answer: For the maximizing distribution X, we have

$$p(n) = \Pr[X \in P(n)] \cdot e^{H(X)}.$$

“**Reason**”: compute directly from distribution.
Maximum entropy

Magic fact

Let $X = (X_1, X_2, ...,)$ be given by a probability distribution satisfying some set of constraints in expectation, and where we’ve specified the support of the X_k’s (must be discrete). For a wide variety of such constraints, if X is the entropy maximizing distribution, we will have:

\[
\left(\text{# vectors satisfying the constraints} \right) = \Pr[X \text{ satisfies constraints}] \cdot e^{H(X)}.
\]

- “Just do it” – max entropy distribution will always have independent X_k’s of a specified type.
- Use constraints + Lagrange multipliers to pin down parameters, then compute directly from distribution.
Recap: Wanted to find max entropy distribution X on partitions with expected sum n. Initially hoped that $p(n) \approx e^{H(X)}$.

We’ve approximated $e^{H(X)} \approx e^{\pi \sqrt{\frac{2}{3}} \sqrt{n}}$.

Magic fact: $p(n) = \Pr[X \in P(n)] \cdot e^{H(X)}$.

Remaining questions:

- Error from $\sum \rightarrow \int$? $\frac{1}{\sqrt[4]{24n^{1/4}}}$
- What is $\Pr[X \in P(n)]$? Probability that $\sum_{k \geq 1} k \cdot X_k$ hits its mean of n. Prove a (local) central limit theorem. $\frac{1}{2^{4/6}n^{3/4}}$

Multiply to get $\frac{1+o(1)}{4\sqrt{3n}} e^{\pi \sqrt{\frac{2}{3}} \sqrt{n}}$. Hardy-Ramanujan!!
& CONTINUE
SAVE

WARNING
THIS GAME IS REALLY DIFFICULT.
Generalizations & related work

Asymptotic count known for many “flavors” of partitions of \(n \), e.g.,
- \(\leq k \) parts (Szekeres, 1953 + others)
- \(\leq k \) parts, difference \(\geq d \) between parts (Romik, 2005)
- parts are \(k^{th} \) powers (Wright, 1934 + others)
- \(\leq k \) parts, each \(\leq \ell \), “\(q \)-binomial coefficients” (e.g. Melczer, Panova, and Pemantle, 2019, and Jiang and Wang, 2019)

Also, many papers studying the structure of a “typical” partition (e.g. Fristedt, 1997)
Generalizations & related work

Methods including:

- Circle method (many)
- Use results about “typical” partitions + prove a local central limit theorem (e.g. Romik, 2005)
- “Physics stuff” (e.g. Tran, Murthy, and Badhuri, 2003)
- Large deviations (Melczer, Panova, and Pemantle, 2019)

No free lunch – usually some messy integrals.

Related: “counting via maximum entropy” e.g. for counting lattice points in polytopes (Barvinok and Hartigan, 2010).
Our result

Can use the “maximum entropy” approach for any of these: becomes a constrained optimization problem with more constraints. *But many a slip ’twixt the cup and the lip...* (especially: local CLT)

As a “proof of concept”, we’ll count the following partitions:

Definition

Given a finite index set $J \subset \mathbb{N}$, and a vector of positive integers $\mathbf{N} = (N_j)_{j \in J}$, we say that a partition P has profile \mathbf{N} if

$$\sum_{x \in P} x^j = N_j \text{ for all } j \in J.$$
Our result

Definition

Given a finite index set $J \subset \mathbb{N}$, and a vector of positive integers $\mathbf{N} = (N_j)_{j \in J}$, we say that a partition P has profile \mathbf{N} if

$$\sum_{x \in P} x^i = N_j \text{ for all } j \in J.$$

Write $p(\mathbf{N})$ for the number of such partitions.

- “Unrestricted” partitions ($J = \{1\}$)
- Partitions with fixed # of parts ($J = \{0, 1\}$)
- Partitions of n into k^{th} powers ($J = \{k\}$ and $n = N_k$)
Notation: For any index set J, and any $\beta \in \mathbb{R}_{+}^{|J|}$, write

\[N = (N_j)_{j \in J} = (\lfloor \beta_j \cdot n^{(j+1)/2} \rfloor)_{j \in J}. \]

Then define:

\[M(\beta) = \text{maximum of } \int_{0}^{\infty} G(m(x)) \, dx, \]

subject to \(\int_{0}^{\infty} x^j \cdot m(x) \, dx = \beta_j, \) for all \(j \in J. \)

Main Theorem (M., Michelen, and Perkins, 2020?)

For any index set J, and any $\beta \in \mathbb{R}_{+}^{|J|}$,

\[p(N) = (1 + o(1)) \frac{e^{M(\beta) \sqrt{n}}}{c_1(\beta) \cdot n^{c_2(|J|)}} \]

if N is “feasible”.

\[27 \]
Main Theorem (M., Michelen, and Perkins, 2020?)

For any index set \(J \), and any \(\beta \in \mathbb{R}^{\lvert J \rvert} \),

\[
p(N) = (1 + o(1)) \frac{e^{M(\beta)\sqrt{n}}}{c_1(\beta) \cdot n^{c_2(J)}}
\]

if \(N \) is “feasible”.

- \(M(\beta)\sqrt{n} \) = entropy of max entropy distribution, after approximating \(\sum \to \int \). \(M(\beta) \) = solution to continuous optimization problem (constant)
- \(c_1, c_2 \) constants.
- Other terms: error from \(\sum \to \int \), and probability that max entropy distribution hits \(P(N) \). (*Local CLT – rest of talk*)
Local CLT (M., Michelen, and Perkins, 2020?)

$X = (X_1, X_2, \ldots)$ a joint distribution of independent geometric r.v.s with appropriate parameters. Write $N_X = (\sum_{k \geq 1} k^j X_k)_{j \in J}$ (the profile of X). Then for any possible profile $a \in \mathbb{N}^J$,

$$\Pr(N_X = a) \approx \mathbb{1}_{a \text{ is } \text{feasible}} \left(\# \text{ integer-valued polys. in some region} \right) \cdot \text{(PDF of Gaussian)}$$

- Many impossible profiles a, e.g. $a_1 = \text{(even)}$ and $a_2 = \text{(odd)}$.
- $\Rightarrow \Pr(N_X = a) = 0$ in many places
- \Rightarrow probability mass “piles up” on remaining points.
- Extra factor on remaining points (“feasible” points).
Local CLT (M., Michelen, and Perkins, 2020?)

Let $X = (X_1, X_2, \ldots)$ be a joint distribution of independent geometric r.v.s with appropriate parameters. Then

$$N_X = \left(\sum_{k \geq 1} k^j X_k \right)_{j \in \mathcal{J}}.$$

Then

$$\Pr(N_X = a) \approx \mathbb{1}_a \text{ is “feasible” (\# integer-valued polys. in some region)} \cdot \left(\text{PDF of Gaussian} \right).$$

Proof ideas:

- Want to understand PMF of N_X, and know that N_X is defined in terms of sums of independent geometric r.v.s.
- Work with the characteristic functions of the X_k's.
- Characteristic function = Fourier transform of PMF, so to extract PMF from characteristic function: Fourier inversion.
Local CLT (Michelen, and Perkins, 2020?)

\[\Pr(N_X = a) \approx \mathbb{1}_{a \text{ is "feasible"}} \left(\# \text{ integer-valued polys. in some region} \right) \cdot (\text{PDF of Gaussian}) \]

Proof ideas:

- Fourier inversion gives \(\Pr(N_X = a) \) as a nasty complex integral in terms of characteristic functions.
- Throw away regions that “obviously” don’t contribute much.
- **Green-Tao (2012)**: this leaves us with a neighborhood around the coefficients of each integer-valued polynomial.
- On each neighborhood, approximate with a Gaussian.
Recap:

- Max entropy approach gives # of partitions (with restrictions allowed) as $\Pr[X \in P] \cdot e^{H(X)}$, where $X = \text{max entropy distribution}$.
- $e^{H(X)}$ fairly easy to find! *Leading constant in $H(X)$ given by a continuous optimization problem.*
- Still no free lunch though: for lower-order terms, have to approximate $\sum \rightarrow \int$ error, and (more difficult) to find $\Pr[X \in P]$, have to deal with nasty complex integral by proving local CLT.
Thank you!