
GEOMETRIC MULTIGRID FOR AN IMPLICIT-TIME IMMERSED
BOUNDARY METHOD∗

ROBERT D. GUY† , BOBBY PHILIP‡ , AND BOYCE E. GRIFFITH§

Abstract. The immersed boundary (IB) method is an approach to fluid-structure interac-
tion that uses Lagrangian variables to describe the structure and Eulerian variables to describe the
fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equa-
tions, for which fast Cartesian grid solution methods are available. Such methods are relatively
straightforward to develop and are widely used in practice but often require very small time steps to
maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient
implementations of such methods require significantly more complex solvers that effectively treat
both Lagrangian and Eulerian variables simultaneously. Several different approaches to solving the
coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this
problem is still emerging. This paper presents a geometric multigrid method for an implicit-time
discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that
is shown to handle problems in which the physical stiffness of the structure is very large. Numerical
examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein.
These tests show that using multigrid as a preconditioner for a Krylov method yields improvements
in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate
that with a time step 100–1000 times larger than that permitted by an explicit IB method, the
multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the
explicit method.

Key words. fluid-structure interaction, immersed boundary method, Krylov methods, multigrid
solvers, multigrid preconditioners

AMS subject classifications. 65F08, 65M55, 76M20

1. Introduction. The immersed boundary (IB) method [27] was introduced
by Peskin [26] to solve problems of fluid-structure interaction in which an elastic
structure is immersed in a viscous incompressible fluid. This method was developed
to simulate the dynamics of cardiac valves, but it has subsequently been applied
to diverse problems in biofluid dynamics, and it is finding increasing use in other
engineering problems [19]. The IB formulation of such problems uses an Eulerian
description of the momentum, viscosity, and incompressibility of the fluid-structure
system, and it uses a Lagrangian description of the deformation of the immersed
structure and forces generated by these deformations. The Eulerian equations are
approximated on a Cartesian grid, and the Lagrangian equations are approximated on
a curvilinear mesh. Interaction between Eulerian and Lagrangian variables is through
integral equations with delta function kernels. When discretized, the IB method uses
a regularized version of the delta function to mediate Lagrangian-Eulerian coupling.
A key feature of the method is that it does not require conforming discretizations
of the fluid and structure; instead, the curvilinear mesh is free to cut through the
background Cartesian grid in an arbitrary manner. Consequently, IB simulations do

∗This work was supported in part by University of California Office of The President (UCOP)
grant 09-LR-03-116724-GUYR to RG and BP, National Science Foundation (NSF) grant DMS
1160438 to RG, and by American Heart Association grant 10SDG4320049 and NSF grants DMS
1016554 and OCI 1047734 to BG.

†Department of Mathematics, University of California, Davis, Davis, CA
(guy@math.ucdavis.edu).

‡Oak Ridge National Laboratory, Oak Ridge, TN (philipb@ornl.gov)
§Leon H. Charney Division of Cardiology, Department of Medicine, New York University School

of Medicine, New York, NY (boyce.griffith@nyumc.org)

1

2 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

not require dynamic grid generation, even for problems involving very large structural
deformations.

Typical implementations of the IB method adopt a fractional step approach. In
the simplest version of such a scheme, the Eulerian velocity and pressure fields are
updated for a fixed configuration of the immersed structure, and then the position
of the Lagrangian structure is updated from the newly computed velocity field. This
approach effectively decouples the Eulerian and Lagrangian equations, and solvers
are needed only for the Eulerian equations (i.e., the incompressible Stokes or Navier-
Stokes equations), for which fast Cartesian grid solution methods are available. How-
ever, because this fractional step approach yields an explicit time stepping method
for the structural dynamics problem, maintaining stability requires time steps that
are small enough to resolve all of the elastic modes of the discrete equations. In many
applications, these elastic time scales are well below the physical time scales of in-
terest. Even for relatively simple elasticity models, the largest stable time step size
scales like ∆t = O(∆s2), in which ∆s is the Lagrangian mesh spacing. For problems
involving bending-resistant elastic elements, the largest stable time step scales like
∆t = O(∆s4). Consequently, high-resolution IB simulations can require extremely
large numbers of time steps, making it challenging to perform simulations over long
time scales.

Much effort has been devoted both to understanding and to alleviating the severe
time step restriction of fractional step IB methods [7, 21, 29]. One approach is to
develop implicit or semi-implicit time stepping schemes that allow for time steps that
do not resolve all of the elastic modes of the discrete system; however, despite decades
of work, such schemes are still not widely used in practice. The solution methods
used in early implicit IB methods were not efficient and were not competitive with
explicit methods [33], and some semi-implicit methods intended to allow for large
time steps still suffered from significant time step restrictions [16, 18]. Newren et
al. [21] analyzed the origin of instability in semi-implicit IB methods using energy
arguments, and they gave sufficient conditions to achieve unconditionally stability in
the sense that the total energy is bounded independent of time step size. An important
result by Newren et al. [21] is that it is not necessary to employ a fully implicit time
discretization to achieve unconditional stability, but the stable time stepping schemes
proposed therein do simultaneously solve for both the Eulerian velocity field and
the Lagrangian structural configuration. As indicated by the early experience with
implicit IB methods, however, developing efficient solvers for the coupled equations is
challenging.

More recently, a number of stable semi-implicit [5, 13, 14, 22] and fully implicit
[15,20] IB methods have been developed. The efficiency of these methods is generally
competitive with explicit methods, and in some special cases, these implicit schemes
can be faster than explicit methods by several orders of magnitude. Many implicit
methods use a Schur complement approach to reduce the coupled Lagrangian-Eulerian
equations to purely Lagrangian equations [4,5,20]. These methods achieve a substan-
tial speed-up over explicit methods when there are relatively few Lagrangian mesh
nodes [5]. In addition, some methods require that the boundaries be smooth, closed
curves [13, 14]. An open question is whether there exist robust, general-purpose im-
plicit methods that are more efficient than explicit methods, or whether specialized
methods must be developed for specific problems.

Newren et al. [22] explored the use of unpreconditioned Kryolv methods for solving
the linearized IB equations in the context of different test problems. They found

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 3

that the relative efficiency of the implicit methods depended on the problem, and
unpreconditioned Krylov methods were generally at least comparable in speed to
explicit methods. These results suggest that with appropriate preconditioning, this
approach will offer a significant improvement over explicit methods. One way to
achieve generally applicable and robust implicit methods is through the development
of robust preconditioners for the linearized equations. This is the approach we take
in this paper.

In previous work [12], we developed a multigrid method for a model problem
related to implicit time discretizations of the IB equations. This model problem
ignored the inertial terms and the incompressibility constraint. The multigrid solver
introduced in this earlier work was more efficient than explicit-time methods for the
model problem, but the increase in efficiency was not large for very stiff problems.
When used as a preconditioner for a Krylov solver, however, the method was very
efficient, even for very stiff problems.

In this paper, we extend the methods developed for the model IB equations [12] to
problems of incompressible flow. Specifically, we consider a version of the IB method
for the steady incompressible Stokes equations. (The extension of the method to the
unsteady Stokes equations, or to the full Navier-Stokes equations, appears straight-
forward but is not considered here.) Unlike most other work on developing efficient
solvers for implicit IB methods, here we focus on a formulation of the problem in
which we effectively eliminate the structural degrees of freedom by a Schur comple-
ment approach. The system that we solve is therefore defined only on the background
Cartesian grid. As in earlier work [12], we take advantage of this additional struc-
ture to develop geometric multigrid methods for the fully Eulerian implicit equations.
The key contributions of this paper are the development of generalized box-relaxation
(also known as Vanka) smoothers for this formulation of the IB equations, and the ex-
tension of these box-relaxation smoothers to larger collections of grid cells, as needed
to obtain good performance for problems in which the elastic structure is extremely
stiff. We perform numerical tests that demonstrate the performance of these algo-
rithms, and we show that with these solvers, the implicit scheme has the potential to
be significantly more efficient than a similar explicit IB method.

2. Immersed Boundary Equations.

2.1. Continuum equations. Let x ∈ Ω denote fixed physical coordinates, with
Ω ⊂ R

2 denoting the physical domain. Let s ∈ Γ denote material coordinates attached
to the immersed structure, with Γ ⊂ R

2 denoting the Lagrangian coordinate domain.1

The physical location of material point s at time t is given byX(s, t) ∈ Ω. (In general,
we use lowercase letters for quantities expressed in Eulerian coordinates and uppercase
letters for quantities expressed in Lagrangian coordinates.) In the absence of other
loading, the forces generated by the deformations of the structure drive the motion
of the fluid. We assume that the immersed structure is neutrally buoyant, so that all
of the boundary force is transmitted to the fluid. The equations we consider in this

1We remark that the name immersed boundary method suggests that the elastic structure is a
thin interface (i.e., an object of codimension one with respect to the fluid). While this is the case
in many applications of the IB method, this formulation applies equally well to immersed structures
that have nonzero thickness. We restrict our tests to two spatial dimensions and to structures of
nonzero thickness. The extension to three spatial dimensions is straightforward, and in the concluding
discussion, we comment on the differences between thick and thin structures.

4 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

Ω

 (,t)X s

Fig. 2.1. The physical domain Ω contains the immersed elastic structure. The position of each
material point s at time t is given by X(s, t) ∈ Ω.

paper are

∆u(x, t)−∇p(x, t) + f(x, t) = 0, (2.1)

∇ · u(x, t) = 0, (2.2)

f(x, t) =

∫

Γ

F (s, t) δ(x−X(s, t)) ds, (2.3)

∂X(s, t)

∂t
= U(s, t) =

∫

Ω

u(x, t) δ(x−X(s, t)) dx, (2.4)

in which u(x, t) = (u(x, t), v(x, t)) is the velocity field of the fluid-structure system,
p(x, t) is the pressure, f(x, t) is the Eulerian elastic force density generated by the
immersed structure, and F (s, t) is the Lagrangian elastic force density generated
by the immersed structure. The first two equations are the incompressible Stokes
equations, which here describe the motion of a fluid-structure system in which the
influence of inertia is negligible. The last two equations describe the coupling between
the Eulerian and Lagrangian frames. The integral operator in (2.3) that determines
the Eulerian force density from the Lagrangian force density is called the spreading

operator, which we denote by S[X]. The interpolation operator that transfers the
velocity to the structure is the adjoint of the spreading operator. Using this notation,
equations (2.3) and (2.4) can be compactly expressed as f = S[X]F and ∂X/∂t =
U = S[X]∗ u, respectively.

A constitutive law for the immersed elastic material is needed to complete the
description of the system. Herein, we consider structures that consist of a collection
of linear elastic fibers under tension. We choose the Lagrangian coordinate system so
that for s = (s1, s2), s1 is a parametric coordinate along each fiber, and s2 is constant
on each fiber. Let τ be the unit vector tangent to the fiber direction, which is given by
τ = ∂X/∂s1/‖∂X/∂s1‖. The tension in each fiber is taken to be T = γ‖∂X/∂s1‖,
in which γ is a constant that characterizes the elastic stiffness of the fiber. Under
these assumptions, the Lagrangian force density is

F (s, t) =
∂

∂s1
(Tτ) = γ

∂2X

∂s21
. (2.5)

This constitutive law corresponds to an elastic shell that is composed of a continuum

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 5

of circumferential elastic fibers [1,10,11]. It is also equivalent to an anisotropic version
of an incompressible neo-Hookean elastic material.

2.2. Spatial discretization. The physical domain Ω is taken to be rectangular
and in our computations is discretized by a uniform Cartesian grid with square cells
of width ∆x = ∆y = h. We use a staggered-grid discretization of the incompressible
Stokes equations in which the components of the velocity and Eulerian body force
are approximated at the centers of the cell edges to which that component is normal,
and in which the pressure is approximated at the cell centers; see Figure 2.2. The
Laplacian, gradient, and divergence operators are discretized using standard second-
order finite differences, and the corresponding discrete operators are denoted by ∆h

and ∇h · and ∇h, respectively.

������

����������������

����

��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

��

1
2

2
1u i+ , ji , ju

2
1

i,j

i, j

2
1i, j+

p

v

v

Fig. 2.2. Staggered grid discretization in which the velocity field u = (u, v) and Eulerian body
force f = (f1, f2) are approximated at the centers of the cell edges, and in which the pressure p is
approximated at the cell centers.

The immersed structure is discretized using a fiber-aligned mesh with nodes that
are equally spaced in the Lagrangian coordinate system with spacing ∆s1 = ∆s2 = ∆s
is each direction. The physical location of Lagrangian node sk,l is denoted by Xk,l.
The second derivative in the boundary force (2.5) is discretized using standard three-
point centered differencing. The Lagrangian elastic force density at node sk,l is

Fk,l = γ
Xk−1,l − 2Xk,l +Xk+1,l

∆s2
= γ (AfX)k,l , (2.6)

in which we use Af to denote the discrete force-generation operator.
To approximate the Lagrangian-Eulerian interaction equations, we use a two-

dimensional regularized delta function δh(x) that is the tensor product of two one-
dimensional regularized delta functions, so that for x = (x, y) and X = (X,Y),

δh(x−X) = δh(x−X) δh(y − Y). (2.7)

In this work, we use

δh(r) =

{

1
4h

(

1 + cos
(

πr
2

))

if r < 2h,

0 otherwise.
(2.8)

6 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

The discretized spreading operator Sh[X] is defined for f = (f1, f2) and for F =
(F1, F2) by

(f1)i−1/2,j =
∑

k,l

(F1)k,l δh(xi−1/2,j −Xk,l)∆s2, (2.9)

(f2)i,j−1/2 =
∑

k,l

(F2)k,l δh(xi,j−1/2 −Xk,l)∆s2, (2.10)

in which xi−1/2,j and xi,j−1/2 denote the positions of the centers of the edges of the
grid cells, where the velocity and force components are approximated. Similarly, the
discrete interpolation operator, which is the adjoint of the discrete spreading operator,
is defined by

(

∂X

∂t

)

k,l

= Uk,l =
∑

i,j

ui−1/2,j δh(xi−1/2,j −Xk,l)h
2, (2.11)

(

∂Y

∂t

)

k,l

= Vk,l =
∑

i,j

vi,j−1/2 δh(xi,j−1/2 −Xk,l)h
2. (2.12)

2.3. Temporal discretizations.

2.3.1. Explicit-time method. Typical implementations of the IB method use
a fractional time stepping approach to solve the equations of motion. In the simplest
version of such a scheme, the fluid velocity and pressure are updated while keeping
the position of the structure fixed, and then the structural position is updated using
the newly computed velocity. We refer to this method as the explicit-time method.
For the model equations considered herein, the explicit-time method advances the
solution variables from time tn = n∆t to time tn+1 = (n+ 1)∆t via

∆hu
n+1 −∇hp

n+1 + Sn
hF

n = 0, (2.13)

∇h · u
n+1 = 0, (2.14)

F n = γAfX
n (2.15)

Xn+1 = Xn +∆t (Sn
h)
∗

un+1, (2.16)

in which Sn
h = Sh [X

n]. Notice that the explicit-time method requires the solution of
only the incompressible Stokes system.

2.3.2. Implicit-time method. The implicit-time method is similar to the ex-
plicit-time method, except that we now use backward Euler to update the structural
position, and we now compute the structural forces using the newly computed posi-
tions. The implicit method advances the solution variables via

∆hu
n+1 −∇hp

n+1 + Sn
hF

n+1 = 0, (2.17)

∇h · u
n+1 = 0, (2.18)

F n+1 = γAfX
n+1, (2.19)

Xn+1 = Xn +∆t (Sn
h)
∗

un+1. (2.20)

Notice that in this time stepping scheme, the structural positions used to define the
spreading and interpolation operators are lagged in time. As shown by Newren et
al. [21], this scheme is unconditionally stable, despite the fact that the positions of

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 7

the spreading and interpolation operators are treated explicitly rather than implicitly.
This is quite fortuitous; if it were necessary to treat the spreading and interpolation
operators implicitly, then we would be faced with a nonlinear system of equations.

We use (2.19) and (2.20) to eliminate the unknown force F n+1 from (2.17) to
yield a system in which the only unknowns are the velocity un+1 and pressure pn+1,

(

∆h + αSn
hAf (S

n
h)
∗
)

un+1 −∇hp+ Sn
hAfX

n = 0 (2.21)

∇h · u
n+1 = 0, (2.22)

with α = ∆tγ.
To advance the full system in time, we first solve equations (2.21)–(2.22) for the

velocity and pressure, and we then use equation (2.20) to update the position of the
structure. The advantages of reducing the full system (2.17)–(2.20) to (2.21)–(2.22)
are that the only unknowns in (2.21)–(2.22) are the Eulerian velocity and pressure,
and that the equations are defined on a structured grid. The elimination of the
Lagrangian unknowns facilitates the development of geometric multigrid methods for
the IB equations.

3. Multigrid. We provide a brief sketch of geometric multigrid methods, focus-
ing on details specific to our application. For a detailed description, the reader is
referred to Refs. 3, 32.

Let Ωh represent the discretized physical domain with Cartesian grid spacing h.
The linear system (2.21)–(2.22) on Ωh can be written as

[

(∆h + αShAfS
∗

h) −∇h

∇h · 0

] [

un+1

pn+1

]

=

[

−ShAfX
n

0

]

, (3.1)

which we denote by

Ahwh = bh. (3.2)

To simplify the notation, we set Sh ≡ Sn
h and S∗h ≡ (Sn

h)
∗. Notice, however, that Sh

and S∗h are generally time-dependent discrete operators, as is Ah.
Let I2h←h denote the operator that restricts solution data to Ω2h from Ωh, let

Ih←2h denote the operator that prolongs solution data to Ωh from Ω2h, and let A2h

denote the coarse-grid operator defined on Ω2h. (Definitions for each of these opera-
tors are provided below.) The smoothers used in this work, which are a key aspect
of the overall solution algorithm, are specified below in the context of specific numer-
ical examples. We specifically consider a generalization of a standard box-relaxation
smoother in Section 5, and an extension of this approach to “big” boxes in Sections
6 and 7. A geometric multigrid V-cycle for (3.2) is given by Algorithm 1.

Multigrid methods are intended to work on all components of the error in a given
approximation to the solution of (3.2) by a combination of fine-grid relaxation (steps
4 and 8 in Algorithm 1) and coarse-grid correction (steps 5–7 in Algorithm 1). In
well-designed multigrid methods, fine-grid relaxation and coarse-grid correction are
complementary processes: the errors that are not damped by the fine-grid relaxation
are damped by the coarse-grid correction, and vice versa. If these processes are not
complementary (i.e., do not damp all error modes), then the method will yield poor
convergence rates; if these processes overlap (i.e., damp the same components of the
error), then the method will provide sub-optimal efficiency.

8 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

Algorithm 1: wh ←−MGV (wh, bh,Ωh, ν1, ν2)

(1) if Ωh is the coarsest level
(2) Solve the coarse-grid equation: wh ←− (Ah)

−1bh
(3) else
(4) Perform ν1 presmoothing sweeps for Ahwh = bh on Ωh

using initial guess wh

(5) Compute the residual on Ωh and restrict it from Ωh to
Ω2h: r2h ←− I2h←h (bh −Ahwh)

(6) Compute an approximate solution to the error equation
Aheh = rh on Ω2h: e2h ←−MGV (0, r2h,Ω2h, ν1, ν2)

(7) Prolong the coarse-grid correction from Ω2h to Ωh and
update the solution on Ωh: wh ←− wh + Ih←2he2h

(8) Perform ν2 postsmoothing sweeps for Ahwh = bh on Ωh

using initial guess wh

3.1. Grid transfer operators: Restriction and prolongation. We use stan-
dard geometric coarsening of the Cartesian grid in which a hierarchy of successively
coarser grids Ωh, Ω2h, Ω4h, . . . is generated. Because approximations to the com-
ponents of the velocity and the pressure are all defined at different spatial locations,
different operators are required to transfer these values between levels of the hierarchy
of discretizations.

For the pressure, we obtain coarse cell-centered values by averaging the four over-
lying fine cell-centered values. The stencil and coefficients of the pressure restriction
operator are given by

Rp =
1

4





1 1
∗

1 1



 , (3.3)

in which “∗” denotes the position of the coarse value. To prolong pressure data from
coarser grids to finer grids, we use constant prolongation, so that for each coarse grid
cell, each overlying fine grid cell takes the underlying coarse grid value.

Restriction of the x-components of the velocity (u) is done by two-point averaging
in the y-direction and full-weighting in the x-direction. The stencil and coefficients
for the operator are

Ru =
1

8





1 2 1
∗

1 2 1



 . (3.4)

A similar procedure, but with two-point averaging in the x-direction and full-weighting
in the y-direction, is used to restrict the y components of the velocity (v). In each
case, standard bilinear interpolation is used to prolong components of the velocity
from coarser grids to finer grids.

We remark that these transfer operators are the standard ones for staggered-grid
discretizations of incompressible flow problems [32], but other transfer operators could
be used. See Niestegge et al. [23] for a study of the performance of several different
combinations of interpolation and restriction operators for the Stokes equations. We
experimented with different combinations of operators, and we found these standard
operators gave the best overall efficiency.

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 9

3.2. Coarse-grid operator. Coarse-grid correction requires the formation of a
coarse-grid operator for each of the coarser levels of the grid hierarchy. In geometric
multigrid, the two most common approaches are direct re-discretization of the PDE
on each grid level, and algebraic construction via a Galerkin procedure. In previous
work on a model of the IB method, we found that Galerkin coarsening was neces-
sary for convergence [12]. However, Galerkin coarsening of the Stokes equations is
expensive because the Galerkin coarse-grid operators have large stencils. Because re-
discretization works well for the Stokes equations alone (i.e., without the IB elasticity
operator ShAfS

∗

h), we employ a hybrid approach: We re-discretize the Stokes equa-
tions, and we use Galerkin coarsening for the Eulerian elasticity operator ShAfS

∗

h.
Specifically, the coarse-grid operator is

A2h =

[

(∆2h + αI2h←hShAfS
∗

hIh←2h) −∇2h

∇2h · 0

]

. (3.5)

Coarser versions of ShAfS
∗

h, e.g., on Ω4h, Ω8h, . . . , are constructed recursively.

3.3. Multigrid preconditioning. As we have remarked, multigrid is a highly
effective solver when smoothing and coarse-grid correction work in a complementary
manner to eliminate all error modes, and with the smoothers used in this work, the
present algorithm achieves high efficiency for the Stokes problem. As the stiffness
of the immersed boundary increases in the implicit-time method, however, the dis-
crete operator becomes increasingly less “Stokes-like” in the vicinity of the immersed
structure, and the performance of the multigrid algorithm suffers.

In our previous work on applying multigrid to a model of the IB method [12], we
found that multigrid alone was a poor solver for large stiffnesses but that it performed
very effectively as a preconditioner for Krylov methods. We follow the same approach
here, and in our numerical experiments, we explore the performance of multigrid as
both a solver and as a (right) preconditioner for GMRES [28]. For more details on
the general use multigrid preconditioned Krylov methods, see Refs. 25, 31, and see
Refs. 6, 30,36 for specific examples from fluid mechanics.

4. Test Problem Description. We explore the performance of the multigrid
method as a solver and as a preconditioner for a range of elastic stiffnesses of the
immersed structure. Except where otherwise noted, the physical domain Ω is the
unit square [0, 1]2, and Dirichlet conditions are imposed on the velocity along ∂Ω
to yield lid-driven-cavity flow. Specifically, all components of the velocity are set
to zero on the boundary except on the top wall, where the tangential velocity is
u(x, 1) = (1− cos(2πx))/2.

In all cases, the immersed structure is the annulus with initial positions

X(s1, s2) =
(

xc + (r + s2) cos(s1/r), yc + (r + s2) sin(s1/r)
)

, (4.1)

in which xc = (xc, yc) = (0.5, 0.5) is the center of the annulus, which also generally
corresponds to the center of Ω in our tests, and in which r = 1/4 is the inner radius
of the annulus. The Lagrangian coordinate domain is (s1, s2) ∈ [0, 2πr)× [0, w], with
w = 1/16 indicating the thickness of the annulus. This domain is discretized using a
regular grid with M1 points in the s1 direction and M2 points in the s2 direction. We
choose M1 = 19N/8 and M2 = 3N/32+1, in which N is the number of grid cells used
to discretize one direction in the Eulerian domain, so that h = 1/N . We restrict N
to be a power of two, so that M1 and M2 are integers. The physical distance between
adjacent Lagrangian nodes is approximately 2/3 of the Eulerian grid spacing h.

10 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

4.1. Characterizing the elastic stiffness. The explicit-time method given by
equations (2.13)–(2.16) is equivalent to the forward Euler scheme applied to

∂X

∂t
= γS∗hL

−1
h ShAfX, (4.2)

in which L−1h is the operator that maps fluid forces to the fluid velocity by solving the
Stokes system. The stability of this scheme is determined by the single parameter

α = γ∆t. (4.3)

Recall that γ is the stiffness of the elastic structure; see (2.5). Let αexp denote the
maximum value of α for which the explicit-time method is stable, which is defined by

αexp =
2

ρ
, (4.4)

in which ρ is the spectral radius of the matrix S∗hL
−1
h ShAf . In Table 4.1, we report

values of αexp for different grid spacings.

Table 4.1

αexp is the maximum value of the stiffness α = γ∆t for which the explicit-time scheme is stable
for grid spacing h.

h 2−5 2−6 2−7 2−8

αexp 6.09 3.93 2.82 2.28

5. Box Relaxation. Several different smoothers for the Stokes equations have
been developed. Two large classes of smoothers are distributive smoothers [2] and
collective smoothers [34]. Distributive relaxation techniques, originally pioneered by
Brandt and Dinar [2], involve a transformation of the equations so that the individual
velocity components and pressure are smoothed separately [2, 17, 35]. Collective or
box relaxation, originally proposed by Vanka [34], involves smoothing the velocity
and the pressure simultaneously. Oosterlee and Washio [24] provide a comparison of
distributed and collective smoothers for incompressible flow problems.

Distributed smoothers for the Stokes equations are straightforward to implement
because they involve smoothing only scalar problems; however, extending distributive
smoothers to the implicit IB equations is challenging. In particular, it is not clear
whether it is possible to transform the saddle point problem (3.1) into a form that
permits the decoupled smoothing of the velocity and pressure. In this work, we
instead employ box relaxation. Box relaxation is essentially a generalization of point
smoothers like Jacobi or Gauss-Seidel to multi-component systems, including saddle-
point systems. The basic idea of box relaxation is to sweep over the grid cells and, in
each cell, to solve locally the discrete equations restricted to that cell. In the present
context, a 5-by-5 system of equations must be solved for each cell that involves the
four velocity components and the one pressure. We order the boxes lexicographically,
and we update the unknowns box-by-box in a block Gauss-Seidel-like manner.

5.1. Solver performance. As an initial test of the performance of the multigrid
method as a solver and as a preconditioner, we consider an Eulerian grid with h = 2−5

and the corresponding Lagrangian mesh, we set the initial guess for the velocity and
pressure to zero, and we compute the number of iterations needed to reduce the

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 11

residual by a factor of 10−6. We use V-cycles with one presmoothing sweep and one
postsmoothing sweep (ν1 = ν2 = 1). Figure 5.1 shows the resulting iteration counts
as a function of α/αexp for both multigrid as a solver and as a preconditioner for
GMRES. The ratio α/αexp may be interpreted as follows. For a given elastic stiffness,
α/αexp represents the size of the time step relative to the maximum allowed by the
explicit-time method. We call this ratio the relative stiffness.

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

nu
m

be
r

of
 it

er
at

io
ns

α/α
exp

MG
MG−GMRES

Fig. 5.1. Iteration counts for the multigrid solver and for multigrid-preconditioned GMRES to
reduce the residual by a factor of 10−6 as a function of the stiffness. The stiffness is scaled by the
maximum stiffness from the explicit-time scheme, αexp.

The iteration count of the multigrid method is essentially constant (9 iterations)
up to a relative stiffness of about 10, at which point the iteration count begins to in-
crease rapidly. For α/αexp = 100, the multigrid solver takes 62 iterations to converge,
and the multigrid solver fails to converge for a relative stiffness of α/αexp ≈ 160.

The iteration count for the MG-GMRES method is also essentially constant (8
iterations) up to a relative stiffness of 10. After this point, the iteration count begins
to increase, but not as rapidly as when we use multigrid as a solver. For α/αexp = 100,
the iteration count is 30, or about half that of multigrid alone. Unlike the stand-alone
multigrid solver, MG-GMRES does not appear ever to diverge, but we stopped after
100 iterations. This maximum number of iterations was reached at a relative stiffness
of α/αexp ≈ 800.

If we assume that a V-cycle for the Stokes-IB system takes about the same amount
of work as a V-cycle applied to the Stokes equations (i.e., without the IB elasticity
operator), then we can use the iteration counts to estimate the efficiency of this
approach.2 For α/αexp = 100, the multigrid algorithm takes 62 iterations. To reach
the same point in time, an explicit method would require at least 100 time steps
and require 9 iterations per time step. Therefore we estimate the implicit method
would be 100 · 9/62 ≈ 14.5 times more efficient. A similar estimate for MG-GMRES
suggests that the implicit method would be about 27 times more efficient at this value
of stiffness. These are likely overestimates of the efficiency gain, and we will return
to more careful efficiency comparisons for a time-dependent problem in Section 7.

For very stiff problems MG-GMRES is more efficient than the stand-alone multi-
grid solver. For nonstiff problems (e.g., α/αexp < 10), stand-alone multigrid is more

2In practice, the extent to which this assumption holds depends on the relative densities of the
Eulerian and Lagrangian discretizations.

12 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

efficient because one iteration of MG-GMRES is more expensive than one iteration
of multigrid. However, MG-GMRES is the more robust solver; it does not fail to
converge as the stiffness increases.

5.2. Spectrum of the multigrid operator. To explore the relatively poor
performance and ultimate failure of the stand-alone multigrid solver at large stiffness,
we explicitly construct the multigrid iteration matrix and compute its eigenvalues.
We construct the multigrid iteration matrix using the procedure outlined in Ref. 32.
The idea is as follows: Let the values of the velocity and pressure be organized into a
single vector w = [u; v; p]. To generate the kth column of the multigrid matrix, we set
wj = δjk, in which δjk is the Kronecker delta, and we perform one multigrid cycle.

In Figure 5.2, we plot the eigenvalues of the multigrid iteration matrix in the
complex plane for four different relative stiffness. We also report the spectral radius
ρ of the operator on the space in which the mean pressure is set to zero. Because the
pressure is unique only up to additive constants, there is always an eigenvalue of 1
that corresponds to pressure fields that are constant on Ωh. This trivial eigenspace
does not affect the convergence of the method.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a) α/αexp = 0, ρ ≈ 0.24

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b) α/αexp = 1, ρ ≈ 0.22

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c) α/αexp = 10, ρ ≈ 0.30

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(d) α/αexp = 100, ρ ≈ 0.85

Fig. 5.2. Plots of the eigenvalues of the multigrid iteration matrix for four different values of
the relative stiffnesses. The value of ρ is the largest eigenvalue excluding the trivial eigenvalue of 1.

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 13

The eigenvalues of the iteration matrix for the Stokes problem (i.e., with α = 0)
are shown in Figure 5.2(a). All of the nontrivial eigenvalues are clustered within a
disc of radius 0.24 around the origin. The spectrum is very similar at relative stiffness
1. In fact, the spectral radius is slightly smaller than in the Stokes case. At relative
stiffness 10, most of the eigenvalues are again clustered around the origin, but we now
see a small number of that are away from the origin. The spectral radius is 0.30,
which indicates a slight increase in the number of iterations over the Stokes system
(α = 0). We remark that we did not observe an increase in the iteration count in our
computational experiment until the relative stiffness increased above 10.

At relative stiffness 100, the spectral radius is 0.85, which is consistent with
our observation of slow convergence. There are now a notable number of “large”
eigenvalues, but the majority of them are still clustered near the origin. For example,
only about 5% of the eigenvalues are outside the disc of radius 0.25, and only 1.5%
are outside the disc of radius 0.5. This eigenvalue distribution explains why multigrid
is a poor solver but an effective preconditioner. It is effectively damping a large
eigenspace but poorly damping a small eigenspace. When used as a preconditioner
for stiff problems, multigrid acts to cluster most of the eigenvalues around 1, and it
leaves a small set of scattered eigenspaces which are approximated by a small Krylov
space. For a detailed analysis of this situation, see Ref. 25. Additionally, we note the
similarity to multiphase flow applications with sharp variation in material properties.
In these applications, it has been observed that multigrid is a poor solver but a very
effective preconditioner for Krylov methods [30,36].

We examine the velocity and pressure that correspond to the slowly converging
modes at large stiffness to attempt to obtain insight into the poor performance of
multigrid. In Figure 5.3, we plot the two components of the velocity and pressure
as functions of space for the mode with eigenvalue ≈ 0.85. We see that this mode
exhibits high-frequency spatial oscillations, and that the oscillations are concentrated
near the immersed structure. (Plots of the other modes with large eigenvalues have a
very similar features and are not shown.) This suggests that the poor performance of
the multigrid results from our failure to smooth the high-frequency modes associated
with the elastic structure.

6. Big-Box Smoothing. In the previous section, we saw that for large elastic
stiffnesses, the multigrid solver with box relaxation required a large number of it-
erations to converge or failed to converge because it did not smooth high-frequency
errors associated with the elasticity of the immersed structure. To understand this
phenomenon better, we examine the Eulerian elasticity operator ShAfS

∗

h.
Recall that the operator Af represents the second-derivative operator in the fiber

direction (i.e., in the circumferential direction in our annulus example), but with
no cross-fiber coupling (i.e., in the radial direction). The interpolation operator S∗h
maps Eulerian data to the Lagrangian mesh, and the spreading operator Sh maps
Lagrangian data to the Eulerian grid. Therefore the operator ShAfS

∗

h is in some
sense the projection of the fiber-aligned Lagrangian second-derivative operator onto
the Eulerian grid. The operator (∆h + αSAfS

∗) thereby resembles an anisotropic
Laplacian operator, in which the degree of the anisotropy increases with the elastic
stiffness of the immersed structure.

It is well known that strongly anisotropic problems require smoothers that account
for the anisotropy in order to obtain good multigrid performance [32]. When the
direction of anisotropy is aligned with the grid, the standard approach is box-line
smoothing, in which all the cells in the x- or y-directions are collectively updated.

14 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1
−0.01

−0.005

0

0.005

0.01

(a) horizontal velocity

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1
−2

−1

0

1

2

x 10
−3

(b) vertical velocity

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1
−0.2

−0.1

0

0.1

0.2

(c) pressure

Fig. 5.3. Plots of the velocity and pressure corresponding to an eigenvector or the multigrid
iteration matrix with eigenvalue 0.8522 for relative stiffness αexp/α.

For non-grid aligned anisotropy, such methods typically alternate x-line and y-line
smoothing in two spatial dimensions [32]. The generalization of line smoothing (i.e.,
plane smoothing) to three spatial dimensions is computationally expensive because
it requires repeatedly solving two dimensional problems. These approaches are more
expensive than needed for implicit IB methods because the anisotropy is localized to
the region covered by the immersed structure.

To improve the performance of our multigrid solver and preconditioner, we follow
a slightly different block relaxation approach that is still in the spirit of the method
introduced by Vanka [34]. Rather than update only the unknowns in a single cell, we

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 15

instead simultaneously update all unknowns in a rectangular box of size nx×ny, i.e.,
with nx cells in the x-direction and ny cells in the y-direction. In the examples in
this work, we take nx = ny. We call this approach big-box smoothing. As before, the
boxes are ordered lexicographically, and one smoothing step involves sweeping over
the boxes to update all of the velocities and pressures associated with each nx × ny

box.
Notice that the velocities that lie on the edges of the boxes are updated twice,

similar to the original Vanka scheme. It is possible to consider a further generalization
of this scheme and consider developing relaxation schemes with additional overlap
between boxes. We performed numerical experiments with different overlap sizes,
and we did not find a significant advantage in performance to justify the added cost
and complexity of including such additional overlap (data not shown).

Our intent in developing such big-box smoothers is to provide a relatively simple
approach to smoothing oscillatory components arising from the anisotropic coupling
associated with the elasticity of the immersed structure. We note that the x- and
y-line smoothers can be considered as extreme cases of this scheme with nx = 1 and
ny = N (or vice versa). Unlike line smoothers, however, the size of the boxes that we
use does not change as the grid is refined. Moreover, our scheme naturally generalizes
to three spatial dimensions.

6.1. Solver performance. We use the same test problem presented in the pre-
vious section. We begin with initial guess of zero for the velocity and pressure, and
we record the number of cycles needed to reduce the residual by a factor of 10−6 for
a range of stiffness. The finest grid is 32× 32, and we use V-cycle multigrid with one
presmoothing sweep and one postsmoothing sweep (ν1 = ν2 = 1). We perform the
test for box sizes nx = ny = 1, 2, 4, 8, and 16.

10
−1

10
0

10
1

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100

nu
m

be
r

of
 it

er
at

io
ns

α/α
exp

box size 1

box size 2

box size 4

box size 8

box size 16

(a) MG

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

70

80

90

100

nu
m

be
r

of
 it

er
at

io
ns

α/α
exp

box size 1

box size 2

box size 4

box size 8

box size 16

(b) MG-GMRES

Fig. 6.1. Iteration counts for the multigrid and MG-GMRES methods to reduce the residual by
a factor of 10−6 as a function of the relative stiffness for box smoothers of different sizes.

Figure 6.1(a) shows iteration counts as a function of stiffness for the stand-alone
multigrid solver. The single-box smoothing results from the previous test are also
included to facilitate comparison. Interestingly, the method with box sizes 2 and 4
fails at approximately the same stiffnesses as the single-box smoother. Before failure,
the iteration counts are smaller with the bigger boxes. Box sizes 8 and 16 show
significantly better performance for stiff problems. The iteration count does not start
increasing rapidly until a relative stiffness of about 100. The method with box sizes 8

16 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

32 64 128 256
0

5

10

15

number of grid points

nu
m

be
r

of
 it

er
at

io
ns

box size 1
box size 2
box size 4
box size 8
box size 16

(a) α = 6; non-stiff

32 64 128 256
0

5

10

15

number of grid points

nu
m

be
r

of
 it

er
at

io
ns

box size 1
box size 2
box size 4
box size 8
box size 16

(b) α = 60; mildly stiff

32 64 128 256
0

10

20

30

40

50

60

70

80

90

100

number of grid points

nu
m

be
r

of
 it

er
at

io
ns

box size 1
box size 2
box size 4
box size 8
box size 16

(c) α = 600; moderately stiff

32 64 128 256
0

10

20

30

40

50

60

70

80

90

100

number of grid points

nu
m

be
r

of
 it

er
at

io
ns

box size 1
box size 2
box size 4
box size 8
box size 16

(d) α = 3000; very stiff

Fig. 6.2. Iteration counts of MG-GMRES for different stiffnesses, box sizes, and different grid
resolutions. The number of grid points refers to the number of grid cells in each direction on the
Eulerian grid.

and 16 eventually fails, but at a stiffness that is about an order of magnitude beyond
the stiffnesses at which the small-box smoothers fail. Notice that the iteration counts
with box size 8 and box size 16 are very similar.

Figure 6.1(b) shows the iteration counts for MG-GMRES. In general, the larger
the box, the lower the iteration count. The difference in iteration counts between the
box sizes is particularly pronounced for relatively stiff problems. As the box size is
increased, the iteration count rises less steeply as the stiffness increases. For example,
for box sizes 2, 4, 8, and 16, the iteration count increases from stiffness 0 to relative
stiffness 1000 by a factors of 10, 6, 4, and 3, respectively. These results indicate that
for very stiff problems, big-box smoothing in the multigrid algorithm is a very effective
preconditioner. Because our tests indicate that MG-GMRES is a much more robust
method, from this point on, we present test results only for MG-GMRES.

6.2. Effect of grid refinement. So far, all of the tests were performed on an
Eulerian grid with fixed grid spacing (specifically, N = 32). Here we explore the how
grid refinement affects the performance of the MG-GMRES algorithm in the context
of the same test problem used previously. We choose four values of the stiffness to
explore: α = 6, α = 60, α = 600, and α = 3000. These values of the stiffness roughly
correspond to relative stiffnesses 1, 10, 100, and 500 on the 32 × 32 grid. We chose

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 17

these four values to characterize regimes that are non-stiff, mildly stiff, moderately
stiff, and very stiff.

Figure 6.2 shows the number of MG-GMRES iterations needed to reduce the
residual by a factor of 10−6 for different box sizes and for four different grid resolutions.
As before, the maximum number of iterations was set to 100. For the non-stiff and
mildly stiff cases (Figure 6.2(a,b)), the iteration count is essentially independent of
the grid size for all box sizes. For the moderately stiff and very stiff cases (Figure
6.2(c,d)), the iteration count grows as the grid is refined for small boxes, but the
iteration count is essentially independent of the grid size for the two largest box sizes
(8 and 16). For the very stiff case, the smallest boxes often failed to converge in fewer
than 100 iterations. These results are consistent with those of the previous section.
For mildly stiff problems, small-box smoothers perform well, but for stiff problems,
small-box smoothers require a large number of iterations to converge. The difference
in performance between big-box smoothers and small-box smoothers is even more
striking as the grid is refined.

6.3. Cost of smoothing and number of smoothing sweeps. All of the
previous results were generated with one presmoothing sweep and one postsmoothing
sweep (ν1 = ν2 = 1). Here we explore how the number of smoothing sweeps affects the
convergence of the MG-GMRES algorithm for the total number of sweeps per level
(i.e., ν1 + ν2) ranging from 1 to 4. If ν1 + ν2 is even, then we use an equal number
of presmoothing and postsmoothing sweeps, and if ν1 + ν2 is odd, then we perform
one additional presmoothing sweep. We consider box sizes 1, 4, and 8 and relative
stiffnesses 10, 100, and 500. As before, these three different stiffnesses characterize
the mildly stiff, moderately stiff, and very stiff regimes. The test problem is the same
as that used previously. The Eulerian grid spacing is h = 2−6.

Table 6.1

Iteration counts for different relative stiffnesses, box sizes (b), and numbers of presmoothing
sweeps (ν1) and postsmoothing sweeps (ν2). The total work, given in parentheses, is estimated as
the number of iterations times (ν1 + ν2 +1). For each box size and for each stiffness, the entry with
the lowest total work is highlighted in bold. (The number of MG-GMRES iterations was capped at
100, and work estimates are not provided for cases requiring more than 100 iterations.)

b ν1 ν2 α/αexp = 10 α/αexp = 100 α/αexp = 500

1 1 0 16 (32) 53 (106) ≥100 (—)
1 1 1 9 (27) 33 (99) 80 (240)
1 2 1 7 (28) 21 (84) 55 (220)
1 2 2 6 (30) 17 (85) 44 (220)

4 1 0 10 (20) 20 (40) 53 (106)
4 1 1 6 (18) 11 (33) 23 (69)
4 2 1 5 (20) 9 (36) 18 (72)
4 2 2 5 (25) 7 (35) 15 (75)

8 1 0 8 (16) 14 (28) 28 (56)
8 1 1 5 (15) 8 (24) 15 (45)
8 2 1 5 (20) 7 (28) 12 (48)
8 2 2 4 (20) 6 (30) 10 (50)

Table 6.1 shows the number of iterations needed to reduce the residual by a factor
of 10−6 along with a simple estimate for the amount of computational work required
to reach this threshold. The total estimated work to solve the problem is the number

18 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

of iterations times the work per iteration. We estimate the work per iteration as
(ν1 + ν2 + 1); the “plus one” is included to account for the work per iteration in
addition to smoothing. As expected, the iteration count goes down as the number
of smoothing sweeps goes up. For each box size and for each stiffness, the entry in
Table 6.1 with the lowest total work is highlighted in bold. For box sizes 4 and 8,
one presmoothing sweep and one postsmoothing is always the most efficient choice.
For the single-box smoother, an additional smoothing sweep reduces the total work
for stiff problems. As our previous results have demonstrated, for very stiff problems,
big-box smoothers are more effective.

We remark that our work estimate is based on the total number of smoothing
operations and is independent of the size of the box size. This estimate is therefore
useful only for comparisons in which the box sized is kept fixed. Because each step of
the smoother requires solving a linear system on each box, the cost of each smoother
sweep increases with box size. However, as our results show, larger boxes also reduce
the total number of solver iterations required. It seems likely that there will not
generally be a single set of algorithmic options that is most efficient, but instead
the optimal choices will depend on the problem, implementation, and possibly even
computer architecture.

7. A Time-Dependent Problem. All of the previous tests focused on solving
for the fluid velocity for a prescribed, fixed structure position. In this section, we test
the performance of MG-GMRES algorithm in a dynamic IB simulation. We place the
same structure used in previous tests in a background shear flow. Unlike the previous
tests, here the domain is a rectangle of height 1 and length 2, and the background
motion of the fluid is driven by boundary conditions that, in the absence of the elastic
structure, would drive the shear flow (u, v) = (y, 0). The structure is initially centered
at xc = (0.5, 0.5), and the simulation is run until time t = 1.

We choose this test because the physical time scale is set by the background flow,
not by the stiffness of the structure. This is the type of problem for which implicit-
time methods are needed. In Figure 7.1, we show the structure’s position at the end
of the simulation. The elastic stiffness affects how much the structure deforms, but
the speed of translation is insensitive to the stiffness.

We discretize the Eulerian domain with grid spacing h = 2−5. For the implicit-
time simulations, we fix the time step at ∆t = 1/40, and we take 40 time steps. The
maximum velocity is about 1, and so the Courant number of these simulations is
about 0.8. Although there is no stability constraint on the time step for this problem,
we choose to keep the Courant number less than one for reasons of accuracy. Recall
that the time-dependent spreading an interpolating operators are lagged in time, and
so it is reasonable to require that point move less than a mesh width per time step.

We use the MG-GMRES method with ν1 = ν2 = 1 to solve for the fluid velocity
to a relative tolerance of 10−6 at each time step. Over the course of a simulation, the
number of iterations varies slightly from time step to time step. In Figure 7.2(a), we
report the average number of iterations of the solver per time step over the course
of the simulation as a function of the relative stiffness for different box sizes. As in
the static tests, the iteration counts are fairly constant up to a relative stiffness of
10. Increasing the box size always lowers the iteration count, and the difference in
iteration count for different box sizes is particularly striking for very stiff problems.

It is interesting to note that for all box sizes, the iteration count grows sublinearly
with the stiffness. For example, at relative stiffness 100, the iteration count increases
by a factor of 1.5 (box size 16) to 3 (box size 1) over the iteration count required to

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 19

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(a) γ = 60

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(b) γ = 240

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(c) γ = 2400

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(d) γ = 24000

Fig. 7.1. Streamlines and structure location at time t = 1 for a range of stiffnesses. The red
markers on the structure are used to highlight rotation and internal deformation. At the beginning
of the simulation the red markers were aligned horizontally in the x-direction.

10
0

10
1

10
2

10
3

5

10

15

20

25

30

35

40

45

50

α/α
exp

av
er

ag
e

ite
ra

tio
n

co
un

t

box 1
box 2
box 4
box 8
box 16

(a)

10
0

10
1

10
2

10
3

20

40

60

80

100

120

140

160

180

200

α/α
exp

ef
fic

ie
nc

y
fa

ct
or

box 1
box 2
box 4
box 8
box 16

(b)

Fig. 7.2. (a) Average number of iterations of the MG-GMRES method per time step in the
implicit-time simulation. (b) The efficiency factor is the expected speed-up gained by using the
implicit method in place of an explicit method.

solve the Stokes equations alone (i.e., without including the IB elasticity operator).
This represents only a small increase in work compared to an explicit-time method,
which would require 100 times more time steps to reach the same point in time.

We perform the same simulation using the explicit-time method to compare the
performance of the implicit and explicit method. In the explicit-time method, each
time step involves solving the Stokes equations for given IB forces. We use the same
MG-GMRES method with big-box smoothing for solving the Stokes equations as we
used for solving the equations in the implicit-time method. We use time step sizes

20 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

in the explicit-time simulations that are just below the stability limit. We perform
40 time steps and record the number of MG-GMRES iterations. We extrapolate to
estimate the total number of iterations to reach time t = 1.

We define the efficiency factor as the ratio of the work of the explicit-time method
to the work of the implicit-time method needed to complete this simulation. The
efficiency factor is the expected speed-up one would gain by using the implicit method
in place of the explicit method. To estimate the computational work, we use the
number of iterations of the MG-GMRES method. In Figure 7.2(b), we report the
efficiency factor as a function of the relative stiffness for different box sizes. Up to a
relative stiffness of about 10, the efficiency factor is similar for all box sizes. As the
stiffness increases, larger boxes outperform smaller boxes. These results show that for
moderately stiff and very stiff problems, the implicit method with big-box smoothing
can be as much as 50–200 times more efficient than an explicit method.

8. Discussion. The popularity of the immersed boundary method is driven by
its simplicity and robustness. Implementations of the IB method that use explicit-
time solution algorithms generally require only solvers for the fluid equations along
with routines to compute elastic forces and to transfer data between the Lagrangian
mesh and the Eulerian grid. The price of this simplicity is the severe restriction on
the largest stable time step permitted by such schemes. One route to overcoming this
time step restriction is to develop implicit-time versions of the IB method, but most
previously developed implicit-time IB methods use specialized algorithms to achieve
substantial speed-ups over explicit-time methods.

The goal of this work is to investigate solution approaches to implicit IB methods
that balance efficiency, robustness, and simplicity. A distinguishing feature of our
method is that we formulate the problem on the Cartesian grid. This formulation
allows the use of standard tools from geometric multigrid to solve the equations. Our
algorithm is similar to multigrid methods for the Stokes equations that use coupled
smoothing and is relatively straightforward to implement. The major differences be-
tween the present algorithm and standard multigrid methods for incompressible flow
are the presence of IB elasticity operator ShAfS

∗

h, and the use of big-box smoothing.
To our knowledge, big-box smoothing has not been proposed previously in the context
of incompressible flow problems. Moreover, multigrid-based approaches to develop-
ing solvers for implicit IB methods that do not eliminate the Lagrangian degrees of
freedom would generally need to resort to approaches such as algebraic multigrid to
generate coarse-grid versions of similar operators for cases in which the immersed
structure has complex geometry, as is often the case in practice. In our approach,
because the relevant elasticity operator is defined on the Cartesian grid, it is straight-
forward to construct coarse-grid versions of this operator using Galerkin coarsening
using the structured-grid restriction and prolongation operators.

Potential limitations of this study are that we restricted our exploration to zero
Reynolds number flow and to structures with nonzero thickness with linear consti-
tutive laws. Extensions to nonzero Reynolds numbers are straightforward. In fact,
solving the time-independent problem, as we do herein, is more challenging than solv-
ing the time-dependent problem. Provided that the nonlinear convection terms are
treated explicitly, the system of equations that must be solved at each time step is
very similar to (3.1), with the main difference being that the operator applied to the
velocity in the time-dependent problem is I −∆t∆h −∆t2γShAfS

∗

h. The presence of
the identity matrix and the appearance of an additional factor of ∆t both result in a
better conditioned system, and likely will improve the convergence of our method.

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 21

In many applications of interest, the elastic structure is modeled as a thin interface
of zero thickness. Our method applies equally well to this problem. We choose
to use “thick” structures for our numerical tests because the IB method is known
to yield poor volume conservation when applied to problems involving thin elastic
structures [9]. This unphysical leakage of fluid across the boundary is exacerbated by
high elastic stiffness, making it difficult to reach the extreme stiffnesses considered
in this work. (Although not shown here, we performed a series of tests with thin
boundaries, but the leakage limited our tests to moderate stiffnesses.) Our multigrid
solution algorithm performs equally well on thin and thick boundaries, however. The
major difference between these two arose upon grid refinement. For a fixed elastic
stiffness, thin boundaries become more numerically stiff as the grid is refined. That
is, the time step restriction scales like the grid spacing. If the time step is reduced
simultaneously with the grid spacing, as is necessary in practice to maintain a fixed
Courant number, then the solver performance is essentially grid independent.

Finally, nonlinear constitutive laws could be treated by semi-implicit time step-
ping schemes that effectively linearize the nonlinear equations. Alternatively, nonlin-
ear time discretizations could be solved via Newton’s method. In either case, it is
necessary to solve repeatedly linearized problems of the form considered herein.

A possible criticism of our method is that it requires the use of “big” boxes
to achieve a robust solution method. A potential concern with larger boxes is the
computational expense of solving the restriction of the full equations to the boxes.
We remark that in d spatial dimensions, each n × n box has d(n + 1)nd−1 velocity
components and nd pressure components. For d = 2 and n = 4, this is a total of 56
degrees of freedom, and if we were to use a dense representation of the box operator,
the memory requirements would be approximately 25 KB, which is small enough to
fit into high-speed L1 cache on most modern CPUs. In this case, the cost of a direct
solver for the box operator will be essentially negligible. For d = 3 and n = 4,
each box has 304 degrees of freedom, and the corresponding dense representation
requires approximately 750 KB, which is too large to fit into L1 cache, but which
fits comfortably in the L2 or L3 cache available on most systems. Although our tests
show that a box size of four does not yield perfect grid-independent convergence rates
for extremely stiff systems, it does converge in a reasonable number of iterations and
yield good performance compared to an explicit method. We expect that for n = 4,
the local solves will be efficient in a high-quality implementation of the algorithm
in either two or three spatial dimensions. Of course, there may be cases in which
box sizes greater than four are needed. In these cases, implementations may also be
able to exploit the sparsity of the box operators. (Only the “(1,1) block” of the box
operator will be relatively dense.) Further, since the restriction of the full operator to
the boxes is itself a discrete saddle-point system, for sufficiently large boxes, it may
be worthwhile to investigate approximate solution methods.

While our algorithm is simple in spirit, as the foregoing discussion suggests, pro-
ducing an optimized implementation is not trivial. We estimate that our algorithm will
achieve a substantial speed-up over explicit-time methods, but our efficiency estimates
are based on iteration counts for a fixed box size, and we did not compare the efficiency
across different box sizes. Our initial implementation of the algorithm was not de-
signed with wall-clock efficiency in mind, and fully quantifying the performance of the
algorithm requires that we develop an optimized code. However, given the differences
in total numbers of iterations required by the implicit and explicit schemes, we believe
that it is reasonable to expect to obtain at least order-of-magnitude speed-ups over

22 R. D. GUY, B. PHILIP, AND B. E. GRIFFITH

explicit-time solvers by using optimized implementations of the present implicit-time
algorithm. We are in the process of developing optimized versions of our algorithm
and including them in the IBAMR software package [8], and we hope to report results
from applications of this code in the future.

REFERENCES

[1] D. Boffi, L. Gastaldi, L. Heltai, and C. S. Peskin, On the hyper-elastic formulation of the
immersed boundary method, Comput. Methods Appl. Mech. Engrg., 197 (2008), pp. 2210
– 2231.

[2] A. Brandt and N. Dinar, Multi-grid solutions to elliptic flow problems, Inst. for Computer
Applications in Science and Engineering, NASA Langley Research Center, Hampton, Va,
1979.

[3] W.L. Briggs, V.E. Henson, and S.F. McCormick, A Multigrid Tutorial 2nd Edition, SIAM,
Philadelphia, 2000.

[4] H. D. Ceniceros and J. E. Fisher, A fast, robust, and non-stiff immersed boundary method,
J. Comput. Phys., 230 (2011), pp. 5133 – 5153.

[5] H. D. Ceniceros, J. E. Fisher, and A. M. Roma, Efficient solutions to robust, semi-implicit
discretizations of the immersed boundary method, J. Comput. Phys., 228 (2009), pp. 7137
– 7158.

[6] H. C. Elman, Multigrid and krylov subspace methods for the discrete stokes equations, Internat.
J. Numer. Methods Fluids, 22 (1996), pp. 755–770.

[7] Z. Gong, H. Huang, and C. Lu, Stability analysis of the immersed boundary method for
a two-dimensional membrane with bending rigidity, Commun. Comput. Phys., 3 (2008),
pp. 704–723.

[8] B. E. Griffith, IBAMR: An adaptive and distributed-memory parallel implementation of the
immersed boundary method. http://ibamr.googlecode.com.

[9] , On the volume conservation of the immersed boundary method, Commun. Comput.
Phys., 12 (2012), pp. 401–432.

[10] B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S. Peskin, An adaptive, formally
second order accurate version of the immersed boundary method, J. Comput. Phys., 223
(2007), pp. 10 – 49.

[11] B. E. Griffith and C. S. Peskin, On the order of accuracy of the immersed boundary method:
Higher order convergence rates for sufficiently smooth problems, J. Comput. Phys., 208
(2005), pp. 75 – 105.

[12] R. D. Guy and B. Philip, A multigrid method for a model of the implicit immersed boundary
equations, Commun. Comput. Phys., 12 (2012), pp. 378–400.

[13] T. Y. Hou and Z. Shi, An efficient semi-implicit immersed boundary method for the navier-
stokes equations, J. Comput. Phys., 227 (2008), pp. 8968 – 8991.

[14] , Removing the stiffness of elastic force from the immersed boundary method for the 2d
stokes equations, J. Comput. Phys., 227 (2008), pp. 9138 – 9169. Special Issue Celebrating
Tony Leonard’s 70th Birthday.

[15] D.V. Le, J. White, J. Peraire, K.M. Lim, and B.C. Khoo, An implicit immersed boundary
method for three-dimensional fluid-membrane interactions, J. Comput. Phys., 228 (2009),
pp. 8427 – 8445.

[16] L. Lee and R. J. LeVeque, An immersed interface method for incompressible navier–stokes
equations, SIAM J. Sci. Comput., 25 (2003), pp. 832–856.

[17] J. Linden, G. Lonsdale, B. Steckel, and K. Stben, Multigrid for the steady-state incom-
pressible navier-stokes equations: A survey, in 11th International Conference on Numerical
Methods in Fluid Dynamics, D. Dwoyer, M. Hussaini, and R. Voigt, eds., vol. 323 of Lecture
Notes in Physics, Springer Berlin / Heidelberg, 1989, pp. 57–68.

[18] A. A. Mayo and C. S. Peskin, An implicit numerical method for fluid dynamics problems with
immersed elastic boundaries, in Fluid dynamics in biology (Seattle, WA, 1991), vol. 141 of
Contemp. Math., Amer. Math. Soc., Providence, RI, 1993, pp. 261–277.

[19] R Mittal and G Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech., 37 (2005),
pp. 239–261.

[20] Y. Mori and C. S. Peskin, Implicit second-order immersed boundary methods with boundary
mass, Comput. Methods Appl. Mech. Engrg., 197 (2008), pp. 2049 – 2067. Immersed
Boundary Method and Its Extensions.

[21] E. P. Newren, A. L. Fogelson, R. D. Guy, and R. M. Kirby, Unconditionally stable dis-

MULTIGRID FOR AN IMPLICIT-TIME IB METHOD 23

cretizations of the immersed boundary equations, J. Comput. Phys., 222 (2007), pp. 702 –
719.

[22] , A comparison of implicit solvers for the immersed boundary equations, Comput. Meth-
ods Appl. Mech. Engrg., 197 (2008), pp. 2290 – 2304. Immersed Boundary Method and
Its Extensions.

[23] A. Niestegge and K. Witsch, Analysis of a multigrid strokes solver, Appl. Math. Comput.,
35 (1990), pp. 291 – 303.

[24] C. W. Oosterlee and F. J. Gaspar, Multigrid relaxation methods for systems of saddle point
type, Appl. Numer. Math., 58 (2008), pp. 1933–1950.

[25] C. W. Oosterlee and T. Washio, An evaluation of parallel multigrid as a solver and a
preconditioner for singularly perturbed problems, SIAM J. Sci. Comput., 19 (1998), pp. 87–
110.

[26] C. S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977),
pp. 220 – 252.

[27] , The immersed boundary method, Acta Numer., 11 (2002), pp. 479–517.
[28] Y. Saad and M. H. Schultz, Gmres: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[29] J. M. Stockie and B. R. Wetton, Analysis of stiffness in the immersed boundary method

and implications for time-stepping schemes, J. Comput. Phys., 154 (1999), pp. 41 – 64.
[30] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome,

An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys., 148
(1999), pp. 81 – 124.

[31] O. Tatebe, The multigrid preconditioned conjugate gradient method, in Proceedings of the
Sixth Copper Mountain Conference on Multigrid Methods, 1993, pp. 621–634.

[32] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, London,
2000.

[33] C. Tu and C. S. Peskin, Stability and instability in the computation of flows with moving
immersed boundaries: A comparison of three methods, SIAM J. Sci. Stat. Comput., 13
(1992), pp. 1361–1376.

[34] S. P. Vanka, Block-implicit multigrid solution of navier-stokes equations in primitive variables,
J. Comput. Phys., 65 (1986), p. 138.

[35] G. Wittum, On the convergence of multi-grid methods with transforming smoothers, Numer.
Math., 57 (1990), p. 15.

[36] G. B. Wright, R. D. Guy, and A. L. Fogelson, An efficient and robust method for simulating
two-phase gel dynamics, SIAM J. Sci. Comput., 30 (2008), pp. 2535–2565.

