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equations.
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1 Introduction

Intravascular blood clots (thrombi) are initiated by damage to the endothelial
cell lining of a blood vessel and involve the formation on the damaged surface
of clumps of cells intermixed with a fibrous protein gel. This happens in the
face of continued blood flow past the injury, and the interplay between the
development of the clot and the local fluid dynamics is one of our principal
concerns. Under some conditions, the clot grows to completely occlude the
vessel. In other situations, it grows to a maximum size and then portions of
it break away and the clot’s size may settle into a rough steady state. One of
our major goals is to be able to capture both kinds of behavior in our models,
and to understand why they occur.

Clot formation involves two intertwined processes both of which are initiated
by damage to the vessel lining. One process is platelet aggregation and begins
when circulating blood platelets adhere to the damaged wall. Other platelets
can be activated by chemicals released by these first platelets and then bind
to the already wall-adherent platelets; this results in the buildup of a platelet
aggregate or thrombus. The other process is coagulation which we view as itself
comprised of two distinct subprocesses. The first of these involves a network
of tightly-regulated enzymatic reactions that begins with reactions on the
damaged vessel wall and continues with important reactions on the surfaces
of activated platelets. The end product of this reaction network is the enzyme
thrombin which i) activates additional platelets and ii) creates monomeric
fibrin which polymerizes into the fibrous protein gel component of the clot.
This polymerization process is the second subprocess of coagulation. Both
platelet aggregation and the two parts of coagulation occur in the presence of
moving blood, and are strongly affected by the fluid dynamics in ways that
are as yet poorly understood. One indication of the effect of different flow
regimes is that clots that form in the veins, where blood flow is relatively
slow, are comprised mainly of fibrin gel (and trapped red blood cells), while
clots that form under the rapid flow conditions in arteries are made up largely
of platelets. Understanding why there is this fundamental difference between
venous and arterial clotting should give important insights into the dynamics
of the clotting process.

In this paper, we review our development of models of platelet aggregation
and we point how these models are designed with the future inclusion of coag-
ulation in mind. Thus, for example, we make provision for the later inclusion
of coagulation chemistry on surfaces of model activated platelets. We describe
two classes of platelet aggregation model. One involves the behavior of a col-
lection of individual platelets interacting with the suspending fluid, the vessel
wall, and platelet activating chemicals. We refer to these as our microscale

platelet models, and note that they are appropriate for small diameter arteri-
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oles and venules (approximately 50 microns in diameter), as well as, perhaps,
for detailed studies of the aggregation process in small portions of a larger
clot. The other, our macroscale platelet models, tracks the dynamics of the
same sorts of interactions but on a larger scale appropriate for larger vessels.
These continuum models involve the spatial-temporal evolution of a platelet
thrombus using density functions to describe the distribution of the relevant
platelets and other species. For the microscale modeling a major tool is the
Immersed Boundary (IB) method. For the macroscale models, the classical
Immersed Boundary method motivates our modeling approach.

Because the approach of the IB method underlies our modeling of platelet
aggregation in both scales of models, we briefly review the fundamentals of
the IB method. Then we describe aspects of platelet biology important in our
modeling efforts. After that we describe the microscale aggregation models
based on the Immersed Boundary method. Finally, we discuss how these ideas
are extended to much larger spatial scales in our macroscale models.

2 Immersed Boundary Method

The fundamental problem for which the IB method has been developed con-
cerns the interactions of a viscous incompressible fluid with one or more mov-
ing and/or deformable elastic objects in contact with that fluid. The motion
of the fluid influences the motion of the elastic objects and vice versa, and so
the IB method involves coupled equations of motion for both types of material
(fluid and elastic) and solves for both motions simultaneously. To introduce
the IB method we focus on a simple model problem in which a single fluid-
filled closed elastic membrane is immersed in a viscous fluid (see Fig. 1). For
simplicity we describe a two-dimensional model problem, but emphasize that
the IB method has been used extensively for three-dimensional studies in a
number of application areas. We also assume that the fluid inside and outside
the membrane has the same density and viscosity (although this is not essen-
tial). The physics of the model problem is that the elastic membrane is under
tension and exerts force on the adjacent fluid. These forces may cause the fluid
to move and, in that case, points on the membrane move along with the fluid.
In the IB method, the fluid is described in Eulerian terms through a velocity
field u(x, t) and pressure field p(x, t) defined at every point x in the physical
domain Ω. The elastic membrane is described in Lagrangian terms. Let the
elastic membrane be parameterized by q, and denote by X(q, t) the spatial
coordinates at time t of the membrane point labeled by q. The IB equations
are coupled equations of motion for the fluid variables u(x, t) and p(x, t) and
the membrane configuration X(q, t). The basic IB equations are:

ρ(ut + u · ∇u) = −∇p + µ∆u + f , ∇ · u = 0, (1)
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Fig. 1. Model Problem: Massless elastic membrane immersed in fluid. Here, x is a
point in the fluid, X(q, t) is the location of a material point on the immersed elastic
membrane, and F is the force generated at a point in the membrane because the
membrane is stretched.

F(q, t) = F(X(q, t),Xq(q, t)) (2)

f(x, t) =
∫

F(q, t) δ(x − X(q, t)) dq, (3)

∂X

∂t
(q, t) =

∫

Ω
u(x, t) δ(x − X(q, t))dx. (4)

Eqs.(1) are the Navier Stokes equations which describe the dynamics of a
viscous incompressible fluid, of constant density ρ and constant viscosity µ,
driven by a force density f which here arises because of the elastic deformation
of the immersed membrane. Eq.(2) specifies the elastic force (per unit q) at
each point of the immersed boundary object. The functional dependence of
this force on the state of the boundary is specified appropriately to the mate-
rial being modeled. An example is given below. Eq.(3) defines the fluid force
density f(x, t) in terms of the immersed boundary elastic force density F. By
integrating both sides of this equation over an arbitrary region of the fluid, we
see that the total fluid force on this region equals the total elastic force along
the portions of the immersed boundary, if any, that pass through this region.
So the fluid force density is concentrated along the immersed boundary curve.
Eq.(4) specifies that the velocity of each immersed boundary point equals the
fluid velocity at the same location. This is a formulation of the no-slip bound-
ary condition for viscous flows. The key idea in this formulation that makes
the IB approach so useful in modeling biofluid problems is that as far as the
fluid is concerned, the immersed objects are seen only through the force field
f . Even if the objects move or deform substantially, there is no change in the
geometry of the fluid region; fluid is everywhere and only the distribution of
forces exerted on the fluid by the elastic objects changes. In the model prob-
lem and the platelet applications, we assume that the IB objects are neutrally
buoyant; the IB membrane itself carries no mass, its mass is attributed to the
fluid in which it sits.

To illustrate the specification of the IB force function, we consider the case of
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the forces generated within a stretched fiber. Let the points on the fiber be
denoted by X(q), assume that the only force the fiber can sustain is tension

along the fiber direction τ (q), and let T
(

‖∂X

∂q
‖
)

give the dependence of the
tension on the local stretch of the fiber. Consider a segment of the fiber cor-
responding to q1 ≤ q ≤ q2 and let F denote the force that this segment of
fiber exerts on the surrounding fluid. Because the fiber segment is massless,
we have the balance of forces,

0 = −F + (Tτ )|q=q2
− (Tτ )|q=q1

= −F +
∫ q2

q1

∂

∂q
(Tτ )dq. (5)

Hence, F = ∂
∂q

(Tτ ) gives the force density (per unit q) in the fiber, and the
force exerted on the fluid by this fiber segment is given by the integral of F

over the segment. Specifying the function T , e.g., T = S(‖∂X

∂q
‖−r) for positive

constants S and r, determines the fiber’s elastic properties.

In actual IB calculations, the Navier-Stokes equations are approximated at
points of a Cartesian grid placed over the domain Ω. A second grid of La-
grangian points is used to discretize each elastic object, and the δ−functions
in Eqs.(2),(4) are approximated by smooth but very localized functions. This
implies that the fluid force density is nonzero only for fluid grid points close
to the immersed boundary and that the velocity of each immersed boundary
point is computed as a weighted average of the fluid velocity at grid points near
that IB point. Aspects of the IB method are described further below. More
information about the IB method can be found in Peskin’s review article [1]
and the references cited therein.

3 Biological Background

Platelets are anuclear blood cells that have a discoid shape when circulat-
ing with the blood in their usual unactivated state. They have a diameter
of about 2 µm and a number density of about 250,000-300,000/µl. They are
much smaller and less numerous than the red blood cells that make up about
45% of the blood’s volume, and so individual platelets have a negligible effect
on the flow of the blood [2]. In their unactivated state, platelets do not adhere
to one another or to the intact endothelial cell lining of blood vessels. Disrup-
tion of the endothelial layer exposes to the blood collagen and adsorbed von
Willebrand factor (vWF) molecules in the subendothelial matrix. Platelets
adhere to both molecules via specific platelet surface receptors. In addition
to slowing or stopping platelet motion over the subendothelium, this binding
triggers intracellular signaling pathways that lead to platelet activation [3,4].

Platelet activation is multifaceted: (i) The platelet’s cytoskeleton is reorga-
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nized and the platelet balls up into a spherical shape and extends a number
of appendages called pseudopodia. The platelet becomes sufficiently flexible
that over time it can spread out over the surface to which it is adhered. (ii)
The platelet surface membrane changes in important ways: Integrin (αIIbβ3)
receptors embedded in the membrane are activated and become capable of
binding dimeric fibrinogen molecules and multimeric vWF molecules from the
blood plasma. By binding to receptors on two platelets, these molecules serve
as links between the platelets. The platelet membrane also undergoes pro-
cesses that makes it able to support important reactions of the coagulation
process. (iii) The activated platelet secretes chemicals into the surrounding
blood plasma. Probably the most important of these are ADP released from
cytoplasmic storage granules and the coagulation enzyme thrombin, activated
by the prothrombinase enzyme complex that can form on the surface of acti-
vated platelets. A platelet has specific surface receptors for ADP and thrombin
and binding of these molecules to an unactivated platelet can trigger the acti-
vation process in that platelet. These chemicals provide a second pathway to
platelet activation that does not require direct contact of the platelet with the
injured vessel wall, and allows the activation process to be propagated away
from the wall [5].

Exposure of the subendothelium also brings the passing blood into contact
with Tissue Factor molecules embedded in the matrix and initiates the coag-
ulation process [6]. The first coagulation enzymes are produced on the suben-
dothelial matrix and released into the plasma. If they make their way through
the fluid to the surface of an activated platelet, they can participate in the
formation of enzyme complexes on the platelet surface that continue and ac-
celerate the pathway to thrombin production. Thrombin released from the
platelet surface feeds back on the enzyme network to accelerate its own pro-
duction, activates additional platelets (as mentioned above), and converts sol-
uble fibrinogen molecules in the plasma into insoluble fibrin monomers. Once
formed, the fibrin monomers spontaneously bind together into thin strands,
these strands join side to side into thicker fibers, and a branching network of
fibrin fibers grows between and around the platelets in a wall-bound platelet
aggregate [7]. Ends of the fibrin strands may be anchored to the surfaces of
the platelets by binding of fibrin to integrin αIIbβ3 receptors. The coagulation
process, in particular, the interactions of coagulation biochemistry with flow
and platelet events, is a fascinating subject, but it is not the focus of this
paper. If interested, see [8–10].

The red blood cells, which make up almost half of the blood’s volume, have
significant effects on the motion and distribution of platelets in blood flowing
in a tube. For one, platelets exhibit much larger transverse excursions (across
the tube) than under similar flow conditions in plasma alone [2]. This motion
is often described as an enhanced diffusivity (above Brownian motion), and
experimental studies suggest that the degree of enhancement depends on the
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flow shear rate [11]. A second effect is that the concentration of platelets is
higher (by up to eight fold) a few microns from the tube wall than at other
distances from the wall. This effect is seen only for shear rates above 200
sec−1 at which red blood cells deform, and, in experiments, is a function of
the volume fraction occupied by red blood cells [12]. The rheological processes
that lead to these observed effects are not understood; a rough picture is that
tumbling and colliding of red blood cells generates local flow disturbances that
lead to these behaviors. Whatever their cause, the enhanced random motion
and the enhanced near-wall concentrations are likely important in determining
the rate at which platelets contact the vessel wall and the rate at which wall-
bound aggregates grow.

4 Microscale Platelet Aggregation Models

Our microscale platelet aggregation models [13–16] track the motion and be-
havior of a collection of individual platelets as they interact with the suspend-
ing fluid, one another, and the vessel walls. These models also track fluid con-
centrations of platelet activating species such as ADP, cell-cell and cell-surface
forces, fluid motion, and the local fluid forces on the growing thrombus. In the
models, nonactivated platelets are activated by contact with reactive sites on
the injured wall, or through exposure to a sufficiently high concentration of
activator in the fluid. Activation enables a platelet to cohere with other ac-
tivated platelets, and to secrete additional activator. The platelets and the
secreted chemical move by advection with the fluid and diffusion relative to
it. Each platelet and each vessel wall is represented as an IB object, i.e., as a
collection of elastically linked Lagrangian points that each move at the local
fluid velocity. New elastic links are created dynamically to model the adhe-
sion of a platelet to the injured wall or the cohesion of activated platelets
to one another. The multiple links, which in the models can form between
a pair of activated platelets or between a platelet and the injured wall, col-
lectively represent the ensemble of molecular bridges binding real platelets to
one another or to the damaged vessel. The links exert forces on the surround-
ing fluid to resist motions which would otherwise separate the linked entities.
Through the forces generated by the platelet-platelet and platelet-wall links,
aggregate growth can profoundly influence the flow, even to the extent that
vessel closure can occur. Links may break if subject to sufficiently high stress
by the fluid motion. As we discuss below, the models consist of stochastic and
partial differential equations and auxiliary ‘change of state’ conditions. Model
variables are fully coupled: the fluid carries the activator and platelets, while
the interplatelet forces, potentiated by chemically-induced activation of the
platelets, determine the local flow.

There are two major aspects of platelet behavior that the models attempt to
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capture. One is the mechanical interactions among the platelets, fluid, and
vessel walls. The other is the platelet’s detection and response to stimuli that
can induce its activation. The IB approach is key to our modeling of the
mechanical interactions. It also provides the scaffolding on which the platelet
stimulus-response behaviors are modeled. We turn next to our use of the IB
method in modeling the mechanical features of platelet aggregation.

4.1 Mechanical interactions

Our representation of discrete platelets as IB objects has evolved over the
years: Initially, we treated platelets as point particles whose effective volume
within the fluid was determined by the support of the approximate δ-function
and whose effective interaction distance with other platelets was determined
by the range of an interplatelet repulsive force that was intended to prevent
platelets from overlapping one another [15]. Currently, we model platelets
as closed curves of interconnected IB points in 2D (see Fig. 2) and closed
surfaces of interconnected IB points in 3D. A platelet’s area or volume is
determined by the region enclosed by the curve or surface, respectively, and is
preserved because of the incompressibility of the fluid. There is no need for an
explicit repulsive force, as the IB formulation automatically detects contact
between the platelets and prevents one platelet from penetrating into the space
occupied by another. This is an important advantage of the IB method over
many other particle-tracking methods.

We describe the microscale model in its two-dimensional version for simplicity,
and we describe the IB components of the model in discretized form, because
that is how they are actually implemented and for some of these components,
e.g., cohesive link formation, this is the natural way to describe them.

Fig. 2. Left: Schematic of discrete Cartesian grid for fluid and Lagrangian grids for
platelets and vessel wall. Right: IB force is transmitted to a 4-by-4 portion of the
grid.

In our microscale platelet aggregation calculations, the Navier-Stokes equa-
tions are discretized using finite difference methods on a simple uniform Carte-
sian grid. Hence, the fluid velocity, pressure, and force density are defined only
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at nodes xg of this grid. Each platelet is represented by a ring of elastically-
linked Lagrangian IB points as shown schematically in Fig. 2. Let Xp,i denote
the ith point of the ring that represents the pth platelet. We track the loca-
tions of these IB points for each platelet as time evolves. Between each pair
of consecutive points Xp,i,Xp,i+1 on the platelet we assume there is a spring
that generates forces on each of these points to try to maintain the separation
between them at a prescribed value. (Arithmetic in the subscript i is mod-
ulo the number of IB points in each platelet ring.) In addition, to give the
platelet some rigidity, we assume that for each triplet of consecutive points
Xp,i−1,Xp,i,Xp,i+1, there is a ‘hinge spring’ that generates forces that try to
maintain the angle formed by the vectors Xp,i − Xp,i−1 and Xp,i+1 − Xp,i at
a prescribed value. (An alternative way to give the platelet rigidity, used in
our 3D modeling, is to include an additional IB point initially at the platelet’s
center of mass and to add spring forces that try to maintain the distance
between this point and each IB point on the platelet surface at a prescribed
value.) The (linear) spring force on platelet point Xp,i due to connections with
its neighbors in the ring is:

S(‖Xp,i−Xp,i+1‖−r)
Xp,i+1 −Xp,i

‖Xp,i+1 −Xp,i‖
+S(‖Xp,i−Xp,i−1‖−r)

Xp,i−1 − Xp,i

‖Xp,i−1 − Xp,i‖
. (6)

Suitable rearrangement of this expression shows that it is a discretization of
the tension force expression (∂(Tτ )/∂q) dq discussed earlier in the case of a
Hookean tension rule with stiffness S and rest length r. The expression for
the hinge-spring force is more complex (see [13].)

The walls of the blood vessel are also modeled as chains of elastically-linked IB
points. In addition to the spring forces and hinge forces between neighboring
wall points, each IB point Xw,i on the wall is connected by a spring to a
corresponding ‘tether point’ Xtether

w,i . For stationary vessel walls, the location
of each tether point is held fixed in time. To model vasoconstriction or other
vascular motions that can accompany vessel injury, the motion of the tether
points would be a prescribed function of time or other model variables.

When a cohesive link connects IB points on two different platelets, there is an
additional force on each of these points. Suppose link l connects point i1(l) on
platelet p1(l) to point i2(l) on platelet p2(l). Then, a force increment

Scoh(‖Xp2(l),i2(l) − Xp1(l),i1(l)‖ − rcoh)
Xp2(l),i2(l) − Xp1(l),i1(l)

‖Xp2(l),i2(l) − Xp1(l),i1(l)‖
(7)

is applied at point Xp1(l),i1(l) and the negative of this force increment is applied
at point Xp2(l),i2(l). Here, Scoh and rcoh are the stiffness and rest length of
cohesive links. A similar expression is used to calculate the forces generated
by an adhesive link joining an IB point on a platelet to an IB point on a
vessel wall. (Of course nonlinear or viscoelastic spring forces can be used for
the intraplatelet springs and cohesive/adhesive links if desired.)

9



The mechanical state of the model system at any time is described by the fluid
velocity and the locations of all of the IB points, as well the configuration
of elastic links which join IB points to one another and the properties of
these links. Here we summarize how the fluid velocity and IB point locations
are advanced during one timestep of a simulation. Below we describe how
other aspects of the model system (activator chemical distribution, platelet
activation status, configuration of cohesive and adhesive links) are updated.

There are four steps to updating the velocity and IB point locations. First, the
resultant Fq of all of the IB force contributions that act on the qth IB point is
calculated for each q. Next, these forces are distributed to the Eulerian grid
used for the fluid dynamics equations using a discrete version of Eq.(3):

f(xg) =
∑

q

Fqδh(xg − Xq)dq. (8)

Here, xg and Xq are the coordinates of grid point g and IB point q, respectively,
Fq is the IB force (per unit q) on this point, dq is the increment in parameter
q between consecutive discrete IB points, and δh is a discrete approximation
to a two-dimensional δ-function. With the fluid force density f g now known at
each grid point, the fluid velocity is updated taking one step with a discrete
Navier-Stokes solver. We use a projection-method type of Navier-Stokes solver
[17]. Denoting the new velocity field by unew

g , the fourth step of the update
process is described by a discrete analog of Eq.(4)

Xnew
q = Xq + dtUq ≡ Xq + dt

∑

g

unew
g δh(xg −Xq)h

2, (9)

where h is the fluid grid spacing and δh is the same approximate δ-function as
used in Eq.(8). (Below we discuss an additional term in the update equation
for Xq that may used to model the effect of red blood cells on platelet motion.)

The function δh is chosen to be a tensor product of one-dimensional approxi-
mate δ-functions,

δh(x) ≡
1

h2
φ
(

x

h

)

φ
(

y

h

)

(10)

where x = (x, y). A common choice for the function φ(r) is

φ(r) =







1
4

(

1 + cos
(

πr
2

))

, −2 ≤ r ≤ 2

0, otherwise.
(11)

which ensures that the entire IB force is transmitted to the grid, that the force
density on the grid is a continuous function of the IB point locations, and that
the communication between grid and IB points is very localized. In fact, the
IB force Fq is spread to a 4-by-4 region of the grid surrounding IB point Xq,
and the velocity of this IB point is interpolated from the velocity values at
the same grid points (see Fig. 2).
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Note that two IB objects can come arbitrarily close to one another. If two IB
points are separated by a distance less than 4h (the width of the approximate
δ-function), there is overlap in the grid velocities from which the IB point
velocities are interpolated using Eq.(9). As the distance between the points
approaches 0, their velocities approach a common value. This implies that IB
objects cannot interpenetrate so there is no need for extra forces or rules to
prevent overlap.

4.2 Red-blood-cell-induced platelet motion

As noted in Section 3, tumbling and colliding red blood cells impart to the
platelets a ‘random’ motion. In principle, we could use the IB method to model
each red blood cell and its motion and the consequent effects on platelet motion
would presumably emerge from the simulations. Unfortunately, it is currently
not practical to track hundreds of red blood cells over the time periods (tens
of seconds) over which thrombi form in small vessels. Bagchi [18] recently used
the IB method to simulate the motion of hundreds of red blood cells but only
for very short periods (< 1

2
sec). Since direct simulation of red blood cells is

not yet feasible in our simulations, we instead model their effects on platelet
motion, guided by empirical observations, without explicitly treating the red
blood cells in detail.

The effect of red blood cells on platelet motion is often described as an effective
’diffusion’. The simplest way of incorporating this into the microscale models
is to add a random step to each platelet’s motion during each time step. This
is accomplished by specifying that the motion of platelet IB points satisfy the
equation,

dXp,i(t) = Up,i(t)dt + dBp (12)

where dBp = (2Ddt)1/2R with R a Gaussian random variable with mean 0
and variance 1, and Up,i(t) is the interpolated velocity given in Eq.(9). The
effective diffusion coefficient D may be allowed to depend on the local shear
rate and on the prescribed red blood cell volume fraction as suggested by
experiments [11,12]. The random step is taken only by individual platelets,
not by aggregated ones, because the effect of the red blood cells should be less
for platelets bound together in an aggregate.

An alternative way to incorporate the effect of the red blood cells is, for each
platelet p, to add a random force Frandom

p to the IB force at each point on
platelet p before its IB forces are transmitted to the surrounding fluid. The
random force thus contributes to the local force density on the fluid. In this
case the platelet motion is by advection in the resulting velocity field, without
the additional random step (dBp). In this approach, the platelets and the sur-
rounding fluid are both affected by the random forces and there is no relative
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motion between the platelets and the fluid. We are currently experimenting
with this approach, considering different ways of choosing random force vec-
tors and distributing the forces among the IB points of the platelets, in order
to obtain platelet motions consistent with empirical observations.

4.3 Activator transport and secretion

When a platelet becomes activated, it begins to secrete activator chemical
(e.g., ADP or thrombin) into the fluid, and so the platelet serves as a (moving)
source of activator. Once the chemical has been released into the fluid, we
assume it moves by advection with the fluid and diffusion relative to the fluid.
We also allow for the possibility that the activator is degraded in the fluid.
The equation describing the evolution of the activator concentration c(x, t) is
therefore

ct + u · ∇c = Dc∆c + s(x, t) − Kc (13)

where Dc is the activator diffusion coefficient, K is its degradation rate, and
s(x, t) is the source of chemical due to secretion by platelets. The source
function is defined by the sum,

s(x, t) =
∑

k

H(x,Xk,1(t),Xk,2(t), ...)G(t − tk). (14)

Here, k ranges over the indices of activated platelets in the domain, tk is the
time of activation of platelet k, G describes the (prescribed) timecourse of
activator secretion following platelet activation, and H describes the spatial
distribution of the source due to platelet k. For example, in a variant of the
model in which the activator diffuses both within the platelets and in the
surrounding fluid, the secreted activator can be distributed uniformly within
the region bounded by the IB curve that represents the platelet. The secreted
chemical then gradually diffuses across the platelet boundary into the fluid
(see Fig. 4).

In reality, the activator chemical should move only in the portions of the
domain occupied by fluid, not those occupied by platelets. That is, activator
should be able to diffuse up to but not across platelet walls. The same is true
with regard to the vessel walls. For straight vessel walls, it is simple to impose
the no flux condition on the activator chemical within the context of a finite-
difference approximation to Eq.(13). For irregular vessel walls and for moving
platelets, it is more difficult. One approach that we have used for irregular
vessel walls (see Fig. 8 below) is to use the Immersed Interface method (IIM)
which is a method for modifying the finite difference stencils near a boundary
to impose boundary or jump conditions [19–21]. This works well for stationary
irregular boundaries, but since there is significant overhead in determining the
modified stencils, it is less well suited to moving boundaries. Another approach
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[22] with which we are currently experimenting is to define a potential field
Φ with respect to the current platelet boundaries and to update the chemical
concentration by taking a step of a discretized version of the modified transport
equation

ct + u · ∇c = −∇ · (−Dc∇c − c∇Φ) + s(x, t) − Kc (15)

Since the additional term describes a flux of chemical down gradients in Φ,
we can design Φ to be a barrier to chemical crossing the platelet boundary
from the fluid. In fact, Φ can be defined by using the discrete δ-function δh

to spread to the computational grid an appropriate scalar function defined at
the IB points which make up each platelet’s boundary. Tests of the potential
barrier approach are very encouraging and will be reported on elsewhere.

4.4 Modeling activation, adhesion, and cohesion

Our modeling of other aspects of platelet behavior, including activation, adhe-
sion, and cohesion, is faciliated by our Lagrangian representation of platelet’s
surface. Recall that activation of a platelet can be stimulated by a platelet’s
interaction with specific molecules exposed on the damaged vascular wall or
present in the blood plasma, and that platelet binding to the injured wall or to
another platelet is accomplished by the formation of molecular bonds involving
specific molecules on the respective surfaces and in the blood plasma.

Until recently, our modeling of these events has been relatively simplistic, and
while this has allowed us to make qualitative comparisons between simulation
results and real aggregation, it precludes meaningful quantitative comparisons.
New biological information allows us to begin to make more sophisticated
models and to begin to make quantitative comparisons between simulated
and real aggregation events. It is a strength of our computational approaches
that they facilitate incorporating into the models much more sophisticated
treatment of platelet responses to stimuli and of adhesion and cohesion.

For the simulations shown in Figs.(3-4), we made the following assumptions
about platelet adhesion to the damaged wall: i) Whenever a platelet comes
within a prescribed distance of the injury, it immediately adheres. ii) Adhesion
is accomplished by formation of an elastic link between an IB point on the
platelet and a nearby IB point on the vessel wall. iii) Additional links form
quickly as long as there are pairs of unbound IB points on the platelet and
vessel wall that are sufficiently close to one another. iv) Each link behaves like
a Hookean spring with a stiffness coefficient that is constant in time. v) Link
formation is irreversible except that a link breaks if subject to a sufficiently
large force. Similar assumptions governed our modeling of cohesion between
activated platelets.
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We also assumed that activation is an immediate response to a platelet’s
contact with the injured wall or its exposure to a sufficiently high concentration
of activator, and that activation i) instantaneously allows the platelet to cohere
to other (nearby) activated platelets and ii) instantaneously causes activator
release into the surrounding fluid. As with adhesion, whenever an unactivated
platelet came within a prescribed distance of the injury, it was activated. To
respond to the chemical activator, unactivated platelets must sense the level
of activator in their vicinity, and this was done by interpolating, for each
unactivated platelet, the activator concentration from the grid to each of its
IB points. If the average of these interpolated concentrations was above a
prescribed threshold level, the platelet became activated.

Each platelet’s activation status was tracked with a simple ‘activation flag’
with values true and false. We tracked each cohesion and adhesion link by
maintaining lists from which we could extract, for any link l, the indices of
the IB objects (platelets or walls) and of the IB points within those objects
joined by link l, as well as the resting length and stiffness of that link. From
this information we could access the coordinates of the points joined by the
link and calculate the force generated by the link (see Eq.(7)). This force (with
appropriate sign) was added to the IB force at each of the two IB points joined
by the link. When a new link formed, the relevant information was added to
these lists; when an existing link broke, the corresponding information was
removed.

In recent years, it has become clear that a real platelet’s surface is studded
with large numbers of molecules that perform different (but in some cases
overlapping) roles in the platelet’s detection and response to vascular injury.
These include approximately 25,000 GPIb receptors that can bind to vWF
molecules adsorbed onto the exposed subendothelial matrix [23], large num-
bers of receptors (GP-VI and α2β1) that bind to subendothelial collagen [24],
about 50,000 αIIbβ3 receptors that are involved both in platelet-platelet and
platelet-wall binding [25] , and at least two different types of receptors for each
of the activators ADP and thrombin [26,27]. Within the framework of our ex-
isting Lagrangian representation of each platelet, we can easily represent each
class of these receptors and include their associated reactions in the model.

To do this we partition the surface of a model platelet into small patches
around each of its IB points and we assign to each IB point an appropriate
fraction of each type of receptor on the platelet surface. As simulation events
unfold, ligands bind to and unbind from these receptors, and we track these
events by associating with each IB point a vector whose components are the
number densities of bound and unbound receptors of each type at that IB
point. Using appropriate kinetic equations that ‘live’ at the IB point, we follow
the formation/breaking of new bonds, the activation of receptors, and the
overall stimulus for activation to which the platelet is exposed. For example, for
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adhesion, link formation occurs, as in the current model, when an IB point on
a platelet comes sufficiently close to an IB point on the injured vessel wall, and
the link will, as now, represent a collection of molecular bonds. However, rather
than treating the link’s stiffness as constant, which is tantamount to assuming
that all of these bonds form simultaneously, we will follow the dynamics of
bond formation and breakage and relate the mechanical properties of the link
at each instant of time to the number and type of each bond present then. Let
nj(t) denote the number density of bonds of type j between a particular pair
of linked IB points. These bonds contribute an amount S da nj(t) (l(t)− l0), to
the magnitude of the force that the link exerts on each of the two IB points.
Here, l(t) is the distance between the two IB points, l0 is its resting length, S
is the stiffness of an individual bond, and da is the area of the surface patch
associated with the IB point. The sum of these contributions is transmitted
to the fluid grid near the corresponding linked IB points.

The evolution of the bond density nj(t) will be governed by an equation of
the form:

dnj

dt
= k+

j (nmax
j − nj) − k−

j

(

f
∑

k nk

)

nj (16)

Here, f is the force on the link that results from flow-mediated stretching, and
which we assume is distributed equally to all the

∑

k nk bonds that make up
this link. In this equation, we assume that the bond dissociation rate k−

j is an
increasing function of the force on the bond as is typical for molecular bonds
[28]. For some types of bonds, the maximum number of bonds possible (nmax

j )
may vary with the platelet’s activation status [29]. Cohesive links between
activated platelets will be treated in a simular fashion, but modified to take
into account the fact that the bonds between platelets are formed by a plasma
protein binding to sites on each of the two platelets.

A platelet’s interaction with activator chemical in the plasma can be handled
using similar ideas. Let r denote the number density of receptors associated
with a particular IB point and let b be the number density of receptors occu-
pied by an activator molecule. Then b evolves according to an equation of the
form

db

dt
= konc(X)(r − b) − koffb (17)

where c(X) is the concentration of activator at the IB point’s location as inter-
polated from nearby grid points, and kon and koff are binding constants. When
we incorporate the coagulation enzyme network into our platelet aggregation
models, a similar approach will be used to track the interactions between co-
agulation molecules in the plasma and binding sites on the platelet’s surface.
Additional reactions between two platelet-surface-bound species will involve
ordinary differential equations relating their surface densities.
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4.5 Microscale simulation results

Fig. 3 shows snapshots of a portion of the computational domain during a
microscale aggregation simulation using the two-dimensional model. Recent
theoretical [30–32] and experimental studies [33] highlight the fluid dynamic
importance of the resting platelet’s discoid shape and this is straightforward
to take into account in the IB model. In our simulations, each platelet is
initially represented by an approximately rigid ellipse comprised of twenty-
eight sequentially linked IB points. The platelet shape is maintained using
stiff hinge forces as described in Section (4.1). Upon a platelet’s activation,
the hinge force parameters for that platelet are reset so that the platelet’s
target shape is circular and the platelet is more deformable. This allows the
platelet to change shape, as do real platelets upon activation and adhesion to
the vessel wall or to a developing thrombus [24]. In the simulation, a portion
of the bottom vessel wall is designated as injured and platelets that contact
it, adhere to it and become activated. Only the portion of the computational
domain near the injured wall is shown in Fig. 3.

Each of the two small aggregates that form early in the simulation disturb
the flow to a small extent. Although the aggregate in the center of the in-
jured region is initially larger, the aggregate at the upstream end of the injury
grows more quickly and partially sheilds the downstream portions of the in-
jured wall, slowing growth of the centrally-located aggregate. Together these
aggregates disturb the flow sufficiently that few platelets contact and adhere
to the downstream portion of the injured wall. One can see linear chains of
platelets bend in response to the fluid forces, bringing platelets of the two
aggregates into close proximity and potentially leading to consolidation of the
adherent platelets into one larger thrombus. For an aggregate that projects
substantially into the vessel lumen there is a substantial strain on its most
upstream attachments to the vessel wall (see upstream end of last panel) and
this can lead to breaking of these attachments allowing the aggregate to roll
downstream. For this simulation, no activator chemical was included; unac-
tivated platelets became activated if they came sufficiently close to another
activated platelet. This simulation pertains to events in a 200µm long segment
of a 37µm diameter arteriole in which the peak inflow velocity was 1.0 cm/sec.
The aggregates developed during a time period of approximately 2.5 sec. This
is one to two orders of magnitude faster than thrombi develop in injured arte-
rioles [34]. The speedup here is due to the very simple rules used for platelet
adhesion and cohesion and for platelet activation (see Sec.4.4), and to our use
of a platelet concentration somewhat higher than physiological.

Fig. 4 shows snapshots from a brief three-dimensional simulation [16]. For
this simulation, a platelet is represented by a triangulated surface mesh of
elastically-connected IB points. The surface mesh was constructed beginning
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Fig. 3. Development of platelet aggregates during a 2D microscale model simulation.
Rings depict immersed boundary platelets, arrows show velocity field. A portion of
the computational domain is shown. Time advances left to right and top to bottom.

with the vertices of a truncated icosahedron (’soccerball’), introducing new
vertices to triangularize each hexagonal and pentagonal face, and then refining
each of the resulting triangles into four smaller triangles. Platelet contact with
the injured portion of the vessel wall leads to activation of the platelet and its
secretion of activating chemical into the blood plasma. The isosurface bounds
the region in which the activator concentration is sufficiently high to activate
platelets. Below it, we see the development of a small wall-bound aggregate
and a number of platelet doublets not attached to the vessel wall.

5 Continuum Models of Platelet Thrombosis

Our continuum models of platelet aggregation are intended to describe events
in large diameter blood vessels such as the coronary arteries in which it is
infeasible to track all platelets and all adhesive and cohesive links individually.
These models are based on the same interactions as the microscale models
but follow the evolution of density functions that describe the distribution of
nonactivated and activated platelets and of cohesive and adhesive links.

As indicated in Fig. 5, two spatial scales arise in this problem. One, the
macroscale, is the scale of the vessel (1-2 millimeters) which also is the scale of
clots that grow to substantially or completely occlude the vessel. The other,
the microscale, is that of platelets (1-2 microns). As a consequence two sets of
spatial variables appear in the models. The vector x refers to the macroscale
and the statement ‖x‖ = O(1) signifies distances on the order of a millimeter.
The vector y refers to the microscale and ‖y‖ = O(1) means distances on the
order of a micron. The ratio of the platelet scale to the vessel scale is denoted
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Fig. 4. Close up of formation of a small aggregate during a 3D microscale simula-
tion. Each “ball” is actually an IB representation of a platelet using a triangulated
surface mesh of 362 elastically connected points. (The colors of the platelets are
not meaningful.) Line segments show cohesive and adhesive links. Below the red
isosurface the activator concentration is sufficiently high to activate platelets. See
[16] for more information.

Platelet Bond Network

Fig. 5. The continuum models involve two spatial scales; the vessel scale is on
the order of millimeters, and the platelet-platelet cohesion scale is on the order of
microns.

by ǫ ≪ 1, and the model’s equations are actually the leading order terms in
expansions in ǫ.

5.1 Fluid-phase multiscale model

We begin with a description of the models in the absence of vessel walls, so
that all interactions are between fluid-phase species. (Below we show how in-
teractions with the vessel walls are added to the models.) The unknowns in the
models are the fluid velocity u(x, t) and pressure p(x, t), the concentrations
of nonactivated and activated platelets, φn(x, t) and φa(x, t) respectively, the
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concentration of activator chemical c(x, t), and a function E(x,y, t) that de-
scribes the distribution of interplatelet cohesive links. We refer to this function
as the ‘elastic link function’. E is defined so that E(x,y, t)dxdy is the number
of elastic links which connect activated platelets at location x to activated
platelets a short distance away at x + ǫy; hence, E has dimensions of number
of links per volume per volume. From the distribution of elastic links at any
time t, we can calculate the stresses that the links exert on the fluid.

The equations for the solution-phase model fall into three groups. The first
group consists of the Navier-Stokes equations for the fluid motion.

ρ(ut + u · ∇u) = −∇p + µ∆u + ∇ · σp, ∇ · u = 0 (18)

These equations contain a forcing term ∇·σp which involves the ‘cohesive stress
tensor’ σp that is generated by the interplatelet elastic links as we describe
below.

The second group of equations governs the transport of platelets and activator
chemical:

(φn)t + u · ∇φn = Dn∆ − R(c) φn (19)

(φa)t + u · ∇φa = R(c) φn (20)

ct + u · ∇c = Dc∆c + A R(c) φn − K c (21)

Eq.(19) embodies the assumptions that nonactivated platelets move by advec-
tion and diffusion, and that they disappear, through activation, at a rate that
depends on the local concentration of activator chemical. The diffusive term
in this equation is intended to model the effect of red blood cells on platelet
motion. According to Eq.(20), activated platelets move by advection and ap-
pear due to activation of nonactivated platelets. No diffusive term appears
here, because, as in the microscale models, we assume that the effect of red
blood cells on aggregated platelets is small. Eq.(21) indicates that activator
chemical moves by advection and diffusion, and that it is produced at each
location at a rate proportional to the rate of platelet activation there.

The third group of equations pertains to the interplatelet links. The equation

Et + u · ∇xE + (y · ∇u) · ∇yE = α(‖y‖) φ2
a − β(‖y‖) E (22)

describes the evolution of the elastic link function by advection in x at velocity
u, advection in y at velocity y ·∇u, formation of new links at rate α(‖y‖) φ2

a,
and breaking of existing links at rate β(‖y‖) E. The unusual advection term
(y ·∇u) ·∇yE arises because of the slight difference in velocity at the two ends
of a link. The link formation and breaking rate functions, α(‖y‖) and β(‖y‖)
are assumed to depend on the distance ‖y‖ between the linked platelets. Link
formation occurs at a rate proportional to φ2

a because each link joins two
activated platelets, and is isotropic (in y) because α depends only on the length
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of y. In a shear flow, the advection term (y · ∇u) · ∇yE has the important
effect of progressively stretching the links and aligning them with the flow.
The equation

σp(x, t) =
∫

y
E(x,y, t)

{

1

2
S(‖y‖)yyT

}

dy (23)

shows how the cohesive stress tensor is determined from the distribution of
elastic links. In Eq.(23), S(‖y‖) denotes the stiffness of a single link of length
‖y‖. The formula for σp can be derived by summing up the individual contri-
butions to the stress at x of each link which joins a platelet at x to a platelet
elsewhere.

The model, although formulated completely in terms of Eulerian variables, is
similar to the IB method in a very important way. As platelet aggregates grow
in the model, the fluid is affected solely through the forcing term ∇ · σp in
Eq.(18); there is no change in geometry as a result of aggregate growth.

It is useful to introduce an additional variable zp(x, t) =
∫

y E(x,y, t)dy which
measures the concentration of elastic links emanating from activated platelets
at x. Since the presence of an aggregate is manifest only through the stresses
from these links, we regard zp as a useful indicator of the extent of aggregation
at point x, and refer to zp as the ‘aggregation intensity’. For now, zp is just a
diagnostic variable that allows us to monitor where aggregation has occured,
but later it will enter into an approximate form of the model.

5.2 Model reductions

Through the function E(x,y, t), the model just presented describes both mi-
croscale and macroscale events. E impacts the rest of the model only through
the stress tensor σp, and this stress tensor and all other model variables de-
pend only on the macroscale spatial variables x. This prompts the question of
whether an evolution equation for σp, which involves only the macroscale vari-

able x, can be derived. Toward this end, multiply Eq.(22) by
{

1
2
S(‖y‖)yyT

}

and integrate over the microscale variable y to obtain:

σp
t
+ u · ∇σp = σp∇u + (σp∇u)T + α2 φ2

a I (24)

−
∫

β(‖y‖) E
{

1

2
S(‖y‖)yyT

}

dy

+
∫

(yT ∇uy)
{

1

2
S ′(‖y‖)/‖y‖

}

E yyT dy
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where α2 =
∫

y

{

1
2
α(‖y‖)S(‖y‖)‖y‖2

}

dy is a constant that reflects the rate

of stress-production due to new link formation. The first five terms in Eq.(25)
involve only the macroscale variable x. The last two terms are problematic
in general; they cannot be expressed in terms of the existing model variables
that depend only on the macroscale variable x.

If we impose two restrictions on the model, namely, that the links behave as
linear springs so S(‖y‖) = S0 and S ′(‖y‖) = 0, and that links break at a
constant rate independent of how stretched they are so β(‖y‖) = β0, then the
two problematic terms vanish, and we have an exact evolution equation for
σp.

σp
t
+ u · ∇σp = σp∇u + (σp∇u)T + α2 φ2

a I − β0σ
p. (25)

Under the same restrictions, the aggregation intensity zp satisfies the evolution
equation:

zp
t + u · ∇zp = α0 φ2

a − β0 zp (26)

where α0 =
∫

y α(‖y‖)dy. The set of equations Eqs.(18)-(21) and Eq.(25) form
a closed system of equations that govern the behavior of the model under
the restrictions that S = S0 and β = β0 are constant. We refer to these
equations as the ‘special’ form of the model. We studied its properties [35,36],
and among other things, saw that it can demonstrate a phase transition that
we interpret as platelet aggregation. Consider a period box in which initially
φn = 1 and φa = 0 for all x. Suppose that a background force is applied to
the fluid to drive a periodic stagnation-point flow as shown in Fig. 6a, and
that at t = 0 a sufficiently high concentration of activator is added in a region
centered at the stagnation point. Early on, activation occurs, links form, and
this early aggregate is stretched by the elongational flow along the x-direction.
As time progresses, further activation and net link formation occur and the link
distribution becomes more and more aligned with the flow and therefore able
to generate forces to resist further elongation. By the end of the simulation,
the core of the aggregate has solidified and the flow within it has dropped
essentially to zero.

The special form of the model is limited by the restrictions imposed in its
derivation. In particular, the requirement that links break at a rate that is
independent of stretch leads to nonphysical behaviors and makes it impossible
to cause an aggregate to break up by subjecting it to force. Since real clots
do break up (embolize), presumably because of the stresses the flowing blood
applies to them, this is an unacceptable limitation. The full multiscale version
of the model does allow the link breaking rate to depend on stretch, but using
it means having to contend with the substantial computational expense of
dealing with two sets of spatial variables. Referring to Eq.(25), recall that the
reason we cannot in general get a macroscale equation for σp is that β(‖y‖)
cannot be brought outside of the integral in the next to last term in this
equation. (We are content for now with the restriction that the stiffness S(‖y‖)
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Fig. 6. (a-d) Snapshots at increasing times of the velocity field, an outer contour
that encloses the region in which c is sufficiently high to induce platelet activation,
and inner contours that show levels of the aggregation intensity zp (highest near
the aggregate’s center).

be constant, so the final term in Eq.(25) vanishes.) If β were not a function
of ‖y‖ itself, but of some macroscale quantity that reasonably represents ‖y‖,
then β could be brought outside of the integral and this term would reduce to
βσp. Consider the macroscale quantity Tr(σp)/zp, where Tr(σp) denotes the
trace of the tensor σp. Recalling the definitions of σp and zp we see that

Tr(σp)

zp =
S0

2

{
∫

E(x,y, t) ‖y‖2 dy
∫

E(x,y, t)dy

}

=
S0

2

〈

‖y‖2
〉

(x, t), (27)

that is, Tr(σp)/zp is a constant multiple of the mean-squared length of links
emanating from platelets at x. Its squareroot therefore serves as a reasonable
surrogate for the actual link length, and so we make the approximation that β
is a function of this macroscale quantity rather than of ‖y‖. With this closure
approximation, the equation for σp is

σp
t
+ u · ∇σp = σp∇u + (σp∇u)T + α2 φ2

a I − β
(

Tr(σp)/zp
)

σp. (28)

Since the variable zp is important in determining the local link breaking rate,
it is now an actual component of the model (not just a diagnostic variable),
and we follow its evolution using the equation:

zp
t + u · ∇zp = α0 φ2

a − β
(

Tr(σp)/zp
)

zp. (29)

We refer to the version of the model consisting of Eqs.(18-21,28,29) as the
‘approximate closure’ model.
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Asymptotic and numerical analyses of the approximate closure and full mul-
tiscale models under simple shear flow show, given a breaking rate function
in the multiscale model, how to choose the function β

(

Tr(σp)/zp
)

so that

the two models’ behavior matches very closely for all shear rates [37]. In Fig.
7 we show a different comparison between the two models. The experiment
shown is an extension of that depicted in Fig. 6. Events begin as in the earlier
experiment, but after a specified time has elapsed, further activation is shut
off, and extra forces are applied (at the locations indicated by the bars in Fig.
7) to accelerate the fluid and increase the stress on the aggregate in an at-
tempt to break it into two pieces. We see that the approximate closure model
did a good job of capturing the behavior of the full multiscale model in this
complex situation, and we note that the closure model calculations took about
1% of the computational time of the multiscale calculation. In corresponding
calculations with a constant link breaking rate, it proved impossible to break
the aggregate; the central portion of the aggregate did neck off to an extent
but did not break. Calculations with the full multiscale model and constant
breaking rate showed that the explanation was the existence of a relatively few
nonphysically long links that generated most of the force resisting rupture.

Fig. 7. Succession of snapshots of the velocity field and aggregation intensity con-
tours for calculations with (left) the full multiscale model Eqs.(18-22) and (right)
the approximate closure model Eqs.(18-21,28,29). Bars in each picture denote lo-
cations of applied pulling force. Full multiscale model computations were done as
described in [38].
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5.3 Vessel walls in the continuum model

To model intravascular events, the vessel wall must be modeled and the nature
of platelet interactions with it must be defined. We use an IB approach to build
the actual structure of the wall; that is, we use strings of IB points connected
elastically to one another and to prescribed tether point locations (see section
4.1) to construct an approximately stationary vessel wall with the geometry
of the vessel we wish to simulate. To define the injured portion of the wall,
we introduce a density function w(x, t) of reactive wall sites. The function w
is defined everywhere in the domain, but it is nonzero only in a thin layer
of space along the portion of the wall deemed injured. Platelets interact with
these sites in two ways; they can be activated and they can form adhesive
links where w > 0. It is straightforward to incorporate these interactions
into the model. To add the possibility of platelet activation by contact with
the reactive wall sites, an additional term is added to each of the transport
equations Eqs.(19)-(21) as illustrated here for the equation for φn:

(φn)t + u · ∇φn = Dn∆φn − R(c)φn − R̃(w)φn (30)

The new term R̃(w)φn represents activation of platelets at a per platelet rate
R̃(w) that is positive only where w > 0. To add adhesive platelet-wall links
to the full multiscale model, we would introduce an adhesive link function Ew

analogous to the cohesive link function E. Here, we skip to the analogue of the
the closure approximation for σp and zp and introduce the following equations
for an adhesive link stress tensor σw and adhesive link intensity zw:

σw
t
+u ·∇σw = σw∇u+(σw∇u)T + αw

2 φa w I −βw
(

Tr(σw)/zw
)

σw (31)

zw
t + u · ∇zw = αw

0 wφa − βw
(

Tr(σw)/zw
)

zw. (32)

The divergence of this stress tensor is added to the forces driving the fluid mo-
tion on the right hand side of the Navier-Stokes equations (18). The adhesive
link breaking rate βw is assumed to be a function of the macroscale quantity
Tr(σw)/zw. Eq.(31) is very similar to the equation for σp; a difference is that
the rate of formation of adhesive links depends on the product w φa since
these links join reactive wall sites and platelets. The constants αw

2 and αw
0 are

analogues of the constants α2 and α0 in Eqs.(28-29).

5.4 Numerical solution of the continuum model equations

In this section we describe the computational methods used to solve the con-
tinuum model’s equations. The computational domain is a rectangular region
R in which we construct vessel walls using the Immersed Boundary method as
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already described. In the region between the vessel walls, we apply a spatially
constant background force density f g in the x-direction, which, for flat walls
and in the absence of platelet aggregation, would result in a parabolic velocity
profile between the vessel walls.

The model’s Eulerian variables are approximated in the cells of a uniform
Cartesian mesh placed over R. We take the mesh spacing in both coordinate di-
rections to equal h. Mesh points are denoted (xj , yl) =

(

(j−1/2)h, (l−1/2)h
)

.
Time is discretized into timesteps of size k. We think of the discrete velocity
as being defined at time levels tn+1/2 = (n + 1/2)k and all other variables as
being defined at time levels tn = nk. We do this because the ‘time-centered’
velocities un+1/2 are involved in the transport of advected quantities between
times tn and tn+1, and the ‘time-centered’ stresses, such as (σp)n, determine

the fluid motion between times tn−1/2 and tn+1/2. The notation u
n+1/2
jl is used

for our approximation to the velocity in the cell centered at (xj , yl) at time
tn+1/2, and similar notation is used for each of the other Eulerian variables.
For each of the partial differential equations which govern the behavior of an
Eulerian variable, we use an appropriate finite-difference approximation de-
fined at points of this mesh. During each timestep of the computation, we use
a sequence of fractional steps to update each of the unknowns, as follows:

(1) The adhesion and cohesion force densities are calculated using discrete
versions of f p = ∇ · σp and fw = ∇ · σw and summed to give their
contributions to the fluid force density fn. The background force density
fg is also added to fn.

(2) The IB points are moved (using un−1/2) and the IB forces are calculated
and transmitted to the fluid grid adding to the fluid force density fn.

(3) Using fn, the discretized Navier-Stokes equations are solved to give new
velocities un+1/2 and pressure pn.

(4) The variables φa, φn, c, σp, σw, zp, and zw are updated to account for
advective transport (using un+1/2), and φn and c are further updated to
account for diffusive transport.

(5) The variables φa, φn, c, σp, σw, zp, and zw are updated to account for the
reaction terms in their respective transport equations and to yield values
at time level tn+1.

Additional description of parts of the numerical methods follows; more details
can be found in [39].

5.4.1 Solution of Navier-Stokes Equations

To solve the Navier-Stokes equations, we use a second-order approximate pro-
jection method [40]. In each timestep, the method has two substeps. In the
first, a discretization of the momentum equations is used to determine an
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intermediate velocity field u∗ which is typically not divergence free

u∗ − un−1/2

k
+ an = −Gpn−1 +

ν

2

(

Lu∗ + Lun−1/2
)

+ fn. (33)

In this equation and below, G, D, and L are discrete gradient, divergence, and
Laplacian operators defined using standard central difference approximations
except close to domain boundaries. The term

an =
3

2
(un−1/2 · G)un−1/2 −

1

2
(un−3/2 · G)un−3/2

is an approximation at time tn to the nonlinear advection term (u ·∇)u in the
momentum equation.

In the second substep of an exact projection method, u∗ would be decomposed
into the sum of a divergence free velocity field un+1/2 and a gradient field Gφ
which would be used to update the pressure

u∗ =un+1/2 + kGφ (34)

pn = pn−1 + kGφ −
ν

2
D · u∗. (35)

The requirement D · un+1/2 = 0 used with Eq.(34) would give a discrete
Poisson equation kD · Gφ = D · u∗ with a wide (4h-by-4h) stencil. Instead,
because the resulting Navier-Stokes solver has better stability properties, we
solve kLφ = D ·u∗ with the standard 5-point discrete Laplacian. Therefore, D ·
un+1/2 = 0 is satisfied only approximately to O(h2). As part of the projection
step, we calculate cell-edge velocities uj±1/2,l and vj,l±1/2 which satisfy the
incompressibility equation

u
n+1/2
j+1/2,l − u

n+1/2
j−1/2,l + v

n+1/2
j,l+1/2 − v

n+1/2
j,l−1/2 = 0. (36)

This property is important in the algorithm used to advect the Eulerian vari-
ables other than u.

5.4.2 Advection and diffusion

We use a slight modification of LeVeque’s high resolution advection algorithm
[41] to discretize the advective terms in the transport equations for φn, φa, c,
σp, σw, zp, and zw. The method is second-order accurate when the solution
and velocity field are smooth, and uses flux-limiters to control oscillations
in the numerical solution near discontinuities or steep gradients. LeVeque’s
algorithm is concerned with solution of a scalar advection equation of the
form
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qt + u · ∇q = 0, (37)

where the velocity field u is incompressible. Because ∇ · u = 0, the advective

form Eq.(37) can also be written in conservative form as qt + ∇ · (uq) = 0.
The two forms are equivalent for the differential equations, but discretizations
based on the advective form are generally different from and often superior
to those based on the conservative form. Among the advantages of advective
differencing is better treatment of patches of constant q. On the other hand,
advective differences may not preserve total mass.

In LeVeque’s algorithm, qn
jl is interpreted as the cell-average of q over the cell

jl, and the method uses cell-edge velocities in defining numerical flux functions
Fj±1/2,l and Gj,l±1/2 which give fluxes of q across the respective cell edges. The
final update formula for q is

qn+1
jl = qn

jl −
k
h

{

Fj+1/2,l − Fj−1/2,l + Gj,l+1/2 − Gj,l−1/2

}

. (38)

The version of LeVeque’s algorithm that we use proceeds in four steps, the
first corresponding to a first-order upwind method, and the later steps giving
a series of improvements to this basic method. Each of the steps can be de-
scribed in terms of waves propagating across the edges of the cells with each
wave contributing to the numerical flux of q from one cell to another. The al-
gorithm is a hybrid in that the first step is written in advective form while the
correction terms, though based on advective differences, are written in terms
of flux differences. The resulting algorithm has the good features of advective
differencing, but is fully conservative provided the discrete incompressibility
condition Eq.(36) holds.

We use LeVeque’s advection algorithm over the entire grid and and we want
to ensure that there is no advective flux across the immersed boundaries that
make up the vessel walls. We accomplish this by employing a mask which zeros
the cell edge velocities for any cell edges outside of the immersed boundary
walls.

The variables φn and c are also affected by diffusion. We use a Crank-Nicolson
time-discretization of the diffusive terms in the equations for φn and c, with
standard five-point approximations to the Laplacian operator at most grid
points. For points close to the vessel walls, we use a modified stencil that
enforces a no diffusive flux boundary condition at the vessel walls. The stencils
are derived using the ideas of the immersed interface methods introduced by
LeVeque and Li for elliptic problems with discontinuous coefficients [20], and
extended to elliptic and parabolic problems with Neumann conditions imposed
along an irregular boundary [19]. The combined advection-diffusion algorithm
for φn and c is second order accurate in test problems for which the solution
is smooth.
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5.4.3 Reaction Terms

We turn next to the reaction terms in a) Eqs.(19)-(21); b) Eqs.(28) and (29);
and c) Eqs.(31) and (32). In these terms, there is no coupling between different
grid points, so our discussion here applies to each grid point (xj, yl) separately.
We treat separately the reaction terms within each of the three groups notated
above and describe each in turn. Platelets display a threshold-like response to
activating chemicals [42], and so we take the activation rate function R(c) in
Eqs.(19-21) to be R(c) = R0H(c−cT ) where H(·) is a smoothed version of the
Heaviside step function and cT is the threshold concentration for activation.
A similar choice is made for Rw(w).

The reaction terms for φn, φa, and c give rise to the ordinary differential
equations

dφn

dt
=−

(

R(c) + Rw(w)
)

φn (39)

dφa

dt
=
(

R(c) + Rw(w)
)

φn (40)

dc

dt
= A

(

R(cn) + Rw(w)
)

φn(t) − Kc. (41)

To update, φn and φa, we assume that c, and therefore R(c), is constant over
the duration of the timestep and we solve analytically the resulting linear
differential equations Eqs.(39) and (40) to obtain φn+1

n and φn+1
a . Then, we

replace φn(t) and φa(t) in Eq.(41) by their respective averages (φn+1
n + φn

n)/2
and (φn+1

a + φn
a )/2, and solve the resulting linear equation analytically to

determine cn+1.

The reaction terms in Eqs.(28) and (29) give rise to the ordinary differential
equations

dσp

dt
=σp∇u + (σp∇u)T + a2φa

2I − β

(

Tr(σp)

zp

)

σp (42)

dzp

dt
= a0φa

2 − β

(

Tr(σp)

zp

)

zp. (43)

These are used to determine the cohesion force density fp which contributes
substantially to determining the fluid motion, and we found it important for
stability to use an implicit (trapezoidal) time discretization of these equations.
To describe it, let A be the operator which computes the time-average of its
input at times tn and tn+1, and let ∇u = ∇un+1/2. Our discretization is
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(σp)n+1 − (σp)n

k
=A(σp)∇u +

(

A(σp)∇u
)T

+ a2A(φa)
2

−A

(

β

(

Tr(σp)

zp

)

σp

)

(zp)n+1 − (zp)n

k
= a0A(φa)

2 −A

(

β

(

Tr(σp)

zp

)

zp

)

.

These implicit equations are solved iteratively with Newton’s method, using
local time-refinement at a grid point, if necessary, to ensure convergence of the
iterations. The same procedure is used for the reaction terms in the equations
for σw and zw.

5.5 Continuum model simulation results

An important application of the continuum model is to investigate thrombo-
sis in a stenotic (constricted) vessel following the rupture of an atheroscle-
rotic plaque and the consequent exposure of strongly thrombogenic stimuli.
Atherosclerotic plaques can develop slowly over many years and, in themselves,
may cause little problem. However they are mechanically fragile and can rup-
ture and trigger thrombosis that, in a matter of minutes, can lead to occlusion
of the vessel in which the plaque resides, or can lead to the dispersal of clot
fragments into the blood that end up blocking smaller vessels downstream.

Simulations in a 50% stenosis (see [39]) show that, under some conditions,
the thrombus grows to occlude the vessel. In Fig. 8, we show two simulations,
identical except for the location of the rupture within the stenosis. With a
rupture at the downstream end, where the flow through the stenosis is decel-
erating and the shear stresses are relatively low, a solid thrombus grows slowly
out into the sheltered recirculation zone downstream of the plaque. With a
rupture of identical size, but at the upstream end of the stenosis, where the
flow is accelerating and the shear stresses are relatively high, the evolution of
the thrombus is very different. As it begins to grow, the initial thrombus is
subject to high stresses which lead to large strains and a high rate of cohesive
link breaking (see Fig. 9). The thrombus never becomes fully solid; it behaves
more as a weakly-elastic very viscous fluid. Pieces of it fragment and are car-
ried downstream. The thrombus remains small, and eventually is broken apart
(not shown) by continued shear stress. Meanwhile, the fast flow carries acti-
vating chemical through the stenosis and into the recirculating zone where a
larger thrombus develops. The center of this thrombus becomes quite solid,
but the thrombus is not anchored to the injured portion of the vessel wall and
cannot adhere to the healthy portions of the vessel wall, so it too is eventually
washed downstream. The two simulations, identical in set up except for the
location of the injury relative to the flow, give a striking illustration of the
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importance of fluid dynamics in the clotting process. For these simulations,
the peak inflow velocity was 10 cm/sec, the channel height and length were
0.18 cm and 0.8 cm, respectively, the Reynolds number about 50, and the
maximum shear rate, which occured at the upstream top corner of the steno-
sis, was 1750 sec−1. The duration of the simulations was about 0.5 sec, which
like the microscale simulations, is about two orders of magnitude too fast.
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Fig. 8. Snapshots at corresponding times from two simulations of thrombosis follow-
ing rupture of 50% stenosis. Flow conditions and kinetic parameters are the same
for the two simulations; only the location of the rupture differs. Left: Rupture at
upstream end of stenosis where flow is accelerating and shear stress is high. Right:
Rupture at downstream end of stenosis where flow is slowing and shear stress is
relatively low. Each plot shows velocity field and the aggregation intensity zp + zw

(red: low, yellow: high).

Fig. 9. Close-up snapshots at corresponding times from the simulations shown in
Fig. 8. Top panel shows velocity field and aggregation intensity zp + zw (red: low,
yellow: high). Bottom panel shows strain in thrombi (dark: high, pale: low).
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6 Conclusions

We have presented both semidiscrete microscale and continuum macroscale
models of platelet aggregation during blood clotting. The microscale models
represent each platelet as a separate entity using Peskin’s Immersed Boundary
method. The continuum models are motivated by the IB idea of representing
biological tissue as a composite incompressible fluid-elastic material, so that
changes in geometry or phase are manifest solely through changes in mechani-
cal forces within the material. Both types of models are able to capture salient
behaviors in the platelet aggregation process including the influence of aggre-
gate growth on the flow, shear-stress-related limitations of aggregate growth,
and the possibility of complete vessel occlusion.

The implementation of the IB method is relatively straightforward, since it
uses a fixed Eulerian grid, compared to other computational methods for treat-
ing deforming objects interacting with a fluid. One significant limitation in
computing with the IB method is in having to use very small timesteps to
maintain stability when doing explicit time-stepping. Recently, new insights
have been developed into what is needed in an implicit discretization in order
to achieve unconditional stability in IB calculations [43,44]. This may lead to
the development of efficient implicit IB methods that will lessen the current
timestep restrictions. For work in this direction, see [45].

There are substantial challenges remaining for both the micro- and macroscale
modeling projects. Three-dimensional microscale simulations are very compu-
tationally expensive, and substantial work to make good use of new implicit
solvers, parallelization, and other ideas for exploiting differences in time scales
will be needed before we can simulate physiologically interesting periods of
time. Simulation of the continuum model equations requires being able to
handle adjacent materials of very different mechanical properties. The compu-
tational methods described in this paper do a good job in most situations, but
can produce non-physical (bounded) oscillations under some circumstances.
Work on algorithms that better exploit the mathematical structure of the
continuum equations to eliminate this problem is described in [46]. The cur-
rent model is also limited in that all species move in the same velocity field.
Because there can be no relative motion between aggregated platelets and the
local fluid, in order to have a solid aggregate the local fluid must be brought
to rest. This means that for a solid aggregate to develop in the current model,
it must do so quickly. It is more realistic to allow relative motion between the
fluid and platelets in porous aggregates of low platelet volume fraction. As
the volume fraction of platelets in the aggregate increases, in part because the
flow brings new platelets into the thrombus, the thrombus becomes less perme-
able and the relative motion of fluid and platelets decreases toward zero. We
are developing versions of the model that allow such relative motion between
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aggregated platelets and the local fluid.
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