
Unconditionally Stable Discretizations of the

Immersed Boundary Equations

Elijah P. Newren ∗,a, Aaron L. Fogelson a,b, Robert D. Guy a,

Robert M. Kirby c

aDepartment of Mathematics, University of Utah, Salt Lake City, Utah 84112

bDepartment of Bioengineering, University of Utah, Salt Lake City, Utah 84112

cSchool of Computing, University of Utah, Salt Lake City, Utah 84112

Abstract

The Immersed Boundary (IB) method is known to require small timesteps to main-

tain stability when solved with an explicit or approximately implicit method. Many

implicit methods have been proposed to try to mitigate this timestep restriction,

but none are known to be unconditionally stable, and the observed instability of

even some of the fully implicit methods is not well understood. In this paper, we

prove that particular backward Euler and Crank-Nicolson-like discretizations of the

nonlinear immersed boundary terms of the IB equations in conjunction with un-

steady Stokes Flow can yield unconditionally stable methods. We also show that

the position at which the spreading and interpolation operators are evaluated is not

relevant to stability so as long as both operators are evaluated at the same loca-

tion in time and space. We further demonstrate through computational tests that

approximate projection methods (which do not provide a discretely divergence-free

velocity field) appear to have a stabilizing influence for these problems; and that

the implicit methods of this paper, when used with the full Navier-Stokes equations,

Preprint submitted to Journal of Computational Physics 9 August 2006

are no longer subject to such a strict timestep restriction and can be run up to the

CFL constraint of the advection terms.

Key words: Stability, Fluid-structure interaction, Immersed Boundary method,

Immersed Interface Method, Projection methods, Navier-Stokes equations

MSC: 65M06, 65M12, 74F10, 76D05, 76D07, 76M20

1 Introduction

The Immersed Boundary (IB) method was introduced by Peskin in the early

1970’s to solve the coupled equations of motion of a viscous, incompressible

fluid and one or more massless, elastic surfaces or objects immersed in the

fluid [20]. Rather than generating a curve-fitting grid for both exterior and

interior regions of each surface at each timestep and using these to determine

the fluid motion, Peskin instead employed a uniform Cartesian grid over the

entire domain and discretized the immersed boundaries by a set of points

that are not constrained to lie on the grid. The key idea that permits this

simplified discretization is the replacement of each suspended object by a

suitable contribution to a force density term in the fluid dynamics equations

in order to allow a single set of fluid dynamics equations to hold in the entire

domain with no internal boundary conditions.

The IB method was originally developed to model blood flow in the heart

∗ Corresponding Author

Email addresses: newren@math.utah.edu (Elijah P. Newren),

fogelson@math.utah.edu (Aaron L. Fogelson), guy@math.utah.edu (Robert D.

Guy), kirby@cs.utah.edu (Robert M. Kirby).

2

and through heart valves [20,22,23], but has since been used in a wide variety

of other applications, particularly in biofluid dynamics problems where com-

plex geometries and immersed elastic membranes or structures are present

and make traditional computational approaches difficult. Examples include

platelet aggregation in blood clotting [7,9], swimming of organisms [7,8], biofilm

processes [6], mechanical properties of cells [1], cochlear dynamics [3], and in-

sect flight [17,18].

The Immersed Interface Method (IIM) was developed by Leveque and Li to

address the lower order accuracy found in the IB method when applied to

problems with sharp interfaces [14]. The IIM differs from the IB method in

the spatial discretization method used to handle the singular forces appearing

in the continuous equations of motion. While we do not address the spatial

discretizations involved in the IIM and instead focus on the IB method in this

paper, we do present some discussion of that method since the two are closely

related (hybrids of the two even exist, such as [13]).

The Immersed Boundary and Immersed Interface Methods suffer from a se-

vere timestep restriction needed to maintain stability, as has been well doc-

umented in the literature [7,14,21,26]. This time step restriction is typically

much more stringent than the one that would be imposed from using explicit

differencing of the advective or diffusive terms [5]. Much effort has been ex-

pended attempting to alleviate this severe restriction. For example in some

problems, the fluid viscosity has been artificially increased by a couple orders

of magnitude [24]. In others, authors filter out high frequency oscillations of

the interface [14,29]. Much effort has been put into developing implicit and

semi-implicit methods [7,14,16,27].

3

Despite these efforts the severe timestep restriction has remained. The insta-

bility of these methods is known not to be a problem related to the advection

terms in the Navier Stokes equations, and is known to arise in the param-

eter regime corresponding to large boundary force and small viscosity [26],

but there is little understanding of why this parameter regime is problematic.

Despite the effort put into implicit methods which couple the equations of

motion for the fluid and immersed boundary, the lack of stability has been

puzzling. Conjectures as to causes of instability in these methods turn out

to be misleading. It is a common belief in the community that using time-

lagged spreading and interpolation operators (i.e. time-lagged discretizations

of the delta functions in equations (2) and (5) of section 2) will cause insta-

bility, and that therefore a fully-implicit scheme (i.e. one without time-lagged

spreading and interpolation operators) is necessary for unconditional stabil-

ity [13,16,19,25]. It has also been conjectured that the lack of stability and

corresponding timestep restriction in fully-implicit schemes such as [16] is due

to accumulation of error in the incompressibility condition [26].

We will present some discretizations that we prove to be unconditionally sta-

ble in conjunction with unsteady Stokes flow, and in so doing, show (i) that

methods need not be fully-implicit in order to achieve unconditional stabil-

ity and (ii) that accumulation of error in the incompressibility condition is

not the cause of the observed instability of previous implicit methods. We

cover the continuous equations of motion and common choices for temporal

discretizations in sections 2 and 3, provide proofs of unconditional stability

of various discretization schemes in section 4, show by computational tests

how the schemes are affected by the presence of an approximate projection

and advection terms in section 5, and discuss remaining outstanding questions

4

about these methods in section 6.

2 Continuous Equations of Motion

In the IB method, an Eulerian description based on the Navier-Stokes equa-

tions is used for the fluid dynamics, and a Lagrangian description is used for

each object immersed in the fluid. The boundary is assumed to be massless,

so that all of the force generated by distortions of the boundary is transmitted

directly to the fluid. An example setup in 2D with a single immersed bound-

ary curve is shown in Figure 1. Lowercase letters are used for Eulerian state

X(s, t)

Γ

Fig. 1. Example immersed boundary curve, Γ, described by

the function X(s, t).

variables, while uppercase letters are used for Lagrangian variables. Thus,

X(s, t) is a vector function giving the location of points on Γ as a function

of arclength (in some reference configuration), s, and time, t. The boundary

5

is modeled by a singular forcing term, which is incorporated into the forcing

term, f , in the Navier-Stokes equations. The Navier-Stokes equations are then

solved to determine the fluid velocity throughout the domain, Ω. Since the im-

mersed boundary is in contact with the surrounding fluid, its velocity must be

consistent with the no-slip boundary condition. Thus the immersed boundary

moves at the local fluid velocity. This results in the following set of equations:

F(s, t) = AX(s, t) (1)

f(x, t) =
∫

Γ
F(s, t)δ(x − X(s, t)) ds (2)

ut + u · ∇u = −∇p + ν∆u + f (3)

∇ · u = 0 (4)

dX(s, t)

dt
= u(X(s, t), t) =

∫

Ω
u(x, t)δ(x − X(s, t)) dx. (5)

The force generation operator, A, in equation (1) is problem dependent. A

commonly used operator is γ ∂2

∂s2 (where γ is an elastic tension parameter),

which results from assuming the boundary is linearly elastic with zero rest-

ing length. Note that the terminology “force generation operator” might be

misleading to those not familiar with the Immersed Boundary method, as the

force used in the fluid dynamics equations is not the one defined in equation (1)

but the one in equation (2). The latter is nonlinear as well as singular due to

the lower-dimensional line integral. The Lagrangian and Eulerian variables in

the problem are related through equations (2) and (5). In equation (3) we

have assumed a constant density, ρ, of 1.0 g/cm3 and divided it through both

sides.

6

3 Temporal discretization

In departure from most papers on the Immersed Boundary and Immersed

Interface Methods, we first discretize the continuous equations of motion in

time, yielding a spatially continuous, temporally discrete system. We do this

because the choice of temporal discretization appears to be much more im-

portant to stability than the spatial discretization—we will show stability for

a wide class of spatial discretizations but only for two types of temporal dis-

cretizations. We analyze unsteady Stokes flow because as mentioned above,

the advection terms of the Navier-Stokes equations are not the cause of in-

stability in these methods. We will, however, include the advection terms in

some computational tests in section 5.

There are various temporal discretizations possible. Most Immersed Boundary

and Immersed Interface implementations tend to be of the following form

un+1 − un

∆t
+ ∇pn+ 1

2 =
ν

2
∆(un+1 + un) + f (6)

∇ · un+1 = 0 (7)

Xn+1 − Xn

∆t
= U, (8)

where different discretization possibilities for f and U will be discussed below.

Let us define Sm and S∗
m through the formulas

Sm(F) =
∫

Γ
F(s, t)δ(x − Xm(s, t)) ds, (9)

and

S∗
m(u) =

∫

Ω
u(x, t)δ(x − Xm(s, t)) dx. (10)

The most common temporal discretizations of f and U are f = SnAXn and

7

U = S∗
nu

n+1. This results in an explicit system (more precisely, a mixed

explicit-implicit system that is implicit in the handling of the viscous terms and

explicit in the handling of the immersed boundary terms). But this common

explicit discretization requires a small timestep for stability. In an effort to

devise more stable schemes, various implicit methods have been presented in

the literature. Among these implicit methods, common discretization choices

for f are

1) Sn+1AXn+1

2) 1
2
SnAXn + 1

2
Sn+1AXn+1

3) Sn+ 1

2

AXn+ 1

2 ,

where Xn+ 1

2 is approximated by 1
2
(Xn + Xn+1), while common discretization

choices for U are

A) S∗
n+1u

n+1

B) 1
2
S∗

nu
n + 1

2
S∗

n+1u
n+1

C) S∗
n+ 1

2

(

1
2
(un + un+1)

)

.

Some implicit methods also lag the spreading and interpolation operators in

time, meaning that Sn and S∗
n are used to replace occurrences of S and S∗

evaluated at other times in the above choices for f and U.

Where the discretization choices for f and U can be found in the literature,

many variations are used. Mayo and Peskin [16] use method 1A (i.e. take

choice 1 for f and A for U from the lists above). Tu and Peskin [27] use

a modified version of 1A with time lagged spreading and interpolation op-

erators (i.e. Sn and S∗
n instead of Sn+1 and S∗

n+1) with steady Stokes flow.

Roma et al. [25] and Lee and Leveque [13] both use method 2B, while Grif-

8

fith and Peskin [10] approximate 2B using an explicitly calculated Xn+1. Mori

and Peskin [19] use method 3C with lagged spreading and interpolation op-

erators though with the addition of boundary mass, Peskin [21] and Lai and

Peskin [12] approximate method 3C with an explicitly calculated Xn+1, and

the first author of this work experimented with method 3B. We will prove

that both 1A and 3C are unconditionally stable and that the stability is not

effected by the location at which S and S∗ are evaluated, provided both are

evaluated at the same location.

4 Unconditionally Stable Schemes

In this section, we prove that 1A and 3C are unconditionally stable. First

we consider the spatially continuous case for method 3C and then extend the

proof to the discrete case for both 3C and 1A. In each case, the method we

use is to define an appropriate energy for the system and show that it is a

non-increasing, and hence bounded, function in time.

4.1 Crank-Nicolson for the Spatially Continuous Problem

We begin with method 3C for the spatially continuous problem, showing that

the energy of the system

E[u,X] = 〈u,u〉Ω + 〈−AX,X〉Γ , (11)

is non-increasing. Here the inner products are on L2(Ω) and L2(Γ), respec-

tively. This energy represents the sum of the kinetic energy of the fluid and

the potential energy in the elasticity of the boundary. Note that A (the force

9

generation operator on the immersed boundary) must be negative-definite for

this definition of energy to make sense. We further require in the proof that A

be self-adjoint and linear (conditions which are satisfied by the common choice

A = γ ∂2

∂s2). We also assume that divergence-free velocity fields are orthogonal

to gradient fields (which may put limitations on the boundary conditions but

is satisfied for example by periodic boundary conditions). We also make use

of the fact that S and S∗ are adjoints, which can be seen from the following

calculation with F ∈ L2(Γ) and w ∈ L2(Ω)

〈S(F(s, t)),w(x, t)〉Ω =
∫

Ω
S(F(s, t))(x, t) · w(x, t) dx

=
∫

Ω

∫

Γ
F(s, t)δ(x − X(s, t)) ds · w(x, t) dx

=
∫

Γ
F(s, t) ·

∫

Ω
w(x, t)δ(x− X(s, t)) dx ds

= 〈F(s, t),S∗(w(x, t))〉Γ .

(12)

Recall that the IB method using 3C is

un+1 − un

∆t
+ ∇pn+ 1

2 =
ν

2
∆(un+1 + un) + Sn+ 1

2

A
(

1

2
(Xn + Xn+1)

)

(13)

∇ · un+1 = 0 (14)

Xn+1 − Xn

∆t
= S∗

n+ 1

2

(

1

2
(un + un+1)

)

. (15)

Multiplying through by ∆t, taking the inner product of equation (13) with

un+1 + un and the inner product of (15) with −A(Xn+1 + Xn) yields

〈

un+1 + un,un+1 − un
〉

Ω
= −∆t

〈

un+1 + un,∇pn+ 1

2

〉

Ω
(16)

+
ν∆t

2

〈

un+1 + un, ∆(un+1 + un)
〉

Ω

+
∆t

2

〈

un+1 + un,Sn+ 1

2

A(Xn + Xn+1)
〉

Ω

〈

−A(Xn+1 + Xn),Xn+1 − Xn
〉

Γ
=

∆t

2

〈

−A(Xn+1 + Xn),S∗
n+ 1

2

(un + un+1)
〉

Γ
.

(17)

10

Adding these two equations gives us

〈

un+1 + un,un+1 − un
〉

Ω
+

〈

−A(Xn+1 + Xn),Xn+1 − Xn
〉

Γ
(18)

= −∆t
〈

un+1 + un,∇pn+ 1

2

〉

Ω

+
ν∆t

2

〈

un+1 + un, ∆(un+1 + un)
〉

Ω

+
∆t

2

〈

un+1 + un,Sn+ 1

2

A(Xn + Xn+1)
〉

Ω

+
∆t

2

〈

−A(Xn + Xn+1),S∗
n+ 1

2

(un+1 + un)
〉

Γ
.

The last two terms on the right-hand-side cancel by the adjointness of Sn+ 1

2

and S∗
n+ 1

2

, the first term on the right-hand-side is zero because un+1 and un

are divergence-free while ∇pn+ 1

2 is a gradient field, and the left-hand-side of

the equation can be simplified using the linearity and self-adjointness of A.

This leaves us with

〈

un+1,un+1
〉

Ω
− 〈un,un〉Ω +

〈

−AXn+1,Xn+1
〉

Γ
− 〈−AXn,Xn〉Γ (19)

=
ν∆t

2

〈

un+1 + un, ∆(un+1 + un)
〉

Ω
.

Using the negative definiteness of the Laplacian operator, the above equation

implies

E[un+1,Xn+1] − E[un,Xn] ≤ 0. (20)

In other words, the energy of the system is bounded for all time, and thus

the system remains stable. The key to the proof is that the energy terms

representing the work done by the fluid on the boundary and the work done

by the boundary on the fluid (the terms involving Sn+ 1

2

and S∗
n+ 1

2

) exactly

cancel. This is a property not shared by any of the other methods, though in

section 4.3 we show that the remaining terms for 1A result in a decrease of

energy in addition to the energy loss from viscosity, and so scheme 1A is also

stable.

11

It is useful to note that the proof is still valid even if Sn and S∗
n are used in

place of Sn+ 1

2

and S∗
n+ 1

2

; i.e. the system need not be fully implicit in order

to achieve unconditional stability. This is contrary to what the community

expected (as pointed out in section 1), and it can be exploited to simplify the

set of implicit equations that need to be solved, as we do in section 5, without

sacrificing stability.

4.2 Projection Methods and Discrete Delta Functions

We now show that the unconditional stability of method 3C extends to the

usage of discrete delta functions and (exact) discrete projection methods. We

show computationally in section 5 that an approximate projection method

appears to be sufficient for unconditional stability, but use an exact projection

for purposes of the proof. Let ∇h, ∇h·, and ∆h be discrete analogs of ∇,

∇·, and ∆ satisfying ∆h = ∇h · ∇h (so that the projection is exact). Let

A be a discrete analog of A maintaining linearity, negative-definiteness, and

self-adjointness. Let Sn+ 1

2

and S∗
n+ 1

2

be discrete analogs of Sn+ 1

2

and S∗
n+ 1

2

preserving adjointness. We assume boundary conditions for which discretely

divergence-free fields and discrete gradient fields are orthogonal and for which

∇h and ∆h commute. We employ a pressure-free projection method in the

proof. Some other projection methods, such as pressure update projection

methods also work, but others might not; in particular, it appears that it was

the projection employed by Mayo and Peskin [16] that caused the instability

they saw, as we will discuss in section 4.3.

We note that many, if not most, existing IB implementations satisfy these con-

ditions. For example, an implementation with periodic boundary conditions,

12

employing a (exact) projection method, using the force generation operator

A = γD+D−, and using any of the standard discrete delta functions [21]

will satisfy all of these conditions. All of these particular choices are quite

common. Thus, as we will prove below, such implementations could be made

unconditionally stable by switching to discretization method 3C.

The adjointness condition on Sn+ 1

2

and S∗
n+ 1

2

is

〈

Sn+ 1

2

(F),w
〉

Ωh

=
〈

F, S∗
n+ 1

2

(w)
〉

Γh

, (21)

where F ∈ `2(Γh), w ∈ `2(Ωh) and the `2 inner products are defined by

〈v,w〉Ωh
=

∑

ij

vij · wij∆x∆y (22)

and

〈Y,Z〉Γh
=

∑

k

Yk · Zk∆s.. (23)

The calculation to show this adjointness property for the standard tensor

product discrete delta functions [21] is nearly identical to (12) and so is omit-

ted here. With these definitions and assumptions, using the pressure update

needed for second order accuracy [4], and utilizing method 3C, our discrete

system becomes

u∗ − un

∆t
=

ν

2
∆h(u∗ + un) +

1

2
Sn+ 1

2

A(Xn + Xn+1) (24)

∆hφ =
1

∆t
∇h · u∗ (25)

un+1 = u∗ − ∆t∇hφ (26)

pn+ 1

2 = φ −
ν

2
∇h · u∗ (27)

Xn+1 − Xn

∆t
=

1

2
S∗

n+ 1

2

(un + un+1). (28)

We proceed analogously to the time-discrete spatially-continuous case, and

13

show that the energy of the system

E[u,X] = 〈u,u〉Ωh
+ 〈−AX,X〉Γh

(29)

is non-increasing. Taking the inner product of (24) with ∆t(un+1 +un), taking

the inner product of (26) with un+1 +un and taking the inner product of (28)

with −∆tA(Xn+1 + Xn) yields

〈

un+1 + un,u∗ − un
〉

Ωh

=
ν∆t

2

〈

un+1 + un, ∆h(u∗ + un)
〉

Ωh

(30)

+
∆t

2

〈

un+1 + un, Sn+ 1

2

A(Xn + Xn+1)
〉

Ωh

〈

un+1 + un,un+1 − u∗
〉

Ωh

= −∆t
〈

un+1 + un,∇hφ
〉

Ωh

(31)

〈

−A(Xn+1 + Xn),Xn+1 − Xn
〉

Γh

=
∆t

2

〈

−A(Xn+1 + Xn), S∗
n+ 1

2

(un + un+1)
〉

Γh

.

(32)

Adding all three of these equations and noting the cancellation of the energy

terms from the immersed boundary due to equation (21) gives us

〈

un+1 + un,un+1 − un
〉

Ωh

+
〈

−A(Xn+1 + Xn),Xn+1 − Xn
〉

Γh

(33)

= −∆t
〈

un+1 + un,∇hφ
〉

Ωh

+
ν∆t

2

〈

un+1 + un, ∆h(u∗ + un)
〉

Ωh

.

Now, we can employ (26) to eliminate u∗ from this equation. Simultaneously

simplifying the left-hand-side of the equation using the assumption that A is

linear and self-adjoint, we obtain

〈

un+1,un+1
〉

Ωh

− 〈un,un〉Ωh
+

〈

−AXn+1,Xn+1
〉

Γh

− 〈−AXn,Xn〉Γh
(34)

= −∆t
〈

un+1 + un,∇hφ
〉

Ωh

+
ν∆t

2

〈

un+1 + un, ∆h((un+1 + ∆t∇hφ) + un)
〉

Ωh

.

Making use of commutativity of ∇h and ∆h and orthogonality of discretely

14

divergence-free vector fields and discrete gradient fields, we find

〈

un+1,un+1
〉

Ωh

− 〈un,un〉Ωh
+

〈

−AXn+1,Xn+1
〉

Γh

− 〈−AXn,Xn〉Γh
(35)

=
ν∆t

2

〈

un+1 + un, ∆h(un+1 + un)
〉

Ωh

.

Using the negative definiteness of the discrete Laplacian operator, the above

equation implies

E[un+1,Xn+1] − E[un,Xn] ≤ 0, (36)

showing that the energy of the system is non-increasing and thus implying

that the system is stable.

Just as with the spatially continuous case, nothing in this proof required the

system to be fully implicit to achieve unconditional stability; the proof is still

valid if Sn and S∗
n (or indeed spreading and interpolation operators evaluated

at any location so long as they are adjoints) are used in place of Sn+ 1

2

and

S∗
n+ 1

2

. Again, this is a fact we demonstrate in our computational experiments

in section 5.

4.3 Unconditional Stability of Backward Euler

We now demonstrate that temporal discretization 1A is unconditionally stable,

and in fact, that it dissipates more energy from the system than one would

find from the effect of viscosity alone. The method and assumptions are the

same as in section 4.2, the only difference is that more work is required to

show that extra non-cancelling terms are in fact negative.

Papers that employ a backward Euler discretization of the immersed boundary

terms invariably also use a backward Euler discretization of the viscous terms.

15

So, we modify our system for this case to use a backward Euler discretization

of the viscous terms instead of a Crank-Nicolson one. With that change, the

relevant equations for method 1A are

u∗ − un

∆t
= ν∆hu∗ + Sn+1AXn+1 (37)

un+1 = u∗ − ∆t∇hφ (38)

Xn+1 − Xn

∆t
= S∗

n+1u
n+1 (39)

Taking the inner product of (37) with ∆t(un+1+un), taking the inner product

of (38) with un+1+un and taking the inner product of (39) with −∆tA(Xn+1+

Xn) yields

〈

un+1 + un,u∗ − un
〉

Ωh

= ∆t
〈

un+1 + un, ν∆hu∗ + Sn+1AXn+1
〉

Ωh

(40)

〈

un+1 + un,un+1 − u∗
〉

Ωh

= −∆t
〈

un+1 + un,∇hφ
〉

Ωh

(41)

〈

−A(Xn+1 + Xn),Xn+1 − Xn
〉

Γh

= ∆t
〈

−A(Xn+1 + Xn), S∗
n+1u

n+1
〉

Γh

.

(42)

We can simplify (42) by making use of the assumption that A is linear and self-

adjoint and by using equation (39) to eliminate the appearance of Xn on the

right-hand-side. Making these simplifications and adding all three equations,

we obtain

〈

un+1,un+1
〉

Ωh

− 〈un,un〉Ωh
+

〈

−AXn+1,Xn+1
〉

Γh

− 〈−AXn,Xn〉Γh
(43)

= ∆t
〈

un+1 + un, ν∆hu∗ + Sn+1AXn+1 −∇hφ
〉

Ωh

+ ∆t
〈

−2AXn+1 + A∆tS∗
n+1u

n+1, S∗
n+1u

n+1
〉

Γh

.

Making use of our definition of energy and using the identity un+1 + un =

16

(un − un+1) + 2un+1, we obtain

E[un+1,Xn+1] − E[un,Xn] (44)

= ∆t
〈

un − un+1, ν∆hu∗ + Sn+1AXn+1 −∇hφ
〉

Ωh

+ ∆t
〈

2un+1, ν∆hu∗ + Sn+1AXn+1 −∇hφ
〉

Ωh

+ ∆t
〈

−2AXn+1 + A∆tS∗
n+1u

n+1, S∗
n+1u

n+1
〉

Γh

.

We can use equations (37) and (38) to eliminate the first occurrence of ν∆hu∗+

Sn+1AXn+1 − ∇hφ to replace it with u
n+1−u

n

∆t
. Simultaneously using equa-

tion (38) to eliminate the second appearance of u∗ we obtain

E[un+1,Xn+1] − E[un,Xn] (45)

= ∆t

〈

un − un+1,
un+1 − un

∆t

〉

Ωh

+ ∆t
〈

2un+1, ν∆hun+1
〉

Ωh

+ ∆t
〈

2un+1, ν∆t∆h∇hφ −∇hφ
〉

Ωh

+ ∆t
〈

2un+1, Sn+1AXn+1
〉

Ωh

+ ∆t
〈

−2AXn+1, S∗
n+1u

n+1
〉

Γh

− ∆t2
〈

−AS∗
n+1u

n+1, S∗
n+1u

n+1
〉

Γh

.

The fourth and fifth terms on the right-hand-side cancel by the adjoint prop-

erty of Sn+1 and S∗
n+1. The third term vanishes due to the commutativity of

∆h and ∇h and due to the orthogonality of discretely divergence-free vector

17

fields and discrete gradients. Hence we are left with

E[un+1,Xn+1] − E[un,Xn] (46)

= −
〈

un+1 − un,un+1 − un
〉

Ωh

+ 2ν∆t
〈

un+1, ∆hun+1
〉

Ωh

− ∆t2
〈

−AS∗
n+1u

n+1, S∗
n+1u

n+1
〉

Γh

.

The second term on the right-hand-side is non-positive by the negative def-

initeness of the ∆h operator and represents the dissipation of energy due to

viscosity. From this computation, we see that method 1A is unconditionally

stable, and that it dissipates more energy than one would just get from the

effect of viscosity. As with method 3C, the proof did not rely on the time level

at which S and S∗ are evaluated, other than requiring them to be evaluated

at the same time level so that they are indeed adjoints.

We note that Mayo and Peskin [16] also used a backward Euler discretization

of both the viscous and immersed boundary terms, but reported a lack of

stability in their method that was also confirmed by Stockie and Wetton [26].

However, they did not solve the system of equations (37)-(39). The salient

difference between method 1A and their method is that they moved the forcing

terms from the momentum equation into the projection step to obtain a system

of equations of the form

u∗ − un

∆t
= ν∆hu∗ (47)

∆hφ =
1

∆t
∇h · u∗ + ∇h · (SAXn+1) (48)

un+1 = u∗ − ∆t∇hφ + ∆t(SAXn+1) (49)

Xn+1 − Xn

∆t
= S∗un+1 (50)

This modification was important to Mayo and Peskin’s proof of convergence

18

of the iterative method they used to solve their implicit equations. We believe

that this change was the cause of the instability they observed. There were also

other minor differences between Mayo and Peskin’s method and method 1A,

notably the inclusion of advection terms and the use of ADI splitting for the

advection and viscous terms. Stockie and Wetton, however, observed the same

instability while only considering Stokes equations and without employing an

ADI splitting.

5 Computational results

In this section, we demonstrate the unconditional stability of our discretization

computationally and indicate how stability is affected by some modifications

not covered in the proofs of the preceding section. Since approximate pro-

jections are an increasingly commonly used method in the community that

provides a velocity field that is not quite discretely divergence-free, it is the

first modification that we test. We use an approximate projection that has an

O(h2) error in the divergence-free condition for the velocity. The other modi-

fication that we test is the addition of advection terms from the Navier-Stokes

equations.

The test problem we use is one typically seen in the literature, in which the im-

mersed boundary is a closed loop initially in the shape of an ellipse [13,14,16,25–

27]. We choose an ellipse initially aligned in the coordinate directions with

horizontal semi-axis a = 0.28125 cm and vertical semi-axis b = 0.75a cm. The

fluid is initially at rest in a periodic domain, Ω, with Ω = [0, 1] × [0, 1]. For

this test problem, the boundary should perform damped oscillations around

a circular equilibrium state with the same area as that of the original ellipse.

19

The configuration of the boundary at different times can be seen in Figure 2.

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 2. Computed immersed boundary positions at successive

times; the solid line is the initial shape, and the dashed-dotted

and dashed lines show the configuration of the boundary later

in the simulation.

We employ a cell centered grid with uniform grid spacing h = 1/64 cm in both

x and y, and discrete gradient, divergence, and Laplacian operators given by

the formulas

(

∇h · u
)

ij
=

ui+1,j − ui−1,j

2h
+

vi,j+1 − vi,j−1

2h
(51)

(

∇hp
)

ij
=

(

pi+1,j − pi−1,j

2h
,
pi,j+1 − pi,j−1

2h

)

(52)

(

∆h
widep

)

ij
=

pi+2,j − 2pi,j + pi−2,j

4h2
+

pi,j+2 − 2pi,j + pi,j−2

4h2
(53)

(

∆h
tightp

)

ij
=

pi+1,j − 2pi,j + pi−1,j

h2
+

pi,j+1 − 2pi,j + pi,j−1

h2
(54)

where ∆h = ∆h
wide will be used for our Poisson solve in all tests other than

those from section 5.2, and ∆h = ∆h
tight will be used for the viscous terms as

well as the Poisson solve in section 5.2. We define A as γ ∂2

∂s2 and choose NB,

20

the number of immersed boundary points, to approximately satisfy NB = 2LB

h
,

where LB is the arclength of the immersed boundary. In all tests, except where

otherwise noted, we use (spatially discrete) method 3C with lagged spreading

and interpolation operators. We also use the common four point delta function

δh(x, y) = δh(x)δh(y) (55)

δh(x) =























1
4h

(

1 + cos(πx
2h

)
)

|x| ≤ 2h

0 |x| ≥ 2h

. (56)

The immersed boundary update equation,

Xn+1 − Xn

∆t
=

1

2
S∗

n(un + un+1), (57)

can be re-written as

g(X) = X − Xn −
∆t

2
S∗

n(un + un+1) = 0 (58)

so that we can write the implicit system that we must solve as g(Xn+1) = 0

(note that un+1 depends on Xn+1 too). To solve this implicit system of equa-

tions, we use an approximate Newton solver (by employing finite difference

approximations to obtain the Jacobian g′, which requires O(NB) fluid solves

per implicit iteration to compute and is thus extremely slow). We discuss the

use of the approximate Newton solver further in section 6.

5.1 Computational Verification of the Method

5.1.1 Refinement Study

We begin with a simple convergence study to verify that the implicit dis-

cretization results in a consistent method. We expect only first order accuracy

21

for two reasons: the Immersed Boundary method has been shown to exhibit

first order accuracy on problems with a sharp interface, and our lagging of

the spreading and interpolation operators makes the discretization formally

first order. The Immersed Boundary method has three numerical parameters

affecting the accuracy — the Eulerian mesh width, h, the average Lagrangian

mesh width, ∆s, and the timestep, ∆t. The values of these numerical param-

eters that we use in our refinement study are given in Table 1. However, since

we always choose NB so that ∆s is approximately h/2, we report the size of

NB instead. For our convergence problem, we set γ = 1 (cm4/s2; γ includes a

factor of 1/ρ where ρ = 1.0 g/cm3 is the density), and ν = 0.01 (cm2/s).

Table 1

Parameters used in numerical refinement study

Level # h NB ∆t

1 1/16 50 0.05

2 1/32 100 0.025

3 1/64 200 0.0125

4 1/128 400 0.00625

The results of the refinement study are displayed in Table 2. Because an ana-

lytic solution is not available, we estimate the convergence rate by comparing

the differences of the numerical solutions between successive grid levels. We

use the `2 norms induced by the inner products in equations (22) and (23).

22

Table 2

Results of a refinement study showing first order convergence of method 3C. The

convergence rate is defined as sqrt(E1/E3). Ei(q) measures the error in variable q

at level i, defined by ‖qi − coarsen(qi+1)‖2. Here, qi is the value of variable q at time

t = 0.2 (seconds) computed with the numerical parameters for level i from Table 1.

The coarsen operator is simple averaging of nearest values for Eulerian quantities,

and injection from identical gridpoints for Lagrangian quantities.

q E1(q) E2(q) E3(q) rate

u 1.06e-03 4.17e-04 1.76e-04 2.4485

X 5.25e-04 2.96e-04 1.58e-04 1.8239

5.1.2 Comparison to explicit method

For sufficiently small timesteps, the explicit and implicit methods produce

nearly identical results, as expected. For larger timesteps, the energy measure

defined by equation (29) gives us a useful way to compare the two methods.

In Figure 3, we show the energy of the system as a function of time for four

different simulations. All four use ν = 0.01 and γ = 1, but differ on timestep

size and whether the explicit or implicit method is used. When ∆t = 6×10−3,

both the explicit and the implicit method give nearly identical results until t =

0.2 at which point the explicit method becomes unstable. When ∆t = 6×10−2,

the implicit method gives results nearly identical to the implicit method with

the smaller timestep, but the explicit method goes unstable immediately.

23

0 0.05 0.1 0.15 0.2 0.25 0.31.45

1.5

1.55

1.6

1.65

1.7

Time

En
er

gy

Fig. 3. Energy of the system for four different simulations

with ν = 0.01. o: implicit method, ∆t = 6×10−3; O: implicit

method, ∆t = 6 × 10−2; x: explicit method, ∆t = 6 × 10−3;

• : explicit method, ∆t = 6 × 10−2

5.1.3 Parameter testing on the inviscid problem

Since the parameter regime corresponding to large elastic tension and small

viscosity is where the traditional Immersed Boundary method has been ob-

served to suffer from stability problems unless a small timestep is used, we

sought to test that parameter regime with our implicit method. We set the

viscosity to 0 (to provide a more stringent test of the stability of our method)

and explored with a wide range of timesteps and stiffnesses. We ran with

each combination of ∆t = 10−2, 1, 102, 105, 1010, and γ = 1, 102, 105, 1010,

representing 20 different tests. Comparing with the explicit method, the ex-

plicit method went unstable during the simulation for ∆t = 6.0 × 10−3 when

γ = 1 and ν is increased to 0.01; also, it went unstable for ∆t = 4.5 × 10−8

when ν = 0.01, γ = 1010. In fact, if we increased ∆t further to 4.5 × 100 and

24

6.4× 10−6 for these pairs of ν and γ, respectively, we saw the energy increase

by more than a factor of 104 and saw points on the boundary move more than

a few dozen times the length of the computational domain within the very first

timestep with the explicit method.

Note that inviscid simulations are a particularly good check for the method

since, as can be seen from the energy proof of section 4.2, the energy defined

by equation (29) should remain constant. We ran all our simulations until time

t ≥ 0.5 s, and verified that for all 20 combinations of these parameters, the

solution to the implicit system remained stable throughout the simulation and

that the energy of the system was indeed constant. Figure 4 shows the energy

of the system for the set of parameters γ = 102, ∆t = 10−2. Computing with

large timesteps (e.g. ∆t = 1010) may not yield particularly accurate results

(because errors of O(∆t) obviously need not be small), but it does illustrate

the stability of the method — the boundary configuration was still elliptical

at the end of the simulation, points on the immersed boundary moved much

less than the length of the computational domain, and there was no change

in energy during the simulation.

5.1.4 Comparison to method 1A

The only reason for the stability proof of method 1A given in section 4.3

was to assist the investigation of why the Mayo and Peskin scheme failed

to be unconditionally stable. However, implementing method 1A with lagged

spreading and interpolation operators requires only a minor change to the

code and provides an additional test of the analytical results. We present

three simulations, all with ∆t = 10−2 and γ = 1. The three simulations were

25

0 0.1 0.2 0.3 0.4 0.5155.5

156

156.5

157

157.5

158

Time

En
er

gy

Fig. 4. Energy of the system during the course of an inviscid

simulation with the implicit method, showing perfect energy

conservation.

method 3C with no viscosity, method 1A with no viscosity, and method 3C

with ν = 0.01. The results are plotted in Figure 5. Since method 1A is run with

no viscosity, the solution to the continuous equations will have constant energy,

but we showed in section 4.3 that method 1A will have energy dissipation

other than from viscosity. From the figure we see indeed that this is the case,

and that method 1A loses slightly more energy than method 3C loses with a

viscosity of 0.01.

5.2 Unconditional Stability with an Approximate Projection

Calculations with a pressure-free approximate projection version of method 3C

were run for the same values of ∆t, γ as in section 5.1.3 and with ν = 0 or 0.01.

In all cases, the solution to the implicit system remained stable throughout the

simulation and the energy of the system, as defined by equation (29), did not

26

0 0.1 0.2 0.3 0.4 0.51.35

1.4

1.45

1.5

1.55

1.6

Time

En
er

gy

3C, inviscid

3C, ν = 0.01

1A, inviscid

Fig. 5. Energy of the system with γ = 1. ——: method 1A

with no viscosity; −−: method 3C with no viscosity, · − ·:

method 3C with ν = 0.01.

increase. As with the exact-projection calculation, the boundary configuration

was elliptical at the end of each simulation. The simulations with ν = 0 are

particularly interesting. For such simulations, the energy remains constant

using an exact projection, so this allowed us to more clearly determine the

effect of the approximate projection. In all cases, we found that the energy

was non-increasing, meaning that the approximate projection appears to have

a neutral or stabilizing effect.

The approximate projection, P̃, has the interesting property that when iterated

it will converge to an exact projection, P; i.e. P̃
m → P as m →∞ [2]. This

means that performing additional (approximate) projections per fluid solve

must eventually reduce the additional energy dissipation due to using approx-

imate projections. Figure 6 shows this effect. This simulation was run with

γ = 1, ν = 0, ∆t = 10−2, and run until t = 0.1. Since approximate projections

27

do not exactly enforce the incompressibility constraint, it is also interesting

to note how approximate projections affect the volume conservation of the

enclosed membrane. The IB method is well known to exhibit volume loss for

closed pressurized membranes [5,14,21,24], even when using an exact projec-

tion. Figure 6 demonstrates how approximate projections also have the effect

of increasing the amount of volume loss. For comparison, an exact projection

has a volume loss of 3.12% (almost exactly where the dashed line ends up in

figure 6) and an energy loss of 5.55× 10−14%. (The energy loss is not exactly

0 with the exact projection because the implicit equations are only solved to

a certain tolerance and because of the presence of round-off errors).

100 101 10210−1

100

101

102

Number of projections per fluid solve

Pe
rc

en
ta

ge
 lo

ss

Volume loss

Energy loss

Fig. 6. Energy (—) and volume (- -) loss by time t = 0.1 in

an inviscid simulation as a function of the number of approx-

imate projections performed. Computations performed with

γ = 1 and ∆t = 10−2.

28

5.3 Stability for the Full Navier-Stokes Equations

We solved this problem again including the advection terms from the Navier-

Stokes equations. We used a first order upwind discretization of the advection

terms in convective form

H(x) =























1 x > 0

0 otherwise

(59)

(u · ∇u)n
ij =









































H(un
ij)u

n
ij

un
i+1,j

−un
ij

h
+ H(−un

ij)u
n
ij

un
ij
−un

i−1,j

h
+

H(vn
ij)v

n
ij

un
i,j+1

−un
ij

h
+ H(−vn

ij)v
n
ij

un
ij
−un

i,j−1

h

H(un
ij)u

n
ij

vn
i+1,j

−vn
ij

h
+ H(−un

ij)u
n
ij

vn
ij
−vn

i−1,j

h
+

H(vn
ij)v

n
ij

vn
i,j+1

−vn
ij

h
+ H(−vn

ij)v
n
ij

vn
ij
−vn

i,j−1

h









































. (60)

We ran the simulation with ν = 0 and at the CFL constraint ∆t = h
‖u‖

∞

for

each of γ = 1, 102, 105, 1010. Since the fluid is initially at rest, we (somewhat

arbitrarily) set ∆t for the first timestep to be about one-fifth the length of

time needed for one oscillation. In each case, we ran until two full oscillations

of the boundary had occurred and verified that the energy of the system was

decreasing in all cases. Figure 7 plots the energy as a function of time for the

simulation where γ = 1010.

5.4 Volume Loss and Stability

Even though the velocity field on the Eulerian grid will be discretely divergence-

free when an exact projection is used, this does not guarantee that the inter-

29

0 0.2 0.4 0.6 0.8 1 1.2
x 10−5

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6 x 1010

Time

En
er

gy

Fig. 7. Energy of the system with advection terms when

γ = 1010.

polated velocity field (in which the immersed boundary moves) is continuously

divergence-free. Our implicit method does not fix this problem, revealing an

interesting and unexpected view of the relationship of the incompressibility

constraint and stability. When running our implicit method with a timestep

sufficiently small that the explicit scheme is stable, we observed that the ex-

plicit method and our implicit method exhibit nearly identical volume loss.

Since the total volume loss by the end of the simulation is an increasing func-

tion of the size of the timestep, and because the implicit method is generally

used with a larger timestep than the explicit method, use of the implicit

method will generally result in a greater volume loss. Stockie and Wetton [26]

observed similar volume loss for the Mayo and Peskin scheme and concluded

that it was this accumulation of error in the incompressibility condition that

caused the stability limitation on the timestep for that scheme. While a rea-

sonable hypothesis, our implicit scheme shows similarly increasing volume loss

30

despite being unconditionally stable. In fact, partly based on correlation of en-

ergy and volume loss observed in section 5.2, we conjecture the opposite —

that the loss of volume in the IB method actually aids stability. A loss of

volume results in a smaller elastic force due to the shortened distance between

points, making the resulting grid forces smaller and thus making the system

less likely to over-correct for any previous errors.

6 Discussion

In [21], Peskin provides an overview of the current state of the IB method.

In his outline of active research directions and outstanding problems, the first

issue addressed is the “severe restriction on the time-step duration” to which

existing implementations are subject. Pointers to research that has been ongo-

ing in this area for over a decade are provided, and Peskin states that “it would

be a huge improvement if this [restriction] could be overcome.” The analysis of

this paper demonstrates that unconditionally stable IB methods are possible

and identifies specific features of the method required to achieve unconditional

stability. This paper therefore solves the stability problem posed by Peskin —

with some caveats. For example, our results do not apply to all extensions of

the IB method, and other outstanding problems of the IB method still exist.

The results of this paper raise several interesting questions as well. Can such a

method be made efficient? Can it be made more accurate? Can the volume loss

be mitigated or removed? Does the stability carry over to common extensions

and modifications of the standard IB method? Is there anything that can be

done to improve existing explicit codes without switching to an implicit solver?

We discuss these questions in this section with potential solutions suggested

31

by results from this paper.

6.1 Efficiency

Perhaps the most prominent question is whether the method can be made

efficient. Indeed, this question seems to be outstanding in the community for

the various implicit methods that have been proposed and used, as evidenced

by the fact that Stockie and Wetton [26] is the only paper we are aware of that

has concretely compared computational costs of explicit and implicit methods.

In some sense, we have returned to where Tu and Peskin [27] left off. There

are similarities between Tu and Peskin’s paper and ours that many will have

noticed: they presented a method that appeared to be unconditionally stable,

they solved their implicit system of equations using Newton’s method and

which was therefore far less efficient than an explicit method — and they then

presented a challenge to come up with a more efficient version. There are some

important differences: our method applies to more than just steady Stokes

flow, we have proven that some methods actually are unconditionally stable,

we have discovered why the paper written to meet the challenge from Tu and

Peskin (namely Mayo and Peskin [16]) failed to remain stable, and we have

demonstrated that aspects of the problem that the community suspected to be

causing the instability of previous implicit methods (namely, volume loss and

lagging of spreading and interpolation operators) were not the actual source

of instability.

The ability to time lag spreading and interpolation operators and still have

a stable method appears particularly useful in coming up with an efficient

scheme. Not lagging those operators results in a set of highly nonlinear equa-

32

tions for the implicit system, which is difficult to solve unless the timestep

is small. Lagging the spreading and interpolation operators results in a linear

system of equations which opens up a wealth of possibilities and makes a large

set of existing linear solvers applicable to the problem.

The authors very recently became aware that Mori and Peskin have created a

fully implicit method (including the advection terms from the Navier-Stokes

equations and a new way of handling additional boundary mass) and a corre-

sponding implicit system solver that is competitive with the explicit method,

particularly when the elastic tension is high. Mori and Peskin have also proven

their particular method to be unconditionally stable (Y. Mori, personal com-

munication, July 18, 2006).

6.2 Accuracy

By lagging the spreading and interpolation operators, we have a method that

is only first order accurate in time. Since the Immersed Boundary method

is only first order accurate for sharp interface problems, and it is to such

problems that the method is typically applied, we did not address this issue

in this paper. However, the Immersed Boundary method is beginning to be

applied to problems with a thick interface [10,19] where the IB method can

achieve higher order accuracy. Also, the Immersed Interface Method can be

used in problems with a sharp interface and get second order accuracy.

One possibility for obtaining a second order accurate scheme comes from re-

alizing that our proof for stability did not rely at all on where S and S∗ were

evaluated — so long as they were evaluated at the same location. This means

33

that we can employ a two step method, where Xn+ 1

2 is computed in the first

step to at least first order accuracy, and then the value of Xn+ 1

2 is used as the

location of the spreading and interpolation operators in a second step to solve

for Xn+1 and un+1. See Lai and Peskin [12] for an example of a very similar

explicit two step approach used to obtain formal second order accuracy.

6.3 Volume Conservation

Another important issue in some applications concerns the volume loss that

occurs with the Immersed Boundary method. As discussed in section 5.4, the

implicit method will generally exhibit greater volume loss than the explicit

method due to the use of a larger timestep. One solution is to use the Immersed

Interface Method [14,15] or a hybrid IB/II method [13] — though the stability

results of this paper might not hold with the different spatial discretizations

used for the “spreading” and interpolation operators in such methods. Another

would be to use the modified stencils of Peskin and Printz [24], which satisfy

the necessary conditions in the proofs in this paper. Peskin and Printz reported

substantially improved volume conservation, but at the cost of wider stencils

and more computationally expensive interpolation and spreading.

6.4 Extensions

There are many extensions to the IB method as well as variations on how

the fluid equations are solved. One extension that has been mentioned many

times already is the Immersed Interface Method and hybrid Immersed Bound-

ary/Immersed Interface Methods. These methods modify the finite difference

34

stencils of the fluid solver near the immersed boundary instead of utilizing

discrete delta functions to spread the force from the Lagrangian to the Eu-

lerian grid. They also typically use a different interpolation scheme, such as

bilinear interpolation. For these methods, the necessary adjoint property of

the “spreading” and interpolation operators does not hold. Whether the sta-

bility results of this paper can be extended for such schemes, or whether those

schemes can be modified to be made unconditionally stable, is unknown. Sim-

ilarly, it is unknown how the stability is affected by more complicated dis-

cretizations such as the double projection method proposed by Almgren et

al. [2], an L0-stable discretization of the viscous terms from Twizell et al. [28],

or some methods of incorporating boundary mass in the IB method [11,30].

6.5 Explicit Method Stability

Finally, we make one point that might be of use to those with existing ex-

plicit codes with nonzero viscosity. Computing the energy of the system can

provide a way to monitor the stability of the method and possibly even pre-

dict the onset of instability and prevent it. We found that when the explicit

method went unstable, the energy at first only slightly increased. This slight

increase was followed by a dramatic acceleration of energy increase in ensuing

timesteps with the simulation becoming unstable within only a few timesteps.

This suggests that such codes could be modified to monitor the energy, and

when the energy at the end of any timestep is greater than the energy at the

beginning of the timestep, repeat the timestep with a smaller value of ∆t.

35

7 Conclusions

We have shown that both a backward Euler and a Crank-Nicolson-like dis-

cretization of the nonlinear immersed boundary terms of the IB equations

can yield unconditionally stable methods in conjunction with unsteady Stokes

flow. While this might seem unsurprising, there are some subtleties about

how the discretization is chosen in order to achieve unconditional stability. In

particular, we showed that a backward Euler discretization of the immersed

boundary terms is unconditionally stable when the force is included in the

momentum equation, while previous authors who included the force in the

projection noted an instability. We also discussed the subtleties in how differ-

ent Crank-Nicholson discretizations of the immersed boundary terms can be

obtained, and proved that one particular way of selecting a backward Euler

and Crank-Nicholson-like discretization of the full system resulted in uncon-

ditionally stable methods.

We also proved (contrary to “common knowledge”) that the time discretiza-

tion need not be fully implicit in order to maintain unconditional stability.

That is, the evaluation of force spreading and interpolation operators can be

explicit. Because the scheme need not be fully implicit, we have shown that

there exists a (consistent) linear numerical scheme approximating the (non-

linear) IB equations which is unconditionally stable.

Another unexpected result was that the error in the incompressibility con-

straint exhibited by existing implementations apparently does not adversely

affect the stability of the computations. We proved that for implementations

employing an exact projection and satisfying the necessary conditions from

36

section 4.2, the method will be unconditionally stable — despite the fact that

such methods suffer volume change due to the interpolated velocity field on

the Lagrangian grid not being divergence-free. We further demonstrated com-

putationally that a common method (namely, approximate projections) which

will result in the divergence-free constraint being satisfied only approximately

on both the Eulerian and Lagrangian grids still appears to be unconditionally

stable.

Finally, we demonstrated computationally that the advection terms from the

Navier-Stokes equations present no additional difficulty beyond the stability

(CFL) constraint of advection alone.

Acknowledgements

The work of EPN was supported in part by the Department of Energy Com-

putational Science Graduate Fellowship Program of the Office of Science and

National Nuclear Security Administration in the Department of Energy under

contract DE-FG02-97ER25308, and in part by NSF grants DMS-0139926 and

DMS-EMSW21-0354259. The work of ALF and RDG was supported in part

by NSF grant DMS-0139926. The work of RMK was supported in part by

NSF Career Award CCF0347791.

The authors would like to thank Grady Wright and Samuel Isaacson for helpful

discussions while writing this paper.

37

References

[1] G. Agresar, J. J. Linderman, G. Tryggvason, and K. G. Powell,

An adaptive, cartesian, front-tracking method for the motion, deformation and

adhesion of circulating cells, Journal of Computational Physics, 143 (1998),

pp. 346–380.

[2] A. S. Almgren, J. B. Bell, and W. Y. Crutchfield, Approximate

projection methods: Part I. Inviscid analysis, SIAM Journal of Scientific

Computing, 22 (2000), pp. 1139–1159.

[3] R. P. Beyer, A computational model of the cochlea using the immersed

boundary method, Journal of Computational Physics, 98 (1992), pp. 145–162.

[4] D. L. Brown, R. Cortez, and M. Minion, Accurate projection methods for

the incompressible Navier-Stokes equations, Journal of Computational Physics,

168 (2001), pp. 464–499.

[5] R. Cortez and M. Minion, The blob projection method for immersed

boundary problems, Journal of Computational Physics, 161 (2000), pp. 428–

453.

[6] R. Dillon, L. Fauci, A. Fogelson, and D. Gaver, Modeling biofilm

processes using the Immersed Boundary method, Journal of Computational

Physics, 129 (1996), pp. 85–108.

[7] L. J. Fauci and A. L. Fogelson, Truncated newton methods and the modeling

of complex immersed elastic structures, Communications on Pure and Applied

Mathematics, 66 (1993), pp. 787–818.

[8] L. J. Fauci and C. S. Peskin, A computational model of aquatic animal

locomotion, Journal of Computational Physics, 77 (1988), pp. 85–108.

38

[9] A. L. Fogelson, A mathematical model and numerical method for

studying platelet adhesion and aggregation during blood clotting, Journal of

Computational Physics, 1 (1984), pp. 111–134.

[10] B. E. Griffith and C. S. Peskin, On the order of accuracy of the

immersed boundary method: Higher order convergence rates for sufficiently

smooth problems, Journal of Computational Physics, 208 (2005), pp. 75–105.

[11] Y. Kim, L. Zhu, X. Wang, and C. S. Peskin, On various techniques for

computer simulation of boundaries with mass, in Computational Fluid and Solid

Mechanics: Proceedings Second M.I.T. Conference on Computational Fluid and

Solid Mechanics, June 17-20, K. J. Bathe, ed., 2003, pp. 1746–1750.

[12] M.-C. Lai and C. S. Peskin, An Immersed Boundary method with

formal second-order accuracy and reduced numerical viscosity, Journal of

Computational Physics, 180 (2000), pp. 705–719.

[13] L. Lee and R. Leveque, An Immersed Interface method for incompressible

Navier-Stokes equations, SIAM Journal of Scientific Computing, 25 (2003),

pp. 832–856.

[14] R. J. Leveque and Z. Li, Immersed Interface methods for Stokes flow with

elastic boundaries or surface tension, SIAM Journal of Scientific Computing,

18 (1997), pp. 709–735.

[15] Z. Li and M.-C. Lai, The Immersed Interface Method for the Navier-Stokes

equations with singular forces, Journal of Computational Physics, 171 (2001),

pp. 822–842.

[16] A. A. Mayo and C. S. Peskin, An implicit numerical method for

fluid dynamics problems with immersed elastic boundaries, Contemporary

Mathematics, 141 (1993), pp. 261–277.

39

[17] L. A. Miller and C. S. Peskin, When vortices stick: an aerodynamic

transition in tiny insect flight, The Journal of Experimental Biology, 207 (2004),

pp. 3073–3088.

[18] , A computational fluid dynamics of ’clap and fling’ in the smallest insects,

The Journal of Experimental Biology, 208 (2005), pp. 195–212.

[19] Y. Mori and C. S. Peskin, A second order implicit Immersed Boundary

method with boundary mass, preprint submitted to Journal of Computational

Physics, (2005).

[20] C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of

Computational Physics, 25 (1977), pp. 220–252.

[21] , The immersed boundary method, Acta Numerica, (2002), pp. 1–39.

[22] C. S. Peskin and D. M. McQueen, Modeling prosthetic heart valves for

numerical analysis of blood flow in the heart, Journal of Computational Physics,

37 (1980), pp. 113–132.

[23] , A three-dimensional computational method for blood flow in the heart:

I. immersed elastic fibers in a viscous incompressible fluid, Journal of

Computational Physics, 81 (1989), pp. 372–405.

[24] C. S. Peskin and B. F. Printz, Improved volume conservation in

the computation of flows with immersed elastic boundaries, Journal of

Computational Physics, (1993), pp. 33–46.

[25] A. M. Roma, C. S. Peskin, and M. J. Berger, An adaptive version of the

Immersed Boundary method, Journal of Computational Physics, 153 (1999),

pp. 509–534.

[26] J. M. Stockie and B. R. Wetton, Analysis of stiffness in the Immersed

Boundary method and implications for time-stepping schemes, Journal of

Computational Physics, 154 (1999), pp. 41–64.

40

[27] C. Tu and C. S. Peskin, Stability and instability in the computation of

flows with moving immersed boundaries: A comparison of three methods, SIAM

Journal on Scientific and Statistical Computing, 13 (1992), pp. 1361–1376.

[28] E. H. Twizell, A. B. Gumel, and M. A. Arigu, Second-order, l0-

stable methods for the heat equation with time-dependent boundary conditions,

Advances in Computational Mathematics, 6 (1996), pp. 333–352.

[29] S. Xu and Z. J. Wang, The Immersed Interface Method for simulating the

interaction of a fluid with moving objects, preprint to appear in Journal of

Computational Physics.

[30] L. Zhu and C. S. Peskin, Simulation of a flapping flexible filament in a

flowing soap film by the Immersed Boundary method, Journal of Computational

Physics, 79 (2002), pp. 452–468.

41

