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Abstract

The immersed boundary method is a widely used mixed Eulerian/Lagrangian
framework for simulating the motion of elastic structures immersed in viscous
fluids. In the traditional immersed boundary method, the fluid and structure
move with the same velocity field. In this work, a model based on the immersed
boundary method is presented for simulating poroelastic media in which the
fluid permeates a porous, elastic structure of small volume fraction that moves
with its own velocity field. Two distinct methods for calculating elastic stresses
are presented and compared. The method is validated on a radially symmetric
test problem by comparing with a finite difference solution of the classical equa-
tions of poroelasticity. Finally, two applications of the modeling framework
to cell biology are provided: cellular blebbing and cell crawling. It is shown
that in both examples, poroelastic effects are necessary to explain the relevant
mechanics.

Keywords: fluid-structure interaction, stokes flow, hyperelasticity, cell
crawling, blebbing

1. Introduction

The immersed boundary (IB) method is a computational method for simu-
lating fluid-structure interaction problems. It has been applied to many biolog-
ical and physical systems such as blood flow in the heart [1], insect flight [2],
and flagellar swimming [3]. In the traditional IB method, the elastic structure
moves with the local fluid velocity. The method has been adapted for porous
membranes in which the fluid moves through the elastic structure [4, 5], and
this variant has been applied to problems such as parachute mechanics [4] and
suction feeding in jellyfish [6]. However, the porous IB method has been limited

∗Corresponding Author
Email addresses: wis6@case.edu (Wanda Strychalski), ccopos@math.ucdavis.edu

(Calina A. Copos), ollewis@math.ucdavis.edu (Owen L. Lewis), guy@math.ucdavis.edu
(Robert D. Guy)

Preprint submitted to Journal of Computational Physics January 29, 2014



to infinitely thin elastic membranes. IB methods have been extended to thick
elastic structures, but only for the case when the structure moves with the lo-
cal fluid velocity [7–9]. Many biological materials, such as the cell cytoplasm
[10], brain tissue [11], and blood clots [12], involve immersed structures that
are both elastic and porous. In this paper, we are motivated by poroelasticity
of the cytoplasm and how its material properties affect cell processes driven by
fluid dynamics.

The cytoplasm is the intracellular mixture of organelles, the cytosol, and the
cytoskeleton [13]. The cytosol is the liquid portion of the cytoplasm consisting
of water, ions, and dissolved molecules. The cytoskeleton is a system of protein
filaments in the cytoplasm that give the cell its shape and ability to move.
Actin filaments are a major cytoskeletal component that play an important
role in cell motility. The cytoplasm has been modeled on the continuum level
as an elastic material, viscoelastic material, porous gel, and viscous fluid [14–
16]. The appropriate rheological description of the cytoplasm depends on the
timescale and relevant cellular under consideration. For example, actin filaments
depolymerize and repolymerize on a timescale of minutes. Therefore, an actin
network behaves like an elastic material on the timescale of seconds, but a fluid
on timescales longer than minutes.

Recent work suggests that cytoplasmic streaming plays an important role
in cell motility [17]. The rheological properties of the cytoplasm affect pressure
propagation and fluid flow in migrating cells that exhibit cytoplasmic streaming.
Some animal cells use blebs, spherical membrane protrusions driven by cytoplas-
mic flow, for migration [18]. In [19], the authors found cytoplasmic elasticity
necessary to limit bleb size. Other recent blebbing experiments support the
view of the cytoplasm as a poroelastic material [10]. The relative motion of
the cytosol flowing through the cytoskeleton demonstrates that the cytoplasm
acts as a two-phase material in blebbing cells. Similarly, in large amoeboid
cells, relative motion between cytoplasmic phases has been observed in Amoeba
proteus [20] and Physarum polycephalum [21]. In Physarum polycephalum cells,
cytoplasmic streaming driven by cytoskeletal contraction corresponds with an
increase in cell migration speed [21], which suggests that cytoplasmic stream-
ing drives locomotion. Generally, the role of fluid mechanics in cells that use
cytoplasmic streaming for migration is not fully understood.

Motivated by problems involving cytoplasmic steaming and cell locomotion,
we propose a novel method for simulating poroelastic structures in a mixed
Eulerian/Lagrangian framework. In our formulation, there is a separate force
balance equation for fluid and for the elastic structure, and the two materials
are coupled through drag forces. We show that our formulation agrees with
the traditional Eulerian formulation of poroelasticity. Elastic forces within the
structure are computed using two different methods. The first method extends
lattice-spring models, in which elastic structures are discretized by a network
of springs, to unstructured grids. We also used the energy-based method for
describing hyperelastic materials from [9]. The method is applied to models
of cellular blebbing and cell crawling, where we demonstrate the properties of
both the fluid and structure are necessary to capture the relevant biological
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behavior.

2. Mathematical Formulation

To describe the mechanics of poroelastic materials, we begin with the two-
phase flow model [22], which is often used to describe multicomponent mixtures
that consist of an elastic network immersed in a viscous fluid. Each phase
moves with its own velocity field and at any given point, the composition of
the mixture is described by the volume fractions of the different phases. The
velocity of the fluid is denoted by uf and the network velocity by un. The
volume fraction of the network phase is φ and it is assumed to be constant. Since
the volume fractions sum to one, the volume fraction of the fluid is 1− φ. For
constant density, mass conservation leads to volume averaged incompressibility.
For applications in cell biology, the Reynolds number is very small and inertial
forces may be neglected. Then, the force density balance for each phase and the
volume averaged incompressibility constraint are given by

∇·σf − (1− φ)∇p+ ξ (un − uf ) = 0 (fluid) (1)

∇·σe − φ∇p+ ξ (uf − un) = 0 (network) (2)

∇· (φun + (1− φ)uf ) = 0, (mixture incompressibility) (3)

where the σi’s indicate fluid and elastic stress tensors, p is the pressure, and ξ is
the drag coefficient between the network and the fluid. The elastic stress tensor
σe is given by the appropriate constitutive law (provided in the next section).
For a Newtonian fluid, the fluid stress is given by

σf = µ
(
∇uf +∇uTf

)
+ λ (∇ · uf ) I, (4)

where µ is the shear fluid viscosity and λ is the second coefficient of viscosity.
We note here that by assuming that σf is negligible, one can derive the

standard model of poroelastic media given in [23]. By adding (1) and (2), the
drag term can be eliminated from the network force density balance. Similarly,
rearrangement of (1) results in a Darcy law governing the fluid. This yields the
system

∇ · σe −∇p = 0 (5)

µ (uf − un) = −κ∇p. (6)

Here the quantity κ = µ(1 − φ)/ξ is interpreted as the Darcy permeability
of the network. Indeed, for materials of known permeability, we calculate the
drag parameter using ξ = µ(1 − φ)/κ. This technique is used for numerical
simulations performed in Section 4. Because we wish to investigate problems
where regions of porous media exist in contact with regions of viscous fluid, it
is inappropriate to assume that fluid stress is negligible throughout the whole
domain. By maintaining the term σf , we leverage the machinery of the IB
method to treat this scenario in a single unified framework.
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Figure 1: The Lagrangian and Eulerian coordinate systems. Ω indicates the Eulerian domain
with coordinate x. X(s, t) represents the current location of the Lagrangian variables with
coordinate s. The Eulerian domain is discretized with a structured grid while an unstructured
grid is used to discretized the Lagrangian domain.

Because the aim of this work is to simulate poroelastic cytoskeleton, and the
volume fraction of the cytoskeletal network is negligible in comparison to the
fluid phase [24], we consider the case when φ � 1. Under the assumption of
vanishing network volume fraction, (1) - (3) simplify to

µ∆uf −∇p+ ξ (un − uf ) = 0 (7)

∇ · σe + ξ (uf − un) = 0 (8)

∇ · uf = 0, (9)

where the last equation enforces the incompressibility of the fluid and comes
from (3) under the assumption of vanishing network volume fraction.

2.1. Immersed Boundary Formulation

A natural way of representing the time evolution of a deforming elastic struc-
ture is with a moving Lagrangian coordinate system, while fluid variables are
more naturally represented with a fixed Eulerian coordinate system. We use
the convention that capitalized letters represent Lagrangian variables and lower
case letters indicate Eulerian variables. Figure 1 illustrates a typical coordinate
system and its discretization.

The communication between the two coordinates is achieved by the spread-
ing operator S and interpolation operator S∗. The spreading operator that
maps Lagrangian variables to Eulerian variables is

f = S F =

∫

Γ

F (s, t)δ(x−X(s, t))ds, (10)
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where s ∈ Γ is the material coordinate and X(s, t) denotes the physical position
of material point s at time t. The interpolation operator is given by

U = S∗u =

∫

Ω

u(x, t)δ(x−X(s, t))dx, (11)

where Ω represents the fluid domain.
For a Lagrangian description of the network, equations (7)–(9) can be rewrit-

ten as

µ∆uf −∇p+ f net
drag = 0 (12)

F net
elastic + F net

drag = 0 (13)

∇ · uf = 0, (14)

where F net
elastic is the elastic force density expressed in the Lagrangian coordinate

system. The Lagrangian drag force density on the network due to the fluid is

F net
drag = ξ (S∗ uf −Un) . (15)

The drag force density on the fluid is equal and opposite to the drag force density
on the network and is given by,

f net
drag = −ξ S (S∗uf −Un) . (16)

From (13), the structure moves as follows,

∂X

∂t
= Un =

1

ξ
F net

elastic + S∗uf . (17)

Given a set of elastic forces, the evolution of the elastic network specified in (17)
in conjunction with the viscous flow equations in (12) and (14) are sufficient to
determine the dynamics of the fluid-structure system.

At this point, a constitutive law must be specified to compute the elastic
force in (13). We consider hyperelastic materials which are characterized by a
strain energy density W = W (A) where A is the network deformation gradient
tensor [25, 26]. For such materials, we can describe the Lagrangian elastic force
by

F̂ (s, t)1 = − δE
δX

, (18)

where E is the total energy of the system,

E =

∫

Γ

Wds. (19)

1We use the following notation to differentiate between force density, F , and force, F̂ .
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The material properties of the hyperelastic solid are specified by a constitutive
law for the strain energy density. For example, the strain energy density of
compressible neo-Hookean elastic solid [25] is

W (A) =
µE
2

(
tr(AAT )

J2/n
− n

)
+
κE
2

(J − 1)
2
, (20)

where µE denotes the elastic shear modulus, κE = 2µE/n + λE is the elas-
tic bulk modulus, λE is the second Lamé constant, and n represents the spatial
dimension of the problem. J = detA is the determinant of the deformation gra-
dient tensor. First studied in the context of rubber elasticity, the neo-Hookean
material is an extension of Hooke’s law for the case of large deformations. In
the approximation of small deformation, the strain E = 1/2

(
A+AT

)
− I can

be approximated by E ≈ 1/2
(
∇q +∇qT

)
where q is the displacement. Under

this assumption, (20) simplifies to yield the strain energy density in the regime
of linear elasticity

W (E) = µE tr(E2) +
λE
2

tr2(E). (21)

In the next sections we present two formulations for computing elastic forces
based on the variational derivative of the total energy as described in (18). In
Section 2.2, the linear approximation in (21) is used to identify the correspon-
dence between elastic moduli and spring stiffness coefficients in a spring-based
model of elasticity. In Section 2.3, the strain energy function is used directly to
compute the elastic forces in the energy-based model of elasticity.

2.2. Spring model of elasticity

One approach for modeling the elastic network is to represent it by discrete
material points connected by elastic springs. Representing Lagrangian mechan-
ics via a network of springs is common in immersed boundary applications [27]
and is reminiscent of ideas from Lattice-Spring Models (LSMs) [28, 29]. Due to
the fact that ruptures can be simply captured by breaking elastic links (or set-
ting parameters to zero locally), the use of LSMs has traditionally been popular
in studies of fracture in solid mechanics [30–33]. However, a known limitation
of LSM stems from the fact that nodes are connected with standard springs.
Because of this, only a one parameter family of elastic solids with a fixed Poisson
ratio can be modeled. Choosing µE or λE in Eq. (21) dictates the other based
on network topology. This limitation can be removed through several methods,
including the introduction of bending springs or shear springs connecting ma-
terial points, but care must be taken to maintain rotational invariance of the
model [34, 35]. A relatively recent literature review of LSMs can be found in
[28]. The stiffness coefficients and the resting lengths of these springs can be
related to the elastic moduli of an isotropic linear elastic material by comparing
the discrete and continuous strain energies. Such calculations for linear elastic
materials discretized with regular square and triangular lattices can be found
in [28].
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Because our goal is to model elasticity in cells with arbitrary geometries,
we extend this idea to unstructured meshes. A special meshing procedure must
be used to guarantee isotropy of the elastic material. We use the Distmesh
algorithm because it generates unstructured meshes where the side length of
the triangular elements is almost equal [36]. To compute a triangulation, the
algorithm assumes the points are connected by springs with repulsive forces. An
iterative procedure for minimizing the associated energy generates a set of points
that are triangulated by a Delaunay algorithm. The result of this equilibration
process is a spring network that approximates an isotropic material.

Discretization of the model

We model the elastic structure as a collection of linear elastic springs with
stiffness coefficients kij and resting lengths d`ij . The strain energy in the elastic
link connecting Xi to Xj is given by

eij =
kij d`ij

2

( |Xi −Xj | − d`ij
d`ij

)2

. (22)

The total elastic energy at a point Xi is

Ei =
1

2

∑

j

eij , (23)

where the sum is understood to be over all j such that Xj is connected to Xi.
The force exerted by the single elastic spring connecting nodes Xi and Xj is

− ∂eij
∂Xi

= −kij
( |Xi −Xj | − d`ij

d`ij

)
Xi −Xj

|Xi −Xj |
, (24)

and thus the total force at a point Xi is

F̂ i =
1

2

∑

j

− ∂eij
∂Xi

= − ∂Ei
∂Xi

. (25)

The force density at Xi is given by

Fi =
F̂ i
dAi

, (26)

where the area weight dAi at each point Xi is the sum of one third the area of
each triangle with vertex Xi.

The spring constant kij is chosen so that the discrete strain energy density
from the lattice-spring-like model is consistent with the continuous strain energy
density for linear elasticity (21),

kij =
8λE
3 d`ij

(
dAi + dAj

2

)
. (27)

A detailed derivation of the above formula can be found in Appendix A. Note
that this expression assumes a 2-D elastic material, but an analogous formula
can be derived for 3-D.
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2.3. Energy-based model of elasticity

A more general approach to describing elastic structures is by directly com-
puting the elastic force from energy functionals. Several methods employ a nodal
finite element (FE) mechanics model in the conventional IB method [8, 9] and a
generalized IB method, where FE methods are used for both fluid and structure
mechanics [37, 38]. In this section, we will rely on the energy functional-based
version of the IB method proposed in [9].

Elastic forces are computed through a variational derivative of the energy
and without the direct use of stress tensors as in (18). Unlike the spring model,
this is a general framework for describing the elasticity of hyperelastic materials
that is not restricted to elastic solids with a single family of elastic moduli
(λE = µE). An important feature of this elasticity model is that it does not
require an isotropic mesh, and thus it can benefit from the computational speed-
up of adaptive meshing.

Discretization of the model

In this section we assume a two-dimensional material subjected to planar
deformations, but the model is not limited to this case. Given the reference
configuration of a material, the structure is discretized into a triangular mesh.
For a given triangular element T, the positions of the vertices in reference con-
figuration are denoted by s(0), s(1), and s(2) whereas in the deformed con-
figuration they are X(0), X(1), and X(2) as shown in Figure 2. The set of
vectors that describe the deformed and undeformed triangular elastic sheets are

X̃
(i)

= X(i) −X(0) and respectively, s̃(i) = s(i) − s(0) for i = 1, 2. Assuming
a linear deformation, the deformed triangular element is given by the following
mapping, (

X̃
(1)

X̃
(2)
)

= A
(
s̃(1) s̃(2)

)
, (28)

where A is the deformation gradient.
It is assumed that the deformation map X(s, t) is piecewise function that

is linear on each triangle T. Thus the deformation gradient tensor, Aij =
∂Xi/∂sj , and the strain energy density are constant on each triangle. Therefore
the total energy in (18) becomes

E =
∑

T∈T
W (A) dA0(T), (29)

where dA0(T) denotes the area of a triangular element in the reference config-
uration. T denotes the entire set of triangular elements in the triangular mesh.

We take F̂
(k)

as the force (not force density) at the kth vertex. Starting with
(18) and following the derivation in [9] the force at vertex k contributed by
triangle T is given by

F̂
(k)

T = −
2∑

i,j=1

∂W

∂Aij
∂Aij
∂X(k)

dA0(T), (30)
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Figure 2: The deformation gradient tensor A maps the vertices of the undeformed (reference)

triangle, s(i), to the vertices of the deformed triangle given by X(i) for i = 0, 1, 2.

To find the total force at vertex k,

F̂
(k)

=
∑

T∈Tk

F̂
(k)

T , (31)

where Tk denotes the set of triangular elements that contain vertex k. To
calculate the force density at each point we divide by the characteristic area as
in (26).

To illustrate how this method works we consider a compressible neo-Hookean
solid under some given deformation. For a set of reference coordinates and a
deformed position of the material, the deformation gradient on each triangle is

A =
(
X̃

(1)
X̃

(2)
)(
s̃(1) s̃(2)

)−1

. (32)

Note that the derivatives of the deformation gradient that appear in (30),

∂Aij
∂X(k)

=
(
s̃(1) s̃(2)

)−1

, (33)

depend only on the reference configuration and therefore can be pre-computed
once per reference mesh configuration. For a compressible neo-Hookean material
the strain energy density is given by (20). We recall J = detA and compute the
first term in the force in (30) by

∂W

∂Aij
= µE

(
Aij
J
−

tr(AAT )A−Tij
2J

)
+ κE(J − 1)JA−Tij (34)

We note that this formulation for the elastic force is not restricted to a particular
model of hyperelasticity. In fact, only the term ∂W/∂Aij changes as the material
model changes, and it is easy to switch from one material model to another by
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changing the strain energy density. In summary, the elastic force is computed
as follows

1. Given the reference coordinates of the material, pre-compute the reference
area of each triangular element and ∂Aij/∂X(k) for vertex.

2. Given a current position of the material, X(s, t):

Compute A and ∂W/∂Aij for each triangular element.

Compute the elastic force as given in (30) - (31).

2.4. Time Stepping

The drag force on the fluid is equal and opposite to the drag force on the
structure, and from Eq. (13) the drag force density on the structure can be
replaced by the negative of its elastic force density. Thus,

f net
drag = −SF net

drag = SF net
elastic, (35)

and Eq. (12) can be replaced by

∆uf −∇p+ SF net
elastic = 0. (36)

This rearrangment has the advantage that fast Stokes solvers can be used to
find the fluid velocity for given elastic forces. After finding the fluid velocity,
the new structure position is updated using Eq. (17). This fractional stepping
approach allows the fluid and structure updates to proceed sequentially. Given
the current position of the structure, the system is advanced in time as follows:

1. Using either method, compute elastic forces based on the current structure
configuration, Xn = X(s, tn).

2. Spread the force densities onto nearby Eulerian points using Eq. (10).

3. Solve the forced Stokes equations to obtain the fluid velocity uf .

4. Interpolate the fluid velocity to the structure using Eq. (11) to obtain
Uf .

5. Compute the structure velocity by Eq. (17) and update the structure by

X n+1 = X n + ∆t

(
1

ξ
F net

elastic +Uf

)
. (37)

For the simulations presented in this manuscript, we use periodic boundary
conditions on the Eulerian domain and a Fourier-spectral method to solve the
Stokes equations. For spreading and interpolation, we use Peskin’s approximate
δ function with h = ∆x = ∆y and δh(x) = δh(x)δh(y) [27].
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3. Numerical Validation

In this section, we validate our IB formulation of poroelasticity with both
the spring and energy-based elasticity models by comparing to the continuum
equations for a linearly elastic structure. In the limit of small deformations, the
nonlinear models presented in this manuscript can be approximated by a linear
elastic model.

We consider a test problem in which a circular elastic structure of radius R
is expanded uniformly in the radial direction. In this case, the fluid velocity is
zero, and the system (7)-(9) simplifies to the single equation

∇ · σe − ξun = 0. (38)

An isotropic linearly elastic material obeys the following constitutive law:

σe = 2µE E + λE tr(E)I, (39)

where the linearized strain tensor is E = 1/2
(
∇q +∇qT

)
and q denotes dis-

placement. Note that the displacement and velocity are related by

∂q

∂t
= un. (40)

Let q be the radial component of displacement. We obtain a dynamic equation
for q by combining equations (38)-(40):

ξqt = (2µE + λE)

(
∂2q

∂r2
+

1

r

∂q

∂r
− q

r2

)
. (41)

Because there is no external loading on the boundary in this test problem, we
take a no-stress boundary condition which has the form

(
(2µE + λE)

∂q

∂r
+ λE

q

r

) ∣∣∣
r=R

= 0. (42)

To test the IB poroelastic method, we compare a refined 1D numerical solu-
tion of Eqs. (41) and (42) to a full 2D IB method simulation, where elasticity
is computed with both the spring and energy-based models. Specifically, we
solve Eqs. (41) and (42) on a 1D cell-centered grid r ∈ [∆r/2, R−∆r/2] by
discretizing with second order accurate finite difference stencils in space and
backward Euler’s method in time. We use space and time steps (∆r = R/500
and ∆t = 1e-5) that are much smaller than those used in the IB calculations.

For the tests in this section, we set λ̃E = µ̃E = 0.05, R̃ = 0.3, ξ̃ = 1, µ̃ = 1,
and t̃ ∈ [0, 0.5], where the tilde indicates dimensionless variables. The radial
displacement is initialized to

q(r, 0) = 10−4r, (43)

which corresponds to a uniform expansion of the disk 0.01% in the radial di-
rection. With these parameters, the characteristic timescale for relaxation is
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approximately 0.14 dimensionless time units (this can be found by computing
the first eigenvalue of the solution via separation of variables). The radial com-
ponent of the displacement q(r, t) at several time values is shown in Fig. 3.

Scaled displacement t = 0
Scaled displacement t = 0.05
Scaled displacement t = 0.15
Scaled displacement t = 0.25

q/
q m

ax

0

0.2

0.4

0.6

0.8

1.0

r
0 0.05 0.10 0.15 0.20 0.25 0.30

Figure 3: Displacement q(r, t) in the radial direction at several time points divided by the
maximum displacement 3.0e-5.

For the IB simulations, the fluid domain is [0, 1]× [0, 1] with periodic bound-
ary conditions. The domain is discretized using N grid points in each direction
so that ∆x = ∆y = 1/N . The Lagrangian domain is a circle of radius 0.3 that
is triangulated using Distmesh [36]. For a 64×64 Eulerian grid, the Lagrangian
grid consists of 3285 points with an average length of a triangle edge (∆s) ap-
proximately equal to the Eulerian grid spacing ∆x. Both grids are refined to
maintain the same relative resolution. For the energy-based model, we use the
strain energy function for a neo-Hookean material. One could use linear elas-
ticity in the energy-based model given the small strain in this test. However, as
demonstrated in Appendix B, linear elasticity leads to unbalanced torques and
unphysical rotation of the material. Nonlinear constitutive laws are not more
difficult to use in this formulation, and they ensure that the torques balance
discretely.

To estimate the error in the IB simulations, we treat the refined finite differ-
ence solution as the exact solution. The displacement from the finite difference
solution is interpolated to the points on the Lagrangian grid to compare the two
solutions. Convergence data for both the spring and energy-based models are
summarized in Figs. 4 and 5. Fig. 4 shows the L∞ and L2 norm of the difference
between the refined finite difference radial displacement and the computed IB
displacement normalized by maximum displacement over time for several grid
refinements. The error appears to decrease linearly in time. Fig. 5 shows the
error at t = 0.1 at different grid refinements and a power function fit to the
data. The spring model converges in space and time with a rate slightly less
than one, whereas the energy-based model converges with a rate slightly higher
than one (compare the exponents of the power function fits in Fig. 5(a) to 5(b)).
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In addition to having a slightly higher convergence rate, the relative errors in
the energy-based model are approximately an order of magnitude smaller than
those in the spring model (compare the scales on Fig. 4(a) to that of Fig. 4(c)).

4. Applications

In this section, the modeling framework described previously is applied to
two different cellular systems: blebbing and amoeboid cell crawling. Intracel-
lular fluid flow and cytoplasmic mechanics are important in both applications,
and we demonstrate that a poroelastic model of the cytoplasm is necessary to
reproduce the relevant cell behavior.

4.1. Cellular blebbing

Blebs are spherical membrane protrusions characterized by a separation of
the cell membrane from the cytoskeleton. The cell cortex is the specialized
layer of the cytoskeleton adjacent to the membrane composed primarily of actin
filaments. The cortex is under tension due to molecular motor activity on
the actin, and it is linked to the membrane by specialized proteins. A bleb
is nucleated when there is a local disruption in these attachment proteins, for
example due to local a increase in cortical tension. Blebs have been observed in
several migrating cell types [39, 40], and it has been hypothesized that blebbing
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(c) Energy-based model: L∞ norm of relative
error.
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Figure 4: Norm of the difference between the refined finite difference solution q(r, t)FD and
q(r, t)IB over time scaled by maximum displacement.
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is involved in amoeboid cell motility [18]. Motile cancer cells treated with anti-
tumor treatments switch migration modes from a mesenchymal mode, driven
by actin polymerization at the leading edge of the cell, to an amoeboid mode,
driven by intracellular pressure and cytoplasmic steaming [41].

Recent experimental results have led to conflicting hypotheses about pressure
propagation in the cell. In [10], the authors treated part of a blebbing cell with a
drug to locally inhibit actin polymerization. Blebbing ceased in the drug treated
area, and continued in the untreated area. The authors concluded that pressure
equilibration is slow compared to the timescale of bleb expansion, and they
argued that the poroelastic properties of the cytoplasm are responsible for the
slower pressure equilibration. In another study, a bleb was nucleated by ablating
the cortex with a laser [19]. A second bleb was nucleated a few seconds after the
first bleb at various distances from the first nucleation site. The second bleb was
the same size regardless of where it was nucleated. The authors concluded from
this experiment that intracellular pressure equilibrates quickly compared to the
timescale of bleb expansion. Because it is impossible to measure experimentally
the spatial distribution of intracellular pressure, mathematical modeling can be
used as a tool to understand how pressure is propagated in a blebbing cell. With
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this goal in mind, we compare two mechanical models of the cytoplasm: viscous
fluid and poroelastic material.

4.1.1. Viscous cytoplasm model

In [42], we presented a model of a blebbing cell in which the cytoplasm was
modeled as a viscous fluid. The cell membrane was modeled as an impermeable
elastic structure that moves with the fluid velocity, and the actin cortex was
modeled as a one-dimensional poroelastic structure attached to the membrane.
The force balance equation for the fluid phase includes terms from the elastic
membrane, the cortex/membrane attachment, as well as the drag with cortex:

µ∆u−∇p+ f mem
elastic + f

mem/cortex
attach + f cortex

drag = 0 (44)

∇ · u = 0. (45)

On the cortex, the drag force is balanced by elastic forces within the cortex and
attachments with the membrane:

F cortex
drag + F cortex

elastic + F cortex
attach = 0. (46)

For the Lagrangian force densities, we use the convention that the subscript
describes the type of force and the superscript describes the structure acted
upon by the force. Expressions for these forces are described below.

Similar to (15), the drag force density from the cortex moving through the
fluid is given by

F cortex
drag = ζ (S∗u−U cortex) , (47)

and the drag force density on the fluid is related to the cortex drag force density
by

f cortex
drag = −SF cortex

drag . (48)

The Lagrangian elastic force densities on the membrane and cortex are com-
puted by

F ielastic =
∂

∂s
(Ti τi) , (49)

where Ti is tension and τi is the tangent vector to the curve Γi = Xi(s, t) =
Xmem(s, t) or Xcortex(s, t). In reference arc length coordinates, tension is given
by

Ti = γi + ki

(∣∣∣∂Xi

∂s

∣∣∣− 1

)
, (50)

which describes an elastic material with stiffness ki with an additional resting
tension γi. Membrane-cortex attachment is modeled by elastic springs attaching
the membrane to the cortex with a force density given by

F
mem/cortex
attach = kattach

(
|Xmem −Xcortex|

) Xmem −Xcortex

|Xmem −Xcortex|
. (51)

Given a configuration of the membrane and cortex, the forces are computed,
and the velocities of the fluid and cortex are obtained by solving Eqs. (44)-(46)
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as described in Section 2.4. Then, the positions of the membrane and cortex
are updated with their respective velocities,

dXmem

dt
= S∗u = U , (52)

dXcortex

dt
=

1

ζ

(
F cortex

elastic + F
cortex/mem
attach

)
+U = U cortex. (53)

4.1.2. Poroelastic cytoplasm model

The model formulation is the same as above with the addition of a poroelastic
cytoskeletal network in the cell interior (see Fig. 6). The fluid equations have

Membrane

Cortex

Membrane/Cortex 
Attachment

Extracellular Fluid

Cytoskeletal
Network

= Intracellular Fluid

Figure 6: Bleb Model schematic. A bleb is initiated by removing adhesive links between the
membrane and the cortex.

an additional term for cytoskeletal drag,

µ∆u−∇p+ f mem
elastic + f

mem/cortex
attach + f cortex

drag + f net
drag = 0 (54)

∇ · u = 0.

The superscript “net” indicates the cytoskeletal network. The force density
balance on the cortex includes an additional attachment term to link the cortex
to the cytoskeleton,

F cortex
drag + F cortex

elastic + F
cortex/mem
attach + F

cortex/net
attach = 0. (55)

16



Similary, the force density balance on the cytoskeleton is

F net
drag + F net

elastic + F
net/cortex
attach = 0, (56)

where cytoskeletal drag is defined as

F net
drag = ξ (Unet − S∗u) . (57)

The attachment force density on the network is the opposite of the corresponding
force density on the cortex, with the proper scaling to ensure that the two forces
balance, ∫

Ω

(
SF cortex/net

attach + SF net/cortex
attach

)
dx = 0. (58)

Elasticity is computed by the spring model of elasticity described in Section 2.2.
Each structure moves with its own velocity,

dXmem

dt
= S∗u = U , (59)

dXcortex

dt
=

1

ξ

(
F cortex

elastic + F
cortex/mem
attach + F

cortex/net
attach

)
+U = U cortex, (60)

dXnet

dt
=

1

ξ

(
F net

elastic + F
net/cortex
attach

)
+U = Unet. (61)

4.1.3. Blebbing Simulation

We simulate bleb expansion using both a viscous fluid model and a poroe-
lastic model of cytoplasm to compare intracellular pressure propagation in each
case. An Eulerian grid of size 64× 64 on the domain [0, 30]µm ×[0, 30]µm was
used. The Lagrangian grid was an unstructured mesh with 6710 points (267
on the boundary) discretized by Distmesh [36]. This corresponded to approxi-
mately two Lagrangian points per Eulerian grid cell on the boundary.

The action of molecular motors generates tension within the cortex (rep-
resented by γcortex in the model). The cortical tension is transmitted to the
membrane via membrane/cortex attachment, which in turn generates a pressure
jump across the cell membrane. To initiate a bleb, we remove membrane/cortex
attachment in a small area (see Fig. 6). If the membrane is parameterized by
θ ∈ [−π, π), we remove attachment in a region where |θ| < 11π/160. Cortical
tension is not transmitted to the membrane in this region, which leads to a lo-
cally reduced pressure. The pressure gradient drives a flow of cytosol to inflate
the bleb by expanding the membrane in the region of ruptured adhesion. The
bleb eventually stops expanding when membrane tension balances intracellular
pressure.

Simulation results are shown in Fig. 7 using model parameters from Table
1 for both simulations. In the simulation with a viscous fluid cytoplasm, the
pressure jump across the membrane after the bleb expands is reduced by 8%
from its initial value (Fig. 7(a)). In contrast, the pressure jump decreases
27% with a poroelastic cytoplasm (Fig. 7(b)). When the attachment between
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Table 1: Bleb Model parameters.

Symbol Quantity Value
rmem Cell radius 10 µm
γmem Membrane surface tension 40 pN/µm
kmem Membrane stiffness coefficient 4 pN/µm
rcortex Cortex radius 9.99 µm
γcortex Cortical tension 250 pN/µm
kcortex Cortical stiffness coefficient 100 pN/µm
λE Cytoskeletal shear modulus 1 kPa

k
cortex/mem
attach Cortex/Membrane attachment stiffness coefficient 2502.5 pN/µm3

k
mem/cortex
attach Membrane/cortex attachment stiffness coefficient 2502.0 pN µm3

k
cortex/net
attach Cortex/cytoskeleton attachment stiffness coefficient 100 pN/µm3

k
net/cortex
attach Cytoskeleton/cortex attachment stiffness coefficient 985.5 pN/µm4

µ Cytosolic viscosity 1 Pa-s
ζ Cortical drag coefficient 10 pN-s/µm3

ξ Cytoskeletal drag coefficient 10 pN-s/µm4

L Fluid computational domain size 30 µm
∆x Fluid grid step size L/64
∆s Initial structure grid step size 2π rmem/267
∆t Time step size 5e-5 s

the membrane and cortex is removed, the cortex contracts and compresses the
cytoskeleton. This compression generates a restoring elastic force that relieves
pressure. The reduced pressure also leads to smaller steady state bleb sizes
when all parameters are the same (compare Fig. 7(a) and Fig. 7(b) at t = 20
s).

Fig. 8 shows the normalized pressure drop across the cell over time. The
pressure drop is defined as the pressure at the front of the cell minus the pressure
at the rear of the cell (locations are the black dots illustrated in the last panel of
Fig. 7(b)). This value is normalized by the maximum pressure value over time
in each simulation. The data show two effects of poroelasticity. (1) There is a
time delay when the front half of the cell feels the effects of attachment breaking.
The peak pressure occurs almost immediately in the fluid model, while it takes
about half a second to occur in the poroelastic model (see inset of Fig. 7(b)). (2)
On a longer timescale, pressure equilibrates more slowly across the poroelastic
cytoplasm. When the cytoplasm is compressed, there is a timescale for stress
to redistribute throughout the elastic network.

In [42], we found the timescale of bleb expansion was dominated by intra-
cellular drag and not fluid viscosity in the fluid model of the cytoplasm. The
model predicted a value of the drag coefficient that can only be achieved with
a cortical gap size that is an order of magnitude smaller than experimental ob-
servations. These results indicate that a viscous fluid model of the cytoplasm is
inadequate to study pressure dynamics in blebbing cells.
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Figure 7: Membrane position and pressure in the bleb model at several time values for both
the (a) fluid cytoplasm and (b) poroelastic cytoplasm. In (b) the black dots indicate point
locations where pressure values were used to compute the pressure drop across the cell in Fig.
8.
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Figure 8: Difference between the pressure at the front of the cell (near the bleb) minus the
back of the cell divided by the maximum pressure for each simulation. The inset figure shows
the first 3.5 seconds.

The poroelastic cytoplasm model provides the appropriate framework to in-
vestigate the effects intracellular pressure propagation and cytoplasmic rheology
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on blebbing and cell motility. From Fig. 8, we can see that poroelasticity slows
bleb expansion by increased intracellular drag and stress relaxation through the
elastic network. We hypothesize that both effects are needed to capture the
correct pressure dynamics. We will report a more detailed study of intracellular
pressure in blebbing cells in the future.

4.2. Cell crawling

Understanding cell motility is a fundamental problem in modern biology.
Cells translocate across a substrate through a complex interaction of chemical
and mechanical processes. A large body of modeling work has been dedicated
to understanding the mechanics of this process. In the traditional paradigm of
cell crawling, the anterior edge of the cell is driven forward by polymerization
of the actin network within the cell. The front then adheres to the underlying
substrate, the cell contracts, and the posterior is drawn forward [43, 44]. To
date, much theoretical work on cell crawling has focused on the dynamics of the
actin structure within the cell. However, some motile cells are known to drive the
anterior edge forward not with actin polymerization, but with pressure driven
flows of cytoplasm [17, 18, 21, 39]. Most models of cell crawling do not account
for the effects of viscous flow, or intracellular pressure within the cell. In this
context, it is more appropriate to treat the cell interior as a porous, elastic
medium permeated with viscous fluid.

Because of its large size and extensive experimental observations [45], Phy-
sarum polycephalum is an excellent cell for exploring the role of intracellular
fluid flow in cell locomotion. Under certain conditions, Physarum have been
known to translocate while generating periodic anterior/posterior flows of cy-
toplasm along the centerline of the cell body. In [21], the authors performed
spatiotemporal measurements of the cell shape deformation and the intracellular
fluid velocity in migrating Physarum. These data show that cell deformations
and changes in intracellular fluid velocity propagate as coordinated waves along
the length of the cell in the direction of migration. Net cellular motion results
from the spatiotemporal organization of these oscillating contractions, the flow
of cytoplasm, and adhesive interactions with the substrate. Precisely how the
coordination of these effects generates cell motility is not understood. There-
fore we ask, what role does intracellular fluid play in this form of cell motility?
Our modeling framework is well adapted to address this question with minimal
alteration to account for substrate interactions. We compare crawling cells with
and without the effects of viscous cytosol and show that fluid effects are critical
to generating motility in this context.

4.2.1. Constitutive Laws

Physarum specimens are enclosed by a bilipid membrane which is connected
to an underlying cortex (comprised largely of cortical actin). The cell interior
is comprised of cytoskeleton (filamentous actin, various cross linker proteins,
etc.) permeated by cytosol (water, monomeric proteins, organelles, etc.). The
cell interacts with the underlying substrate through adhesive complexes which
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transmit stresses from the cell’s internal structure to the external surface. As
in the previous section, we model the cytosol as a viscous incompressible fluid
and the cytoskeleton as a porous elastic network. Because the distance between
cell membrane and cortex is small compared to the size of Physarum (several
hundred microns long), we do not distinguish between the membrane and under-
lying cortex as in the previous application. The combined membrane and cortex
are represented as a single impermeable structure. For brevity, we will refer to
this object as the “membrane”. Finally, because cell/substrate interactions are
necessary for cell crawling, we introduce a third Lagrangian structure which
we refer to as adhesive points to account for adhesive complexes. These adhe-
sive points represent the primary difference between this model of cell crawling
and the model of cellular blebbing presented in Section 4.1. See Figure 9 for a
diagram of the model cell.

Adhesive Points Membrane

Viscous CytosolCytoskeletal Network

x̂

ŷ

Figure 9: Schematic of our model Physarum. Cytoplasmic flow is driven by contraction within
the cytoskeletal network.

The elastic properties of the membrane are given by Eqs. (49)-(50), as in the
previous section. We again include an interaction force density, however this
time the membrane is attached directly to the cytoskeleton. This force density,

F
mem/net
attach , takes the form of Hookean springs linking the membrane and the

boundary of the cytoskeletal network.
The balance of force densities on the internal cytoskeleton is much the same

as in Section 4.1. The elastic forces within the network are calculated using the
spring model. The model is also altered to take into account stresses due to
adhesion to the substrate underlying the cell. We account for adhesion inter-
actions between the cell and the substrate through the adhesive points. Each
network point X net has an associated adhesive point X adh, to which it is cou-
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pled through a Hookean spring:

F net
adh = kadh (X adh(s, t)−X net(s, t)) . (62)

Finally, we input an active contraction force density (F net
active) within the network

to drive the simulation. Thus, the force density balance on the network becomes

F net
drag + F net

active + F net
elastic + F

net/mem
attach + F net

adh = 0. (63)

The coupling of the adhesive points to the cytoskeletal network is balanced
by the interaction between the adhesive points and the substrate that the cell
is moving across. This substrate interaction is given by

F subs = −ζ (X adh, t)
∂X adh

∂t
= −ζ (X adh, t)U adh. (64)

Here ζ is a viscous drag coefficient that varies in space and time. Modulation
of this function represents the cell adhering more strongly (or weakly) to the
substrate.

This completes the balance of force densities on the adhesive points

F subs − F net
adh = 0. (65)

4.2.2. Results

We begin by discretizing an elongated domain with semicircular end-caps
(see Figure 9). This shape is chosen to represent an idealized Physarum cell.
The simulation is driven by prescribing the active term in the network force
density balance (63) as

F net
active =

Aactive

2

(
cos (κx net − ωt) (v̂ij · ŷ) + 1

)
v̂ij . (66)

Here, x net is the reference longitudinal body coordinate of a link within the
cytoskeletal network, v̂ij is the orientation vector of the network link, and ŷ is
the unit vector in the lateral direction. This form of active contraction within
the network is chosen to mimic the peristaltic waves of contraction witnessed in
Physarum specimens in vivo. Similarly, the drag coefficient in (64) is prescribed
as a spatiotemporal wave:

ζ =
Aadh

2

(
cos (κx adh − ωt) + 1

)
+ ε. (67)

The parameter ε represents uncoordinated nonspecific friction between the cell
and the substrate.

Simulations of the full model (Eqs. (63)-(65)) are performed using the pa-
rameters listed in Table 2. A complimentary simulation is run where all pa-
rameters pertaining to the fluid and the cell membrane are set to zero. When
kmem = u = kconnect = 0, the model reduces to simulating an elastic, con-
tractile network moving through a viscous stationary medium and adhering to
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Table 2: Model parameters for crawling simulation.

Symbol Quantity Value
Lx Cell length 300 µm
Ly Cell width 100 µm
γmem Membrane surface tension 4 pN/µm
kmem Membrane stiffness coefficient 2.5 pN/µm
λE Cytoskeletal elastic modulus 1.25 kPa
ω−1 Contraction period 100 s
κ−1 Contraction wave length 1200 µm
µ Cytosolic viscosity 5e-2 Pa-s
ξ Cytoskeletal drag coefficient 50 pN-s/µm4

Aactive Strength of active contraction 1.5e4 pN
Aadh Strength of coordinated adhesion 6.25e2 Pa-s/m
ε Strength of uncoordinated adhesion 15.625 Pa-s/m
L Fluid computational domain size 400 µm
∆x Fluid grid step size L/64
∆s Initial structure grid step size 9.37µm
∆t Time step size 1e-5 s

an underlying substrate. We refer to this scenario as an “elastic” cell, while
simulation of the full model will be referred to as the “poroelastic” cell.

To analyze the motility of each cell, we calculate the geometric center of
the cell as a function of time. A time course of each cell is shown in Figure
10. The migration velocity of the poroelastic cell is approximately equal to that
measured in [21]. Notice that the migration velocity of the elastic cell is greatly
reduced compared to that of the poroelastic cell. To explain this phenomenon,
we examine the stresses that each cell is transmitting to the substrate via the
adhesive points.

For each model cell, we calculate the adhesion tension, T subs, applied to the
substrate as an integral of the substrate stress applied to the adhesions:

T subs(x, t) =

∫
−F subs dy. (68)

Generally we are interested in tension applied in the longitudinal direction, as
that is the axis of motion for the cell. To this end, we calculate

T (x, t) = T subs · x̂. (69)

Figure 11 shows kymographs of |T (x, t)| for a representative poroelastic cell, as
well as for a elastic cell when all common parameters were kept fixed. Notice
that the tension generated (in the direction of motion) by the poroelastic cell is
significantly greater than that generated by the simply elastic cell.

The full poroelastic cell generates traction stresses that are approximately
an order of magnitude larger than the elastic cell. This explains the drasti-
cally different migration speeds seen in Figure 10. The cause of this increase in
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Figure 10: Time course of the centers of model Phuysarum cells.
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Figure 11: Kymographs of absolute value of traction tension along cell axis. Measurements
for a poroelastic cell (including fluid and membrane) are shown on the left. Measurements
for a elastic cell are shown on the right. All values have been nondimensionalized by the
characteristic tension of crawling with nonspecific adhesion (εL2ω).

traction stresses can be traced back to the incompressibility of the intracellular
fluid in the poroelastic cell. In both cells, the cytoskeletal network is being
contracted with a lateral bias. In the case of the full cell, these laterally pref-
erential contractions cause the incompressible fluid to flow in the longitudinal
direction. This flow exerts longitudinal drag forces on the network, which are
in turn transmitted to the adhesive points and the substrate. In the case of
the elastic cell, this does not happen. Contracting the network laterally only
causes small longitudinal deformations because the Poisson ratio of the elastic
network is nonzero. This is a substantially weaker effect, and thus, longitudinal
adhesion stresses are greatly diminished. Therefore, the model indicates that
the flow of intracellular fluid is critical in generating cell locomotion from the
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type of peristaltic contractions witnessed in Physarum.

5. Conclusions

In this manuscript, we presented a novel numerical method for simulating the
dynamics of poroelastic materials immersed in a viscous fluid. The method uses
the framework of the IB method: quantities associated with the elastic structure
are represented in a moving Lagrangian coordinate system and the fluid variables
are represented in a fixed Eulerian coordinate system. Implementing our model
requires a method for solving the fluid equations along with routines to compute
elastic forces and to transfer data between the Lagrangian mesh and the Eulerian
grid. Because the structure and the fluid mechanics can be decoupled at each
time step, fast methods for solving the equations of the fluid mechanics can be
used.

The popularity of the IB and related methods is driven by its simplicity
and robustness. The price of this simplicity is the restriction on the largest
stable time step permitted by such schemes for stiff structures. The method
presented here inherits the time step restriction of IB methods, and the relative
motion between the structure and fluid introduces another possible time step
restriction. The elastic force directly enters the equation of the motion of the
porous structure in Eq. (17). When the drag coefficient between the fluid and
structure is small, this additional numerical stiffness may further limit the time
step. Implicit-time IB methods overcome the time step restriction and could
be used here. However their implementation is much more involved and is a
subject of ongoing research [46–52].

We presented two methods for computing elasticity, one based on a network
of discrete springs and the other based on the strain energy of hyperelastic ma-
terials. Other methods of computing the elastic forces could also be used with
our formulation, such as those presented in [7, 8]. Spring models have frequently
been used in IB simulations in the past. Our analysis shows how to identify the
effective elastic modulus of a network of springs. While spring models are sim-
ple, they have several limitations. First it is not clear what constitutive laws
are modeled for the large deformations that are common in biological problems.
Second, the mechanical properties of the material depend on the structure of
the mesh. We used a special discretization procedure to ensure that the mate-
rial was isotropic. In computational experiments with spring models on other
meshes, artifacts of the mesh were apparent. The spring model does not nat-
urally generalize to nonuniform meshes, but this is straightforward with the
energy-based method. This is an important consideration when local mesh re-
finement is required. The energy-based models do not have the limitations of
the spring-based model, and in our tests, the energy-based method was much
more accurate.

We note that we compared the models with linear elasticity for validation,
but both the spring model and the energy-based model involved nonlinear elastic
materials. The energy-based method could be used to describe a linearly elastic
material. It is important to note that linear elasticity is not frame invariant,
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and this approach can result in unbalanced torques and unphysical rotations of
the material. In Appendix B we compare linear and nonlinear elasticity for a
test problem with large deformation. This test demonstrates the effect of the
spurious torques generated with linear elasticity. Nonlinear constitutive laws
do not introduce any additional complexity to the method, and they can be
used for problems with small and large deformations. This is why we chose a
nonlinear model for the tests presented in this paper.

While we considered problems of small length scales where the Reynolds
number is zero, extending the method to problems with inertia is straightfor-
ward. This work was motivated by problems in cell biology, and our results
showed that poroelastic models were essential to describe the dynamics in the
systems presented. However, the modeling framework and methods are not lim-
ited to applications in cell biology. Porous structures can be found in many
contexts in biology and engineering, and our models could be adapted to these
problems.
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Appendix A. Relating the Spring Stiffness to Elastic Modulus

In this appendix, we derive expressions that relate the stiffness constants in
the spring model to the elastic moduli of an isotropic elastic medium. To derive
the expression (27) for the stiffness constant kij , we compute the discrete strain
energy from a pure shear and compressive deformation. We choose kij to be
consistent with the continuous strain energy density of a linear elastic material
in the limit of infinitesimal deformation.

Shear Modulus

Consider a shear deformation that maps (x, y)→ (x+ γy, y). The deforma-
tion gradient is then

A =

(
1 γ
0 1

)
. (A.1)

Let vij = Xi −Xj and let v̂ij = vij/ |vij |. From (22) and (23), the discrete
strain energy associated with Xi is

Ei =
kij d`ij

4

∑

j

( |Avij | − |vij |
d`ij

)2

=
k

4d`ij

∑

i,j

|vij |2 (|Av̂ij | − 1)
2

(A.2)

=
kij

4d`ij

∑

i,j

|vij |2
(
|Av̂ij |2 − 2|Av̂ij |+ 1

)
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The quadratic term |Av̂ij |2 can be expressed as

|Av̂ij |2 = v̂ij
TATAv̂ij = 1 + v̂ij

T

(
0 γ
γ γ2

)
v̂ij . (A.3)

The unit vector v̂ij can be written in polar coordinates as v̂ij = (cos θ, sin θ)T .
Substituting into Eq. (A.3) yields

|Av̂ij |2 = 1 + γ
(
2 cos θ sin θ + sin2 θ

)
. (A.4)

Similarly, the linear term |Av̂ij | can be written as

|Av̂ij | =
√
|Av̂ij |2 =

√
1 + γ

(
2 cos θ sin θ + sin2 θ

)
. (A.5)

Expanding this term in the small deformation limit, γ � 1, yields

|Av̂ij | = 1 + γ cos θ sin θ +
γ2

2

(
sin2 θ − (cos θ sin θ)

2
)

+ (A.6)

γ3

2

(
− sin3 θ cos θ + (cos θ sin θ)

3
)

+O(γ4). (A.7)

Retaining terms up toO(γ2), the expression (|Av̂ij |−1)2 simplifies to (γ cos θ sin θ)
2
.

Using the assumption that the network is isotropic, we average over all θ ∈
[0, 2π),

〈(|Av̂ij | − 1)2〉 =
γ2

2π

∫ 2π

0

(cos θ sin θ)
2
dθ =

γ2

8
. (A.8)

Using this expresion and that |vij |2 ≈ `2ij , the averaged discrete strain energy
(A.2) at a point is

Ei =
kij

4d`ij
Nlinks

(
d`2ij

γ2

8

)
=

3

16
d`ijγ

2kij , (A.9)

where we have assumed that the average number of links to other points is
Nlinks = 6.

The strain-energy density function for an isotropic linearly elastic material
is

W =
λE
2

[tr(E)]
2

+ µEtr(E2), (A.10)

where the linear strain tensor is

E =
1

2

(
∇q +∇qT

)
, (A.11)

and the displacement vector is

q = X − x = Ax− x. (A.12)

For the shear deformation described above we have

q =

(
0 γ
0 0

)(
x
y

)
and ∇q =

(
0 γ
0 0

)
. (A.13)
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The strain tensor is then

E =
1

2

(
0 γ
γ 0

)
. (A.14)

Substituting (A.14) into the strain energy equation (A.10) yields

W =
λE
2

[tr(E)]
2

+ µEtr(E2) =
λE
2

02 +
µE
4

(
2γ2
)

(A.15)

We convert the strain energy density (in 2-D, energy per area) to an energy for
comparison to the discrete strain energy. Specifically, we multiply the strain
energy density by the area weight of the spring which is given by (dAi+dAj)/2,
where the area weight dAi at each point Xi is the sum of one third the area of
each triangle with vertex Xi. Matching the above strain energy to the discrete
strain energy for shear deformations, we obtain

(µEγ
2/2) (dAi + dAj) /2 = 3kijγ

2 d`ij/16, (A.16)

and

kij =
8µE
3d`ij

(
dAi + dAj

2

)
. (A.17)

Bulk Modulus

The bulk modulus in three dimensions is related to the Lamé constants by
Kv = λE + 2µE/3 and by Kv = λE + µE in two dimensions. To determine λE
(and the bulk modulus), we consider a pure compression deformation so that
the deformation gradient is

A =

(
1 + γ 0

0 1 + γ

)
. (A.18)

We compute the terms |Av̂ij | and |Av̂ij |2 that appear in (A.2) for the compres-
sive deformation (A.18). The quadratic term is

|Av̂ij |2 = v̂ij
TATAv̂ij = v̂ij

T

(
(1 + γ)2 0

0 (1 + γ)2

)
v̂ij = (1 + γ)2, (A.19)

and the linear term is
|Av̂ij | = (1 + γ). (A.20)

The averaged discrete strain energy at the point Xi is

Ei =
kij

4d`ij

∑

i,j

|vij |2γ2 =
kij
4
d`ijγ

2 ×Nlinks =
3

2
kijd`ijγ

2, (A.21)

where again we take the average number of links at a point to be 6.
The strain tensor is simply E = γI, and so from Eq. (A.10) the strain energy

density is

W =

(
λE
2

(
4γ2
)

+ 2µEγ
2

)
= 2γ2 (λE + µE) . (A.22)
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Multiplying by the area weight, the elastic deformation energy at a point is

E = 2γ2 (λE + µE)

(
dAi + dAj

2

)
=

3

2
kijd`ijγ

2. (A.23)

Taking the shear modulus from above, µE = 3kijd`ij/(4 (dAi + dAj)), and
solving for λE gives

λE =
3

2

kijd`ij
(dAi + dAj)

− 3

4

kijd`ij
(dAi + dAj)

=
3

4

kijd`ij
(dAi + dAj)

. (A.24)

Note that λE = µE , and thus a single elastic modulus characterizes the
elastic material. The bulk modulus necessarily equals 2µE in two dimensions.
We conclude that

kij =
8λE
3d`ij

(
dAi + dAj

2

)
. (A.25)

Appendix B. Linear vs. Nonlinear Elasticity

In this appendix, we compare simulation results for linear and nonlinear
elastic models using the energy-based framework described in Section 2.3. It
is important to note that linear elasticity is not frame invariant, meaning that
the stresses are not independent of the coordinate system. Said another way, a
rigid rotation potentially generates elastic stress in a linearly elastic model. In
biological applications, large deformations are not uncommon, particularly for
soft materials such as cytoskeleton. Here we demonstrate that a linearly elastic
model can produce spurious torque and artificial rotation when the material
experiences large deformations.

We use the same test problem from Section 3: a circular elastic structure is
initially expanded uniformly in the radial direction and allowed to relax back
to rest. Parameters in the following simulations are identical those in Section 3,
except that here the initial structure is expanded by 25%, in comparison to the
expansion of 0.01% presented in Section 3. We use a compressible neo-Hookean
model for nonlinear elasticity with strain energy given by (20), and the strain
energy function for linear elasticity is given by (21).

In this test, we expect motion of the elastic structure only in the radial
direction and the fluid velocity to be zero. The torque density should be zero
at every point throughout the simulation because the deformation and motion
is only in the radial direction. We compute the net torque on the structure by

τ =

∫

Γ

X × F net
elastic ds. (B.1)

The maximum net torque over the simulation for different grids is shown in
Fig.12(a). These data show that the net torque is not zero in the computations
involving linear elasticity, and the size of the net torque increases as the grid
is refined, while the torques produced by the neo-Hookean model are zero to
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Figure B.12: (a) Maximum of the net torque for linear and neo-Hookean elastic models for
simulations from t = 0 to t = 0.5. (b) Example of a velocity field (arrows) and its magnitude
(color field) during the simulation using the linearly elastic model on a 128× 128 grid.

machine accuracy. The spurious torques generated with the linearly elastic
model produce an unphysical rotational flow, as demonstrated by the example
flow field in Fig. 12(b).

Next, we assess the affect of the rotational flow on the motion of the struc-
ture. The displacement vector field was converted into polar coordinates with
components (qr, qθ). The size of the angular displacement, qθ, quantifies the ro-
tation of the material, and its maximum value over time is plotted in Fig. B.13
for the two different elasticity models. For this simulation, we expect the dis-
placement in the θ-direction to be zero. The angular displacement is very small
and well below discretization errors for the neo-Hookean model for nonlinear
elasticity, but it is several orders of magnitude larger for linear elasticity. The
angular displacement for the nonlinear material arises simply from discretization
errors; the mesh is not radially symmetric, and so the discrete solution is not
perfectly symmetric. For the linearly elastic material, the angular displacement
grows in time and reaches a value which is about 10% of the original radial dis-
placement. This large error is the product of the spurious torque and resulting
rotational flow.

The data presented in this appendix indicates that linear elasticity should
only be used for small deformations when using the energy-based method. How-
ever, there is no reason to use linear elasticity even for small deformations be-
cause nonlinear constitutive laws do not introduce any additional complexity to
the method.
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