
Homework 2
Math 128A
Due Friday, 10/25/19, 11:59 PM

1. Given the points (xi, yi) for i = 0 . . . n the Newton form of the interpolating polynomial is

p(x) = a0 + a1(x− x0) + · · ·+ an(x− x0)(x− x1) · · · (x− xn−1).

The textbook provides code for computing the coeffients by a divided difference table and for
evaluating the polynomial. I provided this code on the class website.

(a) Compute the coefficients of the Newton form of the interpolating polynomial for the
fifth degree polynomial that interpolates f(x) = cos(2πx) at the points xi = i/5 for
i = 0, . . . , 5. Display the results in a table.

(b) Make a plot of f(x) and the interpolating polynomial, p(x), from part (a) on the same
axes for 0 ≤ x ≤ 1.

(c) Plot the difference of f and p for 0 ≤ x ≤ 1.

(d) Estimate the maximum of |f(x) − p(x)| on the interval [0, 1] by evaluating f and p for
a large number of points between 0 and 1.

(e) Evaluate p(1.5), p(2.0), and p(2.5) and report the results. Why are the values of p so
different from the values of f at these points compared to points in [0, 1]?

2. Given the nodes
a = x0 < x1 < · · · < xn = b,

let S be the piecewise Hermite cubic interpolant of f at these nodes. That is, S interpolates f
and f ′ at these nodes, and on each subinterval [xi, xi+1], S coincides with a cubic polynomial
Si(x).

(a) Let h = maxi(xi+1 − xi) and assume that f has at least four continuous derivatives on
[a, b]. Show that

|f(x)− S(x)| ≤ h4

384
max
ξ∈[a,b]

∣∣∣f (4)(ξ)∣∣∣ .
(b) On the interval [xi, xi+1] let Si be represented as

Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3.

Derive expressions for ai, bi, ci, and di in terms of hi = xi+1−xi, fi = f(xi), f
′
i = f ′(xi),

fi+1 = f(xi+1), and f ′i+1 = f ′(xi+1).

(c) Evaluating S requires the location of the nodes (xi’s) and the coefficients computed in the
previous part. For easy evaluation, the coefficients can be stored in an n by 4 array. For
example, let P be an n by 4 array with elements defined as Pi,1 = ai, Pi,2 = bi,Pi,3 = ci,
and Pi,4 = di.

Write a routine which takes as input the three arrays corresponding to the location of
the nodes, the function values at these nodes, and the derivative values at the nodes,
and it returns the array of coefficients, P.

Use your routine to compute the coefficients defining S for the function f(x) = cos(2πx)
at the nodes xi = i/5 for i = 0, . . . , 5. Display the resulting coefficients in a table.
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(d) Write a routine which takes as input the location of the nodes, the array of coefficients,
and an evaluation point, x, and returns the value of S(x).

Let f(x) = cos(2πx) and let xi = i/n for i = 0, 1, . . . , n be the n + 1 equally spaced
points on [0, 1]. For a range of n values use your code to estimate maxx∈[0,1] |f(x)−S(x)|
by evaluating f and S on a large set of values in [0, 1]. Display your results in a table and
in a graph (use log-log plot). Discuss how your results demonstrate O(h4) convergence.

3. At the end of this assignment, code is given that takes as input vectors x and y, and returns
an array, P , which contains the coefficients of the natural cubic spline through the points
(xi, yi). The cubic spline is defined as S(x) = Si(x) for xi ≤ x ≤ xi+1, and

Si(x) = Pi1 + Pi2(x− xi) + Pi3(x− xi)2 + Pi4(x− xi)3.

Note that you can used your code Problem 2c to evaluate the spline.

(a) In the absence of derivatives at the endpoints, one commonly uses the not-a-knot bound-
ary condition rather than natural boundary conditions. If the points are indexed from
i = 0 . . . n, then the not-a-knot condition requires that S′′′(x) be continuous at x1 and
xn−1. For Si(x) = ai + bi(x − xi) + ci(x − xi)2 + di(x − xi)3, our textbook derives the
system of linear equations for the values of ci:

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3

hi
(ai+1 − ai)−

3

hi−1
(ai − ai−1)

for i = 1 . . . n− 1, where hi = xi+1−xi. We need two more equations to be able to solve
for the c values. Derive the two equations that come from the not-a-knot conditions
involving only c values and h values.

(b) Write a routine to compute the coefficients of a cubic spline with not-a-knot boundary
conditions. This requires only minor changes from the natural spline code provided.

(c) Plot the natural and not-a-knot splines that interpolate f(x) = cos(2πx) at the points
xi = i/5 for i = 0, . . . , 5. Which spline looks more like the cosine function?

(d) For each spline, estimate the maximum error in using the spline to approximate f(x)
between x = 0 and x = 1. Do this by using your code to evaluate f and each spline at a
large number of points on [0, 1] and then computing the maximum absolute value of of
the difference on these evaluation points.
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4. Use cubic splines to represent a curve (x(s), y(s)) that is in the shape of the script letter L
below. List the points you used to make the splines, and make a plot of your curve. You may
use the provided grid to estimate the nodes by hand, or use software to help identify points
on the curve. For example, in MATLAB the commands imread, image, and ginput could
be used to aid in selecting your points.
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% Natural spline coefficients

% Input: x - n by 1 vector of the nodes

% y - n by 1 vector with the corresponding function values

% Output: P - n-1 by 4 matrix

% the elements of the ith row of P give the coefficients

% of the cubic between [x(i),x(i+1)] as

% Si(x) = P(i,1) + P(i,2)*(x-x(i))

% + P(i,3)*(x-x(i))^2 + P(i,4)*(x-x(i))^3

%

function P=naturalspline(x,y);

n = length(x);

% force x and y to be column vectors

%

x = shiftdim(x); y = shiftdim(y);

% compute the distances between the points

%

h = x(2:n) - x(1:n-1);

% set up the tridiagonal linear system to solve

%

d0 = 2*(h(1:n-2)+h(2:n-1)); % diagonal

dm1 = h(2:n-1); % subdiagional, note dm1(end) not used below

d1 = h(1:n-2); % superdiagional, note d1(1) not used below

% form the matrix and rhs

%

A = spdiags([dm1 d0 d1],-1:1,n-2,n-2);

b = 3*(y(3:n)-y(2:n-1))./h(2:n-1) - 3*(y(2:n-1)-y(1:n-2))./h(1:n-2);

% solve the linear system

%

z = A\b;

% append the natural boundary conditions

%

z = [0; z; 0];

% compute the coefficients

%

P = zeros(n-1,4);

P(:,1) = y(1:n-1);

P(:,2) = (y(2:n) -y(1:n-1))./h - h.*(z(2:n)+2*z(1:n-1))/3;

P(:,3) = z(1:n-1);

P(:,4) = (z(2:n)-z(1:n-1))./(3*h);
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# Natural spline coefficients

# Input: x - n by 1 vector of the nodes

# y - n by 1 vector with the corresponding function values

# Output: P - n-1 by 4 matrix

# the elements of the ith row of P give the coefficients

# of the cubic between [x(i),x(i+1)] as

# Si(x) = P(i,1) + P(i,2)*(x-x(i))

# + P(i,3)*(x-x(i))^2 + P(i,4)*(x-x(i))^3

#

import numpy as np

from scipy.linalg import solve_banded

def naturalspline(x,y):

n=len(x)

# spacing between points

#

h = x[1:n] - x[0:n-1]

# main diagonal, super, and sub

# note note first element not used in super, last element not used in sub

#

d0 =2.0*(h[0:n-2]+h[1:n-1]) # main diag

d1 = h[0:n-2]; # superdiag

dm1 = h[1:n-1]; # subdiag

# solve the linear system

#

b = 3.0*(y[2:n]-y[1:n-1])/h[1:n-1] - 3.0*(y[1:n-1]-y[0:n-2])/h[0:n-2]

A = np.matrix([d1,d0,dm1])

sol = solve_banded((1, 1), A, b)

# append the natural boundary conditions

#

z = np.zeros(n)

z[1:n-1]=sol

# compute the coeffients

#

P = np.zeros([n-1,4])

P[:,0] = y[0:n-1]

P[:,1] = (y[1:n]-y[0:n-1])/h - h*(z[1:n]+2*z[0:n-1])/3.0

P[:,2] = z[0:n-1]

P[:,3] = (z[1:n]-z[0:n-1])/(3.0*h);

return P
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