
Math 226A
Homework 2
Due Monday, October 30th

1. A matrix A is strictly column diagonally dominant if for each k,

|akk| >
∑
i 6=k

|aik|.

Show that if Gaussian elimination with partial pivoting is applied to a strictly column diag-
onally dominant matrix, no row interchanges occur.

2. Perform a computational experiment in which in a single trial you generate a random square
matrix of a given size. Generate a random vector, ~z, and compute the ~b = A~z. Now solve
the linear system A~x = ~b for ~x. Compute the relative error as ‖~x− ~z‖/‖~z‖ and the condition
number of the matrix. Perform a number of trials and try a few different sized problems.
Look for a scaling between the condition number and the relative error. Hint: scatter plot
the error vs. condition number on a log-log plot. Does the scaling depend on the matrix size?
Do the result match your expectation for the relationship between error, condition number,
and machine epsilon? Discuss.

3. (a) Show that for Gaussian elimination with partial pivoting applied to any n × n matrix,
the growth factor, ρ, satisfies

ρ =
maxi,j |ui,j |
maxi,j |aij |

≤ 2n−1.

(b) Pick n × n matrices for range of n spanning several orders of magnitude with random
entries sampled uniformly from [−1, 1] and compute the growth factor. Scatter plot the
growth factors against the size on a log-log plot. How does the growth factor appear to
scale with size?

(c) Extrapolating your results from the previous part to a 106× 106, what growth factor do
you expect?

4. (a) Let A be an m×n matrix. Find constants C1 and C2 (which depend on the dimensions)
such that

C1‖A‖∞ ≤ ‖A‖2 ≤ C2‖A‖∞.
(b) Show that your bounds in the previous problem are tight. That is, find examples where

equality is obtained for each inequality.

(c) Based on the above inequalities, bound the condition number of a square matrix using
2-norm above and below in terms of the condition number in infinity norm. Explain
why these bounds may not be tight (i.e. equality may not be achieved) even though the
bounds on the norms are tight.

5. Below is excerpt of Matlab code to solve the tridiagonal system of equations
b1 c1
a2 b2 c2
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Note that using the code to solve tridiagonal systems in Matlab will likely be slower than
forming the sparse matrix (e.g. using spdiags) and using the backslash operator to solve the
system. The built-in solver would recognize the structure and call a tridiagonal solver which
has been compiled. This avoids the slow down of the interpreter.

(a) Let A = LU be the LU factorization of the matrix above. The code below does not store
L, but it could be modified to do so. What are the entries of L and U?

(b) Modify the algorithm to solve problems of the form
b1 c1 a1
a2 b2 c2
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f1

...

fn

 (2)

x=zeros(n,1);

w=zeros(n,1);

d = b(1);

x(1) = f(1)/d;

for i = 2:n

w(i-1) = c(i-1) / d;

d = b(i) - a(i) * w(i-1);

x(i) = (f(i) - a(i) * x(i-1))/d;

end

for i = n-1:-1:1

x(i) = x(i) - w(i) * x(i + 1);

end
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