
Math 226A
Homework 4
Due Monday, December 11th

1. (a) Show that the polynomial

p(x) = 2−n (Tn+1(x) − Tn−1(x)) ,

is the unique monic polynomial of degree n + 1 with roots at the Chebyshev points
xk = cos

(
kπ
n

)
for k = 0 . . . n.

Note that in class we showed that the roots of the Chebyshev polynomials provide the
optimal interpolation points for smooth functions based on the form of the error in the
polynomial interpolant. However, we often use the locations of the extreme points (i.e.,
the Chebyshev points above) as the interpolation points. In this problem you show that

p(x) =
n∏
j=0

(x− xj) ,

which appears in the form of the error of an interpolant. Thus the maximum of this
polynomial goes down exponentially as the number of points increases.

(b) The barycentric form of the interpolating polynomial is

p(x) =

n∑
k=0

wk
(x− xk)

fk

n∑
k=0

wk
(x− xk)

,

where

wk =

∏
j 6=k

(xk − xj)

−1 .
Show that for the Chebyshev points, xk = cos(kπ/n), the interpolation formula can be
written as

p(x) =

n∑
k=0

ŵk
(x− xk)

fk

n∑
k=0

ŵk
(x− xk)

,

where

ŵk =

{
(−1)k 1 ≤ k ≤ n− 1

(−1)k/2 k = 0, n
.

Hint: You can relate the polynomial from the previous part to wk and obtain a formula
for wk.

1



2. On the last page of this assignment, there is a MATLAB function that takes as input vectors
x and y, and returns an array, P , which contains the coefficients of the natural cubic spline
through the points (xi, yi). The cubic spline is defined as S(x) = Si(x) for xi ≤ x ≤ xi+1,
and

Si(x) = Pi1 + Pi2(x− xi) + Pi3(x− xi)
2 + Pi4(x− xi)

3.

(a) Write a routine that takes as input the arrays x and P and the scalar z and returns
S(z).

(b) In the absence of derivatives at the endpoints, one commonly uses the not-a-knot bound-
ary condition rather than natural boundary conditions. If the points are indexed from
j = 0 . . . n, then the not-a-knot condition requires that S′′′(x) be continuous at x1 and
xn−1. For Si(x) = ai + bi(x − xi) + ci(x − xi)

2 + di(x − xi)
3, in class we derived the

system of linear equations for the values of ci:

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3

hi
(ai+1 − ai) −

3

hi−1
(ai − ai−1)

for i = 1 . . . n− 1, where hi = xi+1−xi. We need two more equations to be able to solve
for the c values. Derive the two equations that come from the not-a-knot conditions
involving only c values and h values.

(c) Write a routine to compute the coefficients of a cubic spline with not-a-knot boundary
conditions. This requires only minor changes from the natural spline code provided.

(d) Plot the natural and not-a-knot splines that interpolate f(x) = cos(2πx) at the points
xj = j/5 for j = 0, . . . , 5. For each spline, compute maximum error in using the spline
to approximate f(x) between x = 0 and x = 1.

(e) In class we saw that interpolating the function f(x) = (25x2 + 1)−1 on [−1, 1] with a
single polynomial using equally spaced points led to large oscillations which diverged as
the number of points increased.

• Make a plot of the interpolating cubic spline using 21 equally spaced points.

• Compute the approximation error (in max norm) of the cubic spine approximation
as a function of the number of points used for interpolation. Plot the error versus
the number of points and discuss the convergence rate.

3. (a) Write a composite trapezoidal rule routine to compute an approximation to the integral
of a function, f , over an interval [a, b]. Your routine should take as inputs: the integrand
f , the endpoints a and b, and the number the number of subintervals n.

(b) Write a composite Simpson’s rule integration routine that takes the same inputs as your
composite trapezoidal rule routine.

(c) Write a composite 3-point Gaussian quadrature routine that takes the same inputs as
your composite trapezoidal rule routine.

(d) Apply each of these composite quadratures to approximate∫ 1

0
ex dx.

Make a table of the results for n = 2, 4, 8, 16, 32, and a table of the errors. How is the
order of accuracy demonstrated in the table of errors? Comment on your results.
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4. On the last page of this assignment a MATLAB code for adaptive Simpson quadrature is
given.

(a) This code is written for clarity, not for efficiency. Explain why this program is not an
efficient implementation of adaptive Simpson’s rule.

(b) Use the given adaptive Simpson’s rule routine and MATLAB’s build-in adaptive Simp-
son’s quadrature, quad, to evaluate the the integral below with an error tolerance of
10−10. ∫ 1

0

1

x+ 0.01
dx

What are the actual errors in each case? How many function evaluations are necessary
in each routine. Comment on your results.

(c) Analytically derive a bound for the number of points needed to guarantee that the error
is below 10−10 for the composite Trapezoidal rule and for the composite Simpson’s rule
each using equally spaced points for the integral above.

(d) Experiment with your composite Simpson’s rule code to estimate (within 1000 points)
the actual number of points needed to get an error below 10−10. Comment on your
results taking into account the analytic bound on the number of points and the number
of function evaluations used by the (efficient) adaptive routines.
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% Natural spline coefficients

%

% Input: x - n by 1 vector of the nodes

% y - n by 1 vector with the corresponding function values

% Output: P - n-1 by 4 matrix

% the elements of the ith row of P give the coefficients

% of the cubic between [x(i),x(i+1)] as

% Si(x) = P(i,1) + P(i,2)*(x-x(i))

% + P(i,3)*(x-x(i))^2 + P(i,4)*(x-x(i))^3

%

function P=naturalspline(x,y);

% initialize P

%

n = length(x);

P = zeros(n-1,4);

% compute the distances between the points

%

h = x(2:n) - x(1:n-1);

% set up the tridiagonal linear system to solve

%

d0 = 2*(h(1:n-2)+h(2:n-1)); % diagonal

d1 = h(2:n-2); % super and sub diagonal

% form the matrix and rhs

%

A = diag(d0,0) + diag(d1,-1) + diag(d1,1);

b = 3*(y(3:n)-y(2:n-1))./h(2:n-1) - 3*(y(2:n-1)-y(1:n-2))./h(1:n-2);

% solve the linear system

%

z = A\b;

% append the natural boundary conditions

%

z = [0; z; 0];

% compute the coefficients

%

P(:,1) = y(1:n-1);

P(:,2) = (y(2:n)-y(1:n-1))./h - h.*(z(2:n)+2*z(1:n-1))/3;

P(:,3) = z(1:n-1);

P(:,4) = (z(2:n)-z(1:n-1))./(3*h);
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% adaptive quadrature using Simpson’s rule

%

% input: f - integrand, scalar function that takes one input

% a,b - integration is over interval [a,b]

% ep - error tolerance

% count - number of times the integrand is evaluated

% this should not be passed in by the user, it

% is only used in recursive calls

%

% output: q - the approximation to the integral

% new_count - number of times the integrand was evaluated

%

% note: this function requires that the quadrature rule S be

% defined in the same file

%

function [q,new_count]=adapt(f,a,b,ep,count);

% if count was not passed in, initialize it to zero

%

if( nargin < 5 )

count = 0;

end

new_count = count + 9;

sab = S(f,a,b);

c = 0.5*(a+b);

sac = S(f,a,c);

scb = S(f,c,b);

factor = 15;

if( abs(sac+scb-sab) < factor*ep )

q = sac + scb;

else

[q1,new_count]=adapt(f,a,c,ep/2,new_count);

[q2,new_count]=adapt(f,c,b,ep/2,new_count);

q =q1+q2;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Simposon’s Rule

% input: f - integrand, scalar function that takes one input

% a,b - integration is over [a,b]

%

% output: q - simpson’s rule approximation to integral of f over [a,b]

%

function q=S(f,a,b);

q = (b-a)/6*( feval(f,a) + 4*feval(f,(a+b)/2) + feval(f,b));
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