
Math 228B
Homework 1
Due Wednesday, 1/23/19

1. Let L be the linear operator Lu = uxx, ux(0) = ux(1) = 0.

(a) Find the eigenfunctions and corresponding eigenvalues of L.

(b) Show that the eigenfunctions are orthogonal in the L2[0, 1] inner product:

〈u, v〉 =

∫ 1

0
uv dx.

(c) It can be shown that the eigenfunctions, φj(x), form a complete set in L2[0, 1]. This
means that for any f ∈ L2[0, 1], f(x) =

∑
j αjφj(x). Express the solution to

uxx = f, ux(0) = ux(1) = 0, (1)

as a series solution of the eigenfunctions.

(d) Note that equation (1) does not have a solution for all f . Express the condition for
existence of a solution in terms of the eigenfunctions of L.

(e) A second-order accurate discretization of the problem using a uniform mesh xj = j∆x
for j = 0 . . . N + 1 and ∆x = 1/(N + 1) involves the matrix

A =
1

∆x2



−2 2
1 −2 1

. . .
. . .

. . .
. . .

. . .
. . .

1 −2 1
2 −2


.

Note that, unlike the Dirichlet problem, the values of the function are also unknown at
the boundary points, and so the matrix is (N+2)×(N+2). Show the N+2 eigenvectors
are

vj = cos (kπxj) ,

for k = 0 . . . N + 1, and compute the eigenvalues. Plot the eigenvalues of the matrix and
the eigenvalues from part (a) on the same graph.

2. Define the functional F : X → R by

F (u) =

∫ 1

0

1

2
(ux)2 + fu dx,

where X is the space of real valued functions on [0, 1] that have at least one continuous
derivative and are zero at x = 0 and x = 1. The Frechet derivative of F at a point u is
defined to be the linear operator F ′(u) for which

F (u+ v) = F (u) + F ′(u)v +R(v),

where

lim
||v||→0

||R(v)||
||v||

= 0.
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One way to compute the derivative is

F ′(u)v = lim
ε→0

F (u+ εv)− F (u)

ε
.

Note that this looks just like a directional derivative.

(a) Compute the Frechet derivative of F .

(b) u ∈ X is a critical point of F if F ′(u)v = 0 for all v ∈ X. Show that if u is a solution to
the Poisson equation

uxx = f, u(0) = u(1) = 0,

then it is a critical point of F .

(c) Let Xh be a finite dimensional subspace of X, and let {ϕi(x)} be a basis for Xh. This
means that all uh ∈ Xh can be expressed as uh(x) =

∑
i uiϕi(x) for some constants ui.

Thus we can identify the elements of Xh with vectors ~u that have components ui. Let
G(~u) = F (uh). Show that the gradient of G (whose components are (∇G)j = ∂G

∂uj
) is of

the form ∇G(~u) = A~u +~b, and write expressions for the elements of the matrix A and
the vector ~b.

(d) Divide the unit interval into a set of N + 1 equal length intervals Ii = (xi, xi+1) for
i = 0, . . . , N . The endpoints of the intervals are xi = ih, where h = 1/(N + 1). Let
Xh be the subspace of X such that the elements uh of Xh are linear on each interval,
continuous on [0,1], and satisfy uh(0) = uh(1) = 0. Xh is an N dimensional space with
basis elements

ϕi(x) =

{
1− h−1|x− xi| if |x− xi| < h

0 otherwise
,

for i = 1, . . . , N . Compute the matrix A from the previous problem that appears in the
gradient.

Finite element methods are based on these “weak formulations” of the problem. The Ritz
method is based on minimizing F and the Galerkin method is based on finding the critical
points of F ′(u).

3. (a) Using a Taylor expansion, derive the finite difference formula to approximate the second
derivative at x using function values at x−h/2, x, and x+h. How accurate is the finite
difference approximation?

(b) Perform a refinement study to verity the accuracy of the difference formula you derived.

(c) Derive an expression for the quadratic polynomial that interpolates the data
(x− h/2, u(x− h/2)), (x, u(x)), (x+ h, u(x+ h)). How is the finite difference formula
your derived in problem 3a related to the interpolating polynomial?
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