
Math 228B
Homework 3
Due Thursday 2/21/19

1. Use Jacobi, Gauss-Seidel, and SOR (with optimal ω) to solve

∆u = − exp
(
−(x− 0.25)2 − (y − 0.6)2

)
on the unit square (0, 1)× (0, 1) with homogeneous Dirichlet boundary conditions. Find the
solution for mesh spacings of h = 2−5, 2−6, and 2−7. What tolerance did you use? What
stopping criteria did you use? What value of ω did you use? Report the number of iterations
it took to reach convergence for each method for each mesh.

2. In this problem we compare the speed of SOR to a direct solve using Gaussian elimination. At
the end of this assignment is MATLAB code to form the matrix for the 2D discrete Laplacian.
The code for the 3D matrix is similar. Note that with 1 GB of memory, you can handle grids
up to about 1000× 1000 in 2D and 40× 40× 40 in 3D with a direct solve. The range of grids
you will explore depends on the amount of memory you have.

(a) Solve the PDE from problem 1 using a direct solve. Put timing commands in your code
and report the time to solve for a range of mesh spacings. Use SOR to solve on the
same meshes and report the time and number of iterations. Comment on your results.
Note that the timing results depend strongly on your implementation. Comment on the
efficiency of your program.

(b) Repeat the previous part in three spatial dimensions for a range of mesh spacings.
Change the right side of the equation to be a three dimensional Gaussian. Comment on
your results.

3. The optimal choice of ω for SOR can be computed analytically only for simple problems.
It can be approximated for more complex problems. However, the speed of convergence is
sensitive to the choice of ω as you will see below.

(a) Show that for the model problem (2D Poisson equation on the unit square with Dirichlet
boundary conditions) the eigenvalues of the SOR update matrix, λ, are related to the
eigenvalues of the Jacobi update matrix, µ, by

µ =
λ+ ω − 1

ωλ1/2

Use the same change-of-variables trick demonstrated in class to relate the eigenvalues of
the Gauss-Seidel update matrix to those of the Jacobi matrix.

(b) It can be shown that the spectral radius of the SOR update matrix can be obtained
by solving the above equation when µ = ρJ is the spectral radius of the Jacobi update
matrix. Specifically, the spectral radius of the SOR update is ρSOR = |λ| where λ
satisfies

ρJ =
λ+ ω − 1

ωλ1/2
.

Make a plot of ρSOR as a function of ω for a few grid sizes to demonstrate the sensitivity
to the value of ω.
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4. Periodic boundary conditions for the one dimensional Poisson equation on (0, 1) are u(0) =
u(1) and ux(0) = ux(1). These boundary conditions are easy to discretize, but lead to a
singular system to solve. For example, using the standard discretization, xj = jh where
h = 1/(N + 1), the discrete Laplacian at x0 is h−2(uN − 2u0 + u1).

(a) Write the discrete Laplacian for periodic boundary conditions in one dimension as a
matrix. Show that this matrix is singular, and find the vectors that span the null space.
(Note that this matrix is symmetric, and so you have found the null space of the adjoint).

(b) What is the discrete solvability condition for the discretized Poisson equation with pe-
riodic boundary conditions in one dimension? What is the discrete solvability condition
in two dimensions?

(c) Show that v is in the null space of the matrix A, if and only if v is an eigenvector of the
iteration matrix T = M−1N with eigenvalue 1, where A = M − N . The iteration will
converge if the discrete solvability condition is satisfied provided the other eigenvalues
are less than 1 in magnitude (true for Gauss-Seidel and SOR, but not for Jacobi).
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%

% lap2d.m

%

% form the (scaled) matrix for the 2D Laplacian for Dirichlet boundary

% conditions on a rectangular node-centered nx by ny grid

%

% input: nx -- number of grid points in x-direction (no bdy pts)

% ny -- number of grid points in y-direction

%

% output: L2 -- (nx*ny) x (nx*ny) sparse matrix for discrete Laplacian

%

function L2 = lap2d(nx,ny);

% make 1D Laplacians

%

Lx = lap1d(nx);

Ly = lap1d(ny);

% make 1D identities

%

Ix = speye(nx);

Iy = speye(ny);

% form 2D matrix from kron

%

L2 = kron(Iy,Lx) + kron(Ly,Ix);

%

% function: lap1d -- form the (scaled) 1D Laplacian for Dirichlet

% boundary conditions on a node-centered grid

%

% input: n -- number of grid points (no bdy pts)

%

% output: L -- n x n sparse matrix for discrete Laplacian

%

function L = lap1d(n)

e = ones(n,1);

L = spdiags([ e -2*e e], [-1 0 1],n,n);
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