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$1. INTRODUCTION AND PRELIMINARY RESULTS 

IN THIS paper we extend the class of 3-manifolds which are determined up to homeomor- 
phism by their fundamental groups to the class of closed orientable irreducible 3-manifolds 
containing a singular surface satisfying two properties, the l-line-intersection property and 
the 4-plane property. 

A basic problem in the classification of 3-dimensional manifolds is to decide to what 
extent the homotopy type of a closed manifold determines the manifold up to homeomor- 
phism. In the case of 3-manifolds with finite fundamental groups, it is known that there are 
homotopy equivalent manifolds which are not homeomorphic, but there are no known 
examples of closed orientable irreducible 3-manifolds with isomorphic infinite fundamental 
groups which are not homcomorphic. Waldhausen [30] and Heil Cl23 proved that if M and 
M’ are Haken 3-manifolds which have isomorphic fundamental groups then they are 
homcomorphic. If M and M’ arc hyperbolic then the Mostow rigidity theorem implies the 
same result [19]. but if only M is assumed to be hyperbolic then it is unknown. Boehme [3] 
extended Waldhausen’s theorem to certain non-Haken Seifert fiber spaces. Scott [27] 
showed that a closed orientable irreducible 3-manifold which is homotopy equivalent to 
a Seifcrt fiber space with infinite fundamental group is homeomorphic to that Seifert fiber 
space. Many of these Scifert fiber spaces are non-Haken. To date however, Seifert fiber 
spaces have provided the only examples of non-Haken 3-manifolds which are known to be 
determined up to homeomorphism by their fundamental groups. 

For manifolds with boundary there are simple examples of non-homemorphic 
homotopy equivalent Haken manifolds, such as the product with the circle of a thrice- 
punctured sphere and the product with the circle of a once-punctured torus. Such examples 
are well understood in terms of the characteristic decomposition of the 3-manifold [17] 
[16]. Another possible source of troublesome examples comes by taking the connected sum 
of a 3-manifold with a fake homotopy 3-sphere, resulting in a homotopy equivalent 
non-homeomorphic 3-manifold. This possibility would be ruled out by a successful solution 
to the Poincari conjecture. To get around this potential problem we work with irreducible 
3-manifolds, in which any 2-sphere bounds a bail. Since non-orientable P2-irreducible 
3-manifolds are always Haken, we restrict our attention to the orientable case. 

For simplicity of notation, we sometimes follow the convention of not distinguishing 
between a map of a surface into a manifold M and the image of the map. When it is 
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necessary to distingish the domain and the image, we will denote the image by F and the 
domain by Z, so that F =f(Z). 

Definitions 1.1. A (possibly singular) surface F in a 3-manifold M satisfies the I- 
line-intersection property if its pre-image in the universal cover $? consists of a collection of 
embedded planes, any two of which either intersect transversely in a single line or are 
disjoint. F satisfies the k-plane property if in each set of k distinct planes in the pre-image of 
F in fi, there is at least one pair which do not intersect. 

Note 1.2. The assumption that the pre-images of f(Z) in the universal cover are planes 
implies that the homomorphism f,: n,(C) -, n,(M) is injective and that Z is not S* or P*. 
Least area surfaces need not satisfy the l-line intersection property, but if f: ZZ + M has this 
property then so does any least area map homotopic to fi See Lemma 2.4 for a proof. 

The main result of this paper will be proven in $5. 

THEOREM 5.2. Let M be a closed orientable irreducible 3-manifold containing an immer- 
sion f: C + M satisfying the 4-plane and l-line-intersection properties. Let M’ be a closed 
irreducible 3-manifold homotopy equivalent to M. Then M’ is homeomorphic to M. 

The idea behind our proof of Theorem 5.2 is as follows. Let cp : M + M’ be a homotopy 
equivalence. We show, using techniques from the theory of least area surfaces, that the map 
cpf: Z 4 M’ is homotopic to a map f’ which, like 1; satisfies the l-line-intersection and 
4-plane properties. WC further show that after homotopies off and f ‘. we can arrange that 
f(C) and f’(X) are homcomorphic. Finally WC show how to extend this homeomorphism to 
a homcomorphism of M with M’. 

Nore 1.3. Thcorcm 5.2 does not assume that M has a finite cover which is a Haken 
manifold. It gcncralizes the results of Waldhausen [30], as a Haken manifold trivially 
satisfies the above hypothesis. It also generalizes the results of Scott [27], as he showed that 
any closed orientable irreducible Seifert fiber space with infinite fundamental group con- 
tains an immersion of the torus satisfying the 4-plane and l-line-intersection properties. 
However, we do not give new proofs of their results. Instead we consider exactly the cases of 
Theorem 5.2 not included in [30] and [27]. Suppose that M is finitely covered by a Haken 
manifold MI. Thurston showed that either MI is hyperbolic or it has non-empty character- 
istic submanifold [20]. If MI is a Seifert fiber space then the results of [27] show that M is 
also a Seifert fiber space. If MI is neither hyperbolic nor a Seifert fiber space, the 
equivariance of the characteristic submanifold shows that M is Haken. As we will not 
consider the case where M is Haken or Seifert fibered, we see that the only remaining case of 
interest to us is when M, is hyperbolic. 

Example 1.4. Let M be an irreducible 3-manifold which is double covered by a Haken 
manifold. Then the projection of any embedded incompressible surface in the Haken cover 
gives a surface in M which satisfies the 3-plane property. For the sheets of the pre-image in 
the universal cover of M of such a surface split into two families, each family consisting of 
embedded mutually disjoint planes. Two out of any three planes in the universal cover must 
belong to the same family and thus not intersect. Similarly, the projection of an embedded 
incompressible surface in a 3-fold Haken cover yields a surface in M with the 4-plane 
property. If in addition the l-line-intersection property holds, then Theorem 5.2 implies that 
M is determined up to homeomorphism by its fundamental group. For an example where 
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the second assumption holds, consider the case where M is a hyperbolic manifold which is 
2-fold or 3-fold-covered by a Haken manifold containing an embedded totally geodesic 
surface. The projection of such a surface into M has the l-line-intersection property as 
totally geodesic planes in hyperbolic 3-space have this property. Thus these manifolds 
satisfy the hypothesis of Theorem 5.2. 

Example 1.5. Let M be a hyperbolic 3-manifold contaning an immersed totally geodesic 
surface whose self intersections are at angle a/2. Many such manifolds can be constructed by 
taking an all right polyhedron P in hyperbolic 3-space P, and letting M be the quotient of 
H’ by a finite index torsion free subgroup of the group generated by reflections in the faces 
of P. Andreev’s theorem guarantees the existence of many such polyhedra [Z]. The image of 
a plane containing a face of P yields an immersed surface satisfying the l-line-intersection 
property and having all its self intersections at angle x/2. Such a surface must also satisfy the 
4-plane property, as it is impossible to have four planes in H3 every pair of which meets at 
an angle n/2. In fact, the angle condition can be weakened to require that the dihedral angles 
be strictly greater than that of a Euclidean regular tetrahedron, as will be shown in 
Lemma 6.1. This angle T is approximately 0.39183~ z 70.5288”. 

Example 1.6. Recent work of Aitchison and Rubinstein [l] shows that many 3- 
manifolds admit non-positive curvature cubings. Such manifolds can easily be shown to 
contain surfaces satisfying the l-line-intersection and 4-plane properties. An interesting 
example is the Scifcrt-Wcbcr manifold, which is obtained by identifying opposite faces of 
the dodccahcdron with a twist of 3n/5. This hyperbolic manifold is not known to bc Haken, 
but satishcs the hypothesis of Thcorcm 5.2, and thus any irreducible 3-manifold with the 
same fundamental group is homcomorphic to it. In [I], other examples of manifolds that 
contain surfaces satisfying the I-line-intersection and 4-plane properties are constructed by 
branched covering and by surgery on hyperbolic links. 

For curves on a surface there are conditions analogous to the l-line-intersection and 
k-plane properties of surfaces in 3-manifolds. 

Definitions 1.7. If a collection of (possibly singular) curves on a surface is such that the 
pre-image in the universal cover consists of embedded lines, any pair intersecting trans- 
versely in at most one point, then the collection of curves satisfies the l-point intersection 
property. It satisfies the 34ine property if in each set of 3 distinct lines, there is at least one 
pair which do not intersect. 

Note 1.8. Note that each curve of such a collection must be homotopically essential. 
The l-point-intersection condition is automatically satisfied if the curves in the collection 
are shortest geodesics for some metric on the surface [S]. 

The methods of this paper can be used to show that the two conditions of Definition 1.7 
determine a unique configuration for the collection of curves. The precise result is the 
following. 

THEOREM 4.2. Let {cl} be a collection of essential closed curves in general position on an 
orientable surface X, and satisfying the l-point-intersection and 3-line properties. Let {c;} be 
another collection of the same number of essential closed curves on Z:, also in general position, 
satisfying the I-point-intersection and 3-line properties, and such chat c; is homocopic CO cl for 
each i. Then there is a permutation a of the indices and an isotopy of II carrying {c:} co {c,(,,}. 
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A similar result holds for a surface in a 3-manifold which satisfies the l-line-intersection 
and 3-plane properties. There is a unique possible configuration that it can assume in the 
3-manifold. The 4-plane property is weaker, and does not imply a unique configuration, but 
nonetheless it allows a well defined simplified configuration which is unique. 

This paper is organized as follows. In $2 we discuss some basic properties of least area 
surfaces. In 53 we prove that if f:C + M has the 4-plane property and the l-line- 
intersection property then f can be homotoped to a map g with the same properties, such 
that in addition the double curves of g satisfy the l-point intersection property. Thus g has 
the least possible number of triple points. In 54 we apply the results of $3 to show that if 
cp: M + M' is a homotopy equivalence and f’ = qf: C + M’ then we can homotop / and f 
so that f (IL) and f ‘(C) are homeomorphic. In $5 we prove our main result. In $6 we examine 
the relation between the 4-plane property and totally geodesic surfaces in hyperbolic 
manifolds. 

92. PRELIMINARIES AND LEAST AREA SURFACES 

Let M denote a 3-manifold and let Z denote a closed surface. Given an immersion 
f: YZ + Al. the sinydm-ity WC of J S( f ), is defined to be the set: S(f) = {x E C If(x) = f (y) for 
some ~EC, y # x}. If f is a general position immersion and C and M are oriented then S(f) 
consists of immersed curves intersecting transversely, which come in pairs that are identified 
to one another. Double points of these immersed curves on C correspond to triple points of 
the image of the immersion in M. If C and M are oriented, then there is an induced 
orientation on the curves of S(f). 

A map f: 1 + M is n1 -injecriw if it inducts an injection of fundamental groups. WC say 
that a smooth map f:IZ -* M of a surface into a Riemannian manifold is lecur aret if the 
restriction off to any compact subsurface of C minimizes area in its homotopy class, rel 
boundary. We say that f jimor.s throuyl~ a cowing if them exists a surface EZ and 
a covering p: I-+ Zz and a map f2: X2 -*M such that fip equals /: If f has the l- 
line-intcrscction property, is in general position, and can be homotopcd to factor through 
a covering p. then p must be ofdcgrce two and f2 is l-sided. For othcrwisc, the lift off to the 
covering M2 correspondng to f2,(n,(X2)) must have double curves. Now the lift off to the 
covering M, correspondng to f* (n,(E)) is embedded as the pre-image in the universal cover 
M is an embedded plane II. It follows that there is a second plane gfI such that IT and gII 
cross and both project to the lift off to M2. This implies that the stabilizers of II and gfI 
intersect in a closed surface group. But this is impossible since the l-line intersection 
property implies that the stabilizers of II and gII intersect in a cyclic group. 

Results of minimal surface theory show that any homotopy class of rci -injective maps of 
a compact surface (other than Sz and P*) into a compact Riemannian 3-manifold M with 
7t2( M) trivial admits a least area representative, and this least area map is immersed [6, 9, 
23, 25,263. If M covers a compact manifold M2 and if 7t2( M) is trivial then the same result 
holds. This can be seen by projecting into M2 and applying the existence result there. One 
can also work in the piccewise linear category. The definition of a least area surface in the 
PL catcgory is due to Jaco and Rubinstcin [IS]. They also prove appropriate existence 
results, and it makes no difference to the rest of this paper whether one thinks of smooth or 
PL surfaces. 

For the rest of this section we will consider the following situation. See Fig. 1. 
Let M be an orientable irreducible 3-manifold and let f:C + M be a general position 

immersion of a closed surface into M which is A, -injective and has image F. Let cp : M + M’ 

be a homotopy equivalence of M to an irreducible 3-manifold M’ and let f’ :C --r M’ be 
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a general position immersion of Z in M’ with image F’, such that f’ is homotopic to qf by 
a homotopy h. Let $ : fi + G ’ be a lift of cp to the universal covers fi and fi’ of M and M 
respectively. Let P and P’ be lifts of F and F ’ to the universal covers 16 and fi ’ such that P 
is homotopic to G(P) by a lift lof h to fi’. We will assume that the planes P and P’ are 
embedded (this is automatic if f and f’ are least area or if f and /’ have the l-line 
intersection property). Let stab(P) denote the subgroup of the group of covering trans- 
formations of fi leaving P invariant. Let { Pi} = {g,* P} be the set of planes forming the 
pre-image of F in fi-, where {g,} is a collection of elements of al(M) which runs over the 
cosets of stab( P) in n,(M), and let {Pi} = {cp,(g,)*P’} be the set of planes forming the 
pre-image of F’ in n? ‘. Note that / does not factor through a covering, since we have 
assumed that it is in general position, so that stab( P) is equal to I, n, (X). If /’ also does not 
factor though a covering, we have an equivariant bijection between the set of translates of 
P in fi and the set of translates of P’ in II?‘, where the equivariance is with respect to xl(M) 

acting on 16 and n,(M’) = cp+n,(M) acting on I!?‘. But this is not necessarily associated to 
an equivariant homeomorphism between the unions of the two sets of planes. 

We will assume that P L = P is stabilized by /,X,(X). Let M, be the cover of M with 
fundamental group corresponding to f+(nl (Z)) and M; the corresponding cover of M’, so 

that Ml and M’, are homotopy equivalent by the lift cpI of cp induced by 6. Let /, : Z -, Ml 

be a lift of / to ML, with image F1. The iI is a homotopy equivalence and fr (C) is covered 
by a single plane in G, which we take to be the plane P,. Note that as PI is assumed to be 
embedded, F, must also be embedded. Correspondingly we define f’, . We fix an orientation 
on F, calling one side of its normal bundle the positive side and the other side the negative 
side. We orient F’ compatibly via the homotopy of cp/ and f’. All the covers of F and F’ 

inherit orientations. Note that as cp is a proper map, i.e. the pre-image of a compact set is 
compact, it follows that any lift of cp is also proper. In particular, cpI : MI + M’, is proper 
and so maps the two ends of M, to the two ends of M’,. 

The immersion /’ is homotopic in M’ to qf by a homotopy moving every point along 
a path of less than some uniformly bounded length. Thus the homotopy I?of the plane P’ to 
G(P) moves any point a uniformly bounded distance. The same assertion is true for the 
homotopy between any covering of F’ and the image of the corresponding cover of F under 
the appropriate lift of cp. As noted at the start of this section, it also follows that iff has the 
l-line-intersection property then it cannot be homotoped to factor through a covering 
except possibly through a 2-fold covering of a l-sided surface. Note also that a choice of 
basepoints is implicit in the construction of the lifts cpr and @ of cp, as well as in the lifts of 
/and f’. 

A key result is the following which is implicit in [27] but not explicitly stated there. We 
say that gP C~OSSCS P if gP meets P but does not equal P. 

LEMMA 2.2. Let cp: M --, M’ be a homotopy equivalence of closed 3-mani/olds, let 
f: E + M and f’ : iY + M’ be least area maps such that f' is homotopic to cpf. Let P and P’ be 
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planes in A? and A?t chosen as above. Then, for any g in x1(M), the plane gP crosses P if and 

only if q+( g)P’ crosses P. 

Remarks. If f and f’ do not factor through coverings, so that the stabilizers of P and P’ 
correspond under cp, then we have an equivariant bijection between the translates of P in 
jt? and the translates of P’ in I?‘. Lemma 2.2 tells us that the intersection patterns of these 
two families of planes correspond under cp, where the intersection pattern of a family of 
planes is simply the information about which pairs of planes cross. 

Proof Given g in x1(M), we consider the planes P and gP in 6 and P’ and cp,( g)P’ in 
A?. The image in MI of P is the embedded surface F1 and the image in MI of gP is 
a possibly singular surface F2. The images of P’ and cp,( g)P’ in M; are F; and a possibljt 
singular surface F ;. Now FI separates MI into two non-compact pieces and the intersec- 
tion of F2 with the closure of each of these pieces must also be non-compact. For otherwise, 
an exchange can be made between two compact subsurfaces of a pair of least area surfaces, 
as shown in the proof of Theorem 5.1 of [4], yielding a contradiction. Thus F2 contains 
a path joining the two ends of MI. As cpl is proper, it follows that q1(F2) contains a path 
joining the two ends of M’,. As F; is homotopic to cp(F2) by a homotopy moving points 
a bounded distance, it follows that F; also contains such a path so that it must meet F ‘,. 
Hence q*( g)P’ must cross P’ as required. The converse follows by symmetry. 

LEMMA 2.3. Let f: X -* M be least area and suppose that PI and Pz are planes in the 
pre-image in II? of f(X) which cross. Then P, n P2 is a single line if and only if 

stab(P,) n stab( P2) is infinite cyclic. In this situation, P, and P2 must intersect transversely. 

Proof: If PI and P2 intcrscct in one line then the intersection of their stabilizers must be 
infinite cyclic, as it stabilizes this line. If stab(P,)n stab(P2) is infinite cyclic, then 
Lemma 6.5 of [4] shows that P, and P2 intersect transversely in a single line. This finishes 
the proof of Lemma 2.3. 

The next lemma states that we can homotop a surface to a least area surface while 
retaining the l-line-intersection and k-plane properties. 

LEMMA 2.5 Let /: Z + M be an immersion of a surface into a Riemannian 3-manifold 

M such that f satisfies the l-line-intersection and k-plane properties, with k 2 3, and does not 

[actor through a covering. Let f: Z + M be a least area surface in the homotopy class of 

f which also does not factor through a covering. Then f intersects itself transversely and 
satisfies the l-line-intersection and k-plane properties. If k = 3 then f is in general position. 

Proof: The pre-image in_ II? of f$2) consists of a collection of planes {P,} with 

P, correspondng to a plane P, above f(E). Since f is a least area map, the planes {P,) in 
G are least area and embedded [4], [S]. 

Suppose first that PI nFz # 4. and thus is a single line. Lemma 2.3 shows that their 
stabilizers intersect in a cyclic group, so that the same must be true of the stabilizers of 
PI and Pt. As Lemma 2.2 shows that P, and P2 must cross, we can apply Lemma 2.3 to 
deduce that they intersect transversely in exactly one line. 

Suppose now that P^, and i2 are disjoint. Then P, and P2 are disjoint or coincident by 
Lemma 2.2. It follows from the above that f has the k-plane property and the l-line- 
intersection property. 
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If f satisfies the 3-plane property, then in particular f has no triple points. The picture 
near a double point off in M is the same as the picture near a point of intersection of two 
embedded least area planes PI and P2 in the universal cover M. As this intersection is 
transverse, it follows that f is in general position. This concludes the proof of Lemma 2.4. 

Recall that we are considering a x1 -injective map p: Z -+ M, a homotopy equivalence 
9 : M + M’ and a map I’ homotopic to cpf: As a result of Lemmas 2.2 and 2.4, it will suffice 
to assume in the following lemmas that f and f’ are least area. Note that least area surfaces 
not satisfying the 3-plane property are not known to be triangulable, though Meeks and 
Yau conjecture that they are [21]. If M has an analytic metric, then a least area surface will 
be analytic [22], and hence triangulable by [18]. 

LEMMA 2.5. Let f: E + M and f’ : X + M’ be least area immersions such that f’ is 
homotopic to cpf: If f satisfies rhe I-line-intersection and k-plane properties then so does f ‘. 
Moreocer, $ PI and P2 are two planes in G which intersect in a line 2, then the corresponding 
planes Pi and P; in G’ also intersect in a single line A’, and $(A) and A’ each lie a bounded 
distance from rhe other. 

Proof Lemmas 2.2 and 2.4 shows that f’ satisfies the l-line-intersection and k-plane 
properties. Now consider two planes P, and P2 which intersect in a line 1. The first 
assertion of the lemma shows that P’, and Pi also intersect in a single line, which we call X. 
The circles of intersection F ; n F; and cp( FL n F2) are homotopic, and so their lifts to the 
universal cover are a bounded distance from one another, yielding the second assertion of 
Lemma 2.5. 

53. REDUCING TllE NUMBER OF TRIPLE POINTS 

In this section we assume that X is an orientablc closed surface and consider an 
immersion f: I+ M which satisfies the l-line-intersection property and the 4-plane prop- 
erty. We want to minimize the number of triple points of /: In [27], Scott showed how to do 
this in the case of a torus mapped into certain Seifert fibre spaces. We will extend these 
results to other surfaces. 

As in $2, the pre-image of f(X) in 6 consists of translates by nl(M) of a plane 
P stabilized by f, (~~(1)). We will consider the curves of intersection of P and its translates. 
Given a collection of embedded curves y on a surface P, a k-gon on P is a subdisk of 
P bounded by k embedded subarcs of y, with the interiors of the subarcs disjoint. We refer to 
a simple closed curve as a circle and a simple non-compact curve as a line. 

We prove the following. 

THEOREM 3.1. Ler M be a closed orientable irreducible 3-manifold and let E be a closed 
orienrable surface. Let f: 1 + M be an immersion in general position with the l-line-intersec- 
tion and 4-plane properties. Then f is homotopic to an immersion g also in general posirion and 
with the I-line-intersection and 4-plane properties such l/rat the double curces of g have the 
I-point-intersection property, i.e. g has the least possible numbe of triple points. 

Remark. The examples in Gulliver-Scott [7] show that it is possible that in some 
metrics, no least area map homotopic to f minimizes the number of triple points. 

Prooj: If the double curves off fail to have the l-point-intersection property, then there 
is a 2-gon in P between two double lines. We will show how to homotop f to reduce the 
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number of triple points by two. The homotopy will preserve the intersection pattern (in 
pairs) of the planes above f(X) but it may well destroy the l-line-intersection property of fi 
Thus the new map will still have the 4-plane property, but if two planes above j(C) meet 
then the corresponding planes for the new map may meet in more than one line. Their 
intersection can only consist of an odd number of lines, together with some circles. We will 
also show how to remove circle components of intersection. Finally, we will show how to 
restore the l-line intersection property. Many of our arguments are drawn from [20] and 
[27], but as the context is somewhat different we will give some of those arguments. First, 
we define the complexity of any general position immersion f: I; -, 1Li to be the pair (t. d) 
where t is the number of triple points on X and d is the number of null-homotopic double 
curves on I3. Now we consider a general position immersion J:C + M which has the 
4-plane property and is homotopic to a map with the l-line intersection property and the 
same intersection pattern. 

LEMMA 3.2. ff there is a disc or 2-gon in P, then there is an innermost disc or 2-gon in P, 
i.e. a disc or 2-gon in P whose interior does not meet any of the double curves in P. 

Prooj: This is essentially in [27], but we give the argument for completeness. Let 
y denote the double curves in P. Let D denote either a 2-disc in P bounded by a circle 
component of y or a 2-gon in P bounded by two arcs of y. We will show that if D is not 
innermost, then D contains a smaller such 2-disc. By rcpcating this argument, we can then 
obtain an innermost disc or innermost 2-gon as required. 

If the interior of D contains a circle component S of y, then S bounds a 2-disc in the 
interior of D yielding a smaller 2-disc. Otherwise there is a component S of y which crosses 
dD. If dD is a circle component of y, we Ict u be a sub-arc of S which is properly embedded in 
D. Then D contains a 2-gon bounded by u and a sub-arc of dD and we have again found 
a smaller disc. Otherwise D is a 2-gon bounded by sub-arcs 1 and p of y. The 4-plane 
property implies that u cannot meet both I and ~1. Thus D contains a smaller 2-gon bounded 
by u and by a sub-arc of 1 or p. This completes the proof of Lemma 3.2. 

LEMMA 3.3. If there is an innermost disc in P, there is a homotopy of f which reduces 
(t, d) and leaves the intersection pattern of P and its translates unchanged. 

Proof: Suppose that gP meets P in a circle C which bounds an innermost 2-disc D in P. 
Then C bounds a 2-disc D’ in gP and D u D’ forms an embedded 2-sphere in fi as D is 
innermost. Let B denote the 3-ball in 6 bounded by this sphere. We claim that D’ projects 
injectively into the quotient of gP by its stabilizer. The required homotopy off is then 
defined by homotoping D’ across Band past D. In order to prove the claim we need to show 
that if h stabilizes gP and hD’ meets D’ then h must be the trivial element of xl(M). AS aD 
equals L?D’ and has no triple points, dD’ and h(dD’) must coincide or be disjoint. Thus D’ 
and hD’ are disjoint or coincide or one is contained in the other. Either of the last two cases 
implies that h fixes a point of D and hence that h is the identity which completes the proof of 
Lemma 3.3. 

A key result is the following, which is based on ideas of Rubinstein [24]. 

LEMMA 3.4. lf D is an innermost 2-gon in P and g is an element of n,(M) such chat gD 
meets D, then g is trivial. 
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Proof Let 1 and p denote the edges of D and let x and y denote the vertices of D. Let 
I and m denote the double lines which contain L and p. Let PI denote the other plane 
containing I and let Pz denote the other plane containing m. 

Now suppose that g is a non-trivialklement of rrl (M) such that gD meets D. Then g must 
send one of the vertices of D to one of the vertices of D. As g is not trivial, it cannot fix 
a point and so gx equals y or gy equals x. Also, as g has infinite order, it cannot interchange 
x and y. We deduce that gD n D is a single point, and after relabeling we can assume that 
gx = y = gD n D. It follows that g must preserve the union of the three planes P, PI and Pz. 
We will consider the permutation of these planes included by g. 

If g preserves each of the planes P, PI and Pz, it must also preserve each of I amd m, as 
gx = y. As g has no fixed points, it must preserve the orientations of I and m. This implies 
that the restriction of g to P is orientation reversing which is a contradiction as C is 
orientable and f is in general position and so cannot factor through a covering. 

If g preserves one plane and interchanges the other two, it is again easy to derive 
a contradiction. Suppose that P’ and P” are intersecting planes interchanged by an element 
g of 7cl (M). The intersection P’ n P” consists of an odd number of lines together with some 
circles, and must be preserved by g. As g induces an involution on this collection of lines we 
see that g must preserve a line 1 of P’ n P”. The fact that g preserves 1 and interchanges P 
and P” implies that g acts on a neighborhood of I by a screw motion whose rotation part has 
order 4. But then g* acts reversing orientation on P’ and P” which again contradicts our 
assumption that C is orientable. 

Finally, if $1 cyclically pcrmutcs the three plants. we consider the induced action of ZJ on 
the quotient of .G by the cyclic group gcncrated by g’. In this quotient, the images of the 
three plants arc three embedded annuli A, At and A2 and D projects injectively into A, as 
g3 D cannot meet D since g3 fixes each of P, P,, P2. WC again USC g to denote the generator 
of the action of Z, and use D to denote the image of D in A. We are assuming that gD meets 
D and that g cyclically permutes the annuli A, A, and Al. Thus gD cannot equal D nor can 
gi. equal I. or g/i equal ,u. If g% equals ~1 then g* must fix each of x and y contradicting the fact 
that WC have a free action of Zj. Similarly we cannot have gp equal to A. If gD n D = {x, y}, 
then y must fix x and y again contradicting the freeness of our action. It follows that we 
must have gDn D = {x} or { y}. Without loss of generality we can assume that 
gD n D = {y} and that gx = y. Now we will argue as at the end of the proof of Lemma 6.6 
of [20] where consideration of Figs 6.7(a) and (b) leads to a contradiction. This completes 
the proof of Lemma 3.4. 

LEMMA 3.5. If there is an innermost 2-gon in P, then we can homotop f so as to reduce its 
complexity (t, d), while preserving the intersection pattern of P and its translates. 

Proof Move one edge of the 2-gon across the other. This move can be made equivariant 
by Lemma 3.4 and so corresponds to a homotopy of /: 

The previous lemmas imply that if we have a map /: 1 + M with the l-line intersection 
property and the 4-plane property then we can homotop f to a map f2, still with the 4-plane 
property, and such that there are no trivial double curves and no 2-gons on P. However, 
f2 may not have the I-line-intersection property. If P and P, are planes above f(E) which 
meet in one lint, then the corresponding planes above fi(X) may meet in any odd finite 
number of lines. To cope with this, we need to prove a result which was not needed in [20]. 
Repeated application of Lemma 3.6 will complete the proof of Theorem 3.1. 

LEMMA 3.6. Suppose that f1 is as above. Suppose that Pn PI consists of more than one 
line. Then we can homotop f2 to reduce the total number of double curves while preserving the 
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intersection pattern of P and its translates and preserving the absence of trivial double curves 
and 2-gons. 

Before starting on the proof of Lemma 3.6, we need some definitions. 
If P is a plane in M above f (I) and 1 and m are disjoint double curves in P with the same 

stabilizer, we say that 1 and m are parallel and the region between them in P is called a strip. 
If the union of n strips in planes above f(Z) forms the boundary of a region Yin A?, we say 
that Y is an n-gon prism region. Such a region is homeomorphic to the product of an n-gon 
with R where the strips correspond to the products of the edges with R and the boundary 
lines of the strips correspond to the products of the vertices with R. A prism region is 
innermost if it contains no other prism regions. A prism region Y is A, (M)-equivariant if g Y 
equals Y or is disjoint from Y, for all g in xi(M). 

LEMMA 3.7. Suppose that f; :Z + M has the 4-plane property and is homotopic to 

f :C + M which has the l-line-intersection property and the same intersection pattern. 
Suppose that no planes above f2(C) contain 2-gons or discs. 

(a) If P A P, consists of more than one line, then there is a 2-gon prism region Y between 
P and P, in fi. 

(b) If Y is a xl(M)-equivariant 2-gon prism region in M between planes P and P,, there is 
a homotopy of f2 which reduces the total number of double curves while preserving the 
intersection pattern and the absence of trivial double curves and 2-gons. 

Proof: (a) Let a denote a generator of the common stabilizer of P and PI, and let 
M, denote the quotient of M by this common stabilizer. The images of P and PI in M, are 
embedded annuli A and A1 meeting in at least two essential circles. It follows that there are 
compact annuli B and B, in A and A, such that B n RI = dl3 = dB1 and B u Bi bounds 
a solid torus region X in M, whose interior does not meet A or A,. Then a component Y of 
the pre-image of X in M is a 2-gon prism region between P and P’. 

(b) Suppose that Y is a n,(M)-equivariant 2-gon prism region in M between planes 
P and PI, Then we can define the required homotopy off; as follows. Choose a homotopy 
of A supported on a small neighborhood of B which homotops B across X and thus 
removes two circles of intersection of A and A,. This induces an a-equivariant homotopy of 
P in M, supported on a small neighborhood of g, a component of the pre-image of B. We 
extend to a n,(M)-equivariant homotopy of P and its translates which is the identity except 
on a small neighborhood of all translates off?. This can be done because of our assumption 
that Y is n,(M)-equivariant. 

Now we need to analyze the situation when we may have a non-equivariant 2-gon prism 
region. 

LEMMA 3.8. Let X be a n-gon prism region bounded by strips S,, . . . , S, contained in 
planes PI,. . . , P,. Let 1, denote the line of intersection of St with Si+ 1, 1 s i 5 n, where 
S II+1 is defined to equal S, and P, + I is defined to equal PI. If there are no 2-gons in any of the 
planes above f(Z) then either there are no triple points on the l,‘s, or there is a plane P which 
meetseachof PI,.... P,. If n equals 2 or 3, there are no triple points on the li’s. 

Proof Let P be a plane in M above f (Z) which meets some Ii and is not P, or PI+, . Then 
P n P, is a finite union of parallel lines. Let a denote a generator of the common stabilizer of 
these lines, and let M, denote the quotient of M by the cyclic group generated by a. Then the 
image of each of P and Pi in M, is an embedded annulus. We denote these annuli by A and 
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Ai respectively. Then A A At consists of the image of P A P,, so is a finite union of essential 
simple closed curves. The image of II in At must be a line joining the two ends of At as 
1, crosses one of the lines forming P n P, and intersects it in only one point. It follows that 
the image of 1, in At meets each circle of A n A,, so that li must meet each of the lines of 
intersection of P and Pt. As Ii- 1 lies in Pi and is parallel to II, we see also that each line of 
P n Pi meets II_ 1. By repeating this argument, we see that P meets each 1,. In the case when 
n = 3, this is impossible as P, PI, Pt, Pa would all meet each other violating the 4-plane 
property. In the case when n = 2, we see that P n S1 and P n S2 each consist of a finite 
number of line segments joining Ii to 12. This is because P n PI and P n P2 each consist of 
a finite number of lines and there are no 2-gons between these lines, I, and 12. Thus these 
segments must bound 2-gons in P, again contradicting our hypothesis. 

Remark. It follows from the above that if the planes above f(Z) contain. no 2-gons 
between double lines and X is an innermost n-gon prism region with no triple points on its 
edges, then X is actually the closure of a component of fi - N(f). For if a plane P meets X, 
then the above result shows that P meets none of the Iis. It follows that P meets dX in lines 
parallel to the 1,‘s and hence cuts X into two prism regions showing that X was not 
innermost. 

The above arguments show that if Y is a 2-gon prism region which contains no other 
such region then each plane which meets Y other than PI and P2 must cut Y into two 3-gon 
prism regions. Any pair of distinct such planes must be disjoint by the 4-plane property so 
that the planes which meet Y must cut it into two 3-gon prism regions Z and 2’ and some 
4-gon prism regions. Let n( Y) denote the number of strips across Y, so that if n( Y) is 
non-zero then there are n( Y) - 1 4-gon prism regions in Y. 

LEMMA 3.9. If a 2-gon prism region Y has n( Y) = 0, then Y is n,(M)-equivarianr. 

Proof Let Pi and Pz be the planes which bound Y with S, denoting the strip Ptn Y. 
Let Ii and l2 denote the two lines of Si n S1. If gY meets Y, we must have g/i or g12 equal to 
Ii or j2. Thus g preserves Pi u P 2. But g cannot interchange PI and P2 as shown in the 
proof of Lemma 3.4. Thus g preserves PI and P2 and hence preserves any line of PI n P2. In 
particular, gII = Ii and g12 = l2 and so gY = Y as required. 

LEMMA 3.10. Suppose that there is a 2-gon prism region Y which contains no other such 
region and that n( Y) is non-zero. Then there is a homotopy of _fz which 

(a) preserves the total number of double curves of f2 
(b) preserves the intersection pattern of P and its translates 
(c) preserves the absence of trivial double curves and 2-gons, and 
(d) produces a 2-gon prism region Y’ with n( Y’) < n( Y). 

If there is a non innermost 2-gon prism region, there is such a region Y which contains. 
no other 2-gon prism regions. By applying Lemma 3.10 repeatedly, we can eventually 
obtain an innermot 2-gon prism region and then reduce the total number of double curves 
by applying Lemmas 3.7 and 3.9. This then completes the proof of Lemma 3.6 and hence of 
Theorem 3.1. 

In order to prove Lemma 3.10, we will need the following result. 

LEMMA 3.11. Let Z be an innermost 3-gon prism region. Then for all g in 11, (M), if gZ n Z 
contains a strip then gZ = Z. 

TOP 31:3-E 
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Proof Assume that gZ # Z. If gZ n Z contains a strip, then g must preserve 
PI u P2 u PJ. As g cannot interchange intersecting planes, g must preserve each Pi or 
cyclically permute them. Thus g3 preserves each Pi and hence each double curve, so 
g3Z = Z. But then g2Z must have a strip in common with Z and gZ which is impossible, as 
Z and gZ lie on opposite sides of the plane Pi which contains their common strip. This 
completes the proof of Lemma 3.11. 

Proof of Lemma 3.10. Let PI and Pz be the planes which bound Y, and let Si denote the 
strip Pin Y, i = 1,2. Let Z and Z’ be the two 3-gon prism regions in Y and let 1 and 1’ 
denote the lines of S1 n S2 with 1 in Z and I’ in Z’. Let S3,. . . , S, denote the strips across 
Y where r = n( Y) + 2, and let Pi be the plane contaning Si. Note that it is possible that 
Pi and P, can coincide for some i and j 2 3. Let m and n denote S3 n Sz and S3 n S, 

respectively. Finally, denote the 4-gon prism region in Y between Si and Si+ 1 by U,. 

Case n( Y) = 1. Thus Y equals Z u Z’. We first show that at least one of Z and Z’ is 
equivariant. Suppose that gZ meets Z and does not equal Z. Then gZ n Z equals I, m or n. If 
both gZ and g- ‘Z meet Z in 1, we obtain a contradiction. For this would imply that gl 

equals 1, so that g preserves each of PI and P2 and each of their intersection lines and hence 
gZ = Z. Thus by replacing g by its inverse if necessary we can suppose that gZ meets Z in 
m or n. There is ‘no difference in the roles of PI and P2, so we will assume that gZ n Z = m. 

This means that gZ meets Z’ in a strip and that the boundary of gZ is formed of strips from 
the planes PI, P2 and P3. See Fig. 2. (Note that, in this and later figures, planes are 
represented by lines. and n-gon prism regions are represented by n-gons. Thus the true 
situation consists of the product of the figure with the real line R.) Thus g preserves the 
union of these three planes. As in the proof of Lemma 3.4 it follows that g cyclically 
permutes the three planes, that g3 is a power of a and hence that g’ prcscrves each of the 
lines of intersection of these three planes. In particular, g3Z = Z and g2Z must meet Z and 
gZ in an edge. 

Now we consider the permutation of the intersecton lines induced by g. We cannot have 
m = gm as this would imply that g preserves P2 u P3, contradicting the fact that g permutes 
the three planes cyclically. If m = gl, then g sends PI to P2 to P3. This implies that gm lies in 
P3 n P, and hence must lie as shown in Fig. 3. But, as g2Z contains gm, this implies that 
g2Z cannot meet Z, a contradiction. Thus m = gn, and g sends Pz to P, to P3. This means 
that gm lies in P2 n PI and so gm equals 1’. It follows that g preserves m u n u 1’ as this is the 
orbit of m under g, and hence gZ’ equals Z’. See Fig. 4. 

We conclude that if there exists g such that gZ meets Z but does not equal Z, then 
gZ’ = Z’ and the double lines on P3 adjacent to m and n lie on P, and P2 adjacent to 1‘. 

If there exists h such that hZ’ meets Z’ but does not equal Z’, then the same argument 
shows that the double lines on P3 adjacent to m and n lie on PI and P2 adjacent to 1. It 

Fig. 2. 
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Fig. 3. 

Fig. 5. 

Fig. 4. 

Fig. 6. 

follows that at least one of 2 and 2’ must be equivariant as claimed. We will suppose that 
Z is equivariant. Now we claim the stronger result that if gZ meets Y then gZ must equal Z. 

If gZ meets Y but is not equal to Z then gZ cannot meet S1 and S2 except in I’ as gZ 
cannot meet Z. Thus gZ must be as shown in Fig. 5. Lemma 3.11 shows that gZ’ cannot 
meet Z’ in a strip. As gZ’ meets gZ in a strip, we deduce that gZ’ must be as shown in Fig. 6. 
But this implies that g Y is bounded by PI and P2 so that g must preserve P, v P2 and hence 
preserve each of these planes and each of their double curves. This contradicts our 
hypothesis that gZ is not equal to Z and so proves the claim. 

Now we can complete the proof of Lemma 3.10 in the case n( Y) = 1. We isotop one of 
the strips forming the boundary of Z across Z and extend to an equivariant homotopy offi. 
Because no translate of Z meets Y the new map has an innermost 2-gon region Y’ in place 
of Y. Note that this homotopy of f2 will not alter the total number of double curves. 

Case n( Y) > 1. Suppose that there is g such that gZ meets Y and is not equal to Z. 
Then gZ equals Z’ or gZ does not lie inside Y. In the second case, we see that gZ cannot 
have a strip in common with any U, as the two regions U,+ and U,_ which meet U1 in a strip 
and do not lie in Y cannot be 3-gon prism regions. For if P, and Pi+ I are distinct then the 
4-plane property implies that they are disjoint so that U,, and U,_ could not be 3-gon 
prism regions. Lemma 3.11 shows that gZ cannot meet Z in a strip. We conclude that gZ 
must equal Z’ or gZ n Z equals 1 or gZ meets Z’ and is not contained in Y. 

Suppose that gZ n Z equals 1. Then g -‘Z must also meet Z and the above argument 
applies to show that g- ‘Z n Z equals I. Thus it follows that gl equals 1. As in the first case of 
this Lemma, this is a contradiction. 

If gZ meets Z’ in a strip, then Z u Z’ forms a 2-gon prism region Y’ with n( Y’) = 1, so 
that the result of Lemma 3.10 is true with the trivial homotopy of f2. 

IfgZ meets Z’ in I’, we obtain a contradiction as follows. We know that gU, meets gZ in 
a strip. If that strip is disjoint from Z’, then gY must be bounded by PI u P2. Thus g must 
preserve PI and Pz and so gZ equals Z, contradicting our hypothesis. Thus gU, must meet 
Z’ in a strip. It follows that gU, meets U,-l in a strip and, by induction, that gU, meets 

Ur-.+3 in a strip, for 4 5 s 5; r - I. See Fig. 7. Hence gZ’ would have to meet UJ in a strip, 
which is impossible as UJ+ and UJ_ cannot be 3-gon prism regions. 
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Fig. 7. 

We conclude that if gZ meets Y then gZ must equal Z or Z’. If the only translate of 
Z which meets Y is Z itself, then we can isotop Sj across Z and extend to an eqdivariant 
homotopy of f2 which will reduce n( Y) by one. Note that it is important that no other 
translate of Z meets Y as such a translate might yield an increase in n( Y) by one, cancelling 
out our reduction. If there are two translates of Z which meet Y, namely Z and Z’, we 
perform the same homotopy of f2 and this will reduce n( Y) by two. This completes the 
proof of Lemma 3.10 and hence of Theorem 3.1. 

64. SURFACES IN J-MANIFOLDS 

In this section we consider the image of a map f: I: -, M wth the l-line-intersection 
property. We show that the image is unique up to homeomorphism if / also satisfies the 
3-plane-property. If / satisfies the 4-plane property, its image need not be unique up to 
homeomorphism, but we show how to homotop f to have canonical image by using the 
main result of 53. 

Throughout this section, let M be an orientable irreducible 3-manifold and let f: Z + M 
be a general position immersion which is nl-injective of a closed orientable surface into 
M with image F. Let cp: M + M’ be a homotopy equivalence of M to an irreducible 
3-manifold M’ and let f ‘: X + M’ be a general position immersion of E in M’ with image F’, 
such that f’ is homotopic to qf by a homotopy h. In the following we will use the notation 
of $2 to label the various manifolds and their covers, as in Fig. 1. We say that two 
2-complexes are isomorphic if there is a homeomorphism from one to the other preservin: 
the cell structure. 

LEMMA 4.1. Suppose that f and f’ are least area maps. Suppose that f: I-+ M satisfies 
the l-line-intersection and 3-plane properties. Then the 2-complex formed by the union of the 
planes {P,} in h? is equivariantly isomorphic to the 2-complex formed by the union of the 
planes {Pi} in h7. 

ProoF Recall from Lemma 2.2 that f ‘ also satisfies the l-line-intersection and 3-plane 
properties. Note that as f and f’ are assumed to be in general position, they cannot factor 
through coverings. A least area map which is homotopic to a map which factors through 
a covering of an orientable surface must itself factor through such a cover. Thus if f is 
homotopic to a map which factors through a covering and is in general position, then it can 
only factor through a double cover of a non-orientable surface [4]. Also recall from the 
remarks immediately after Lemma 2.2 that there is an equivariant bijection between the 
planes in G and those in $I. 
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First we consider the case when f is not homotopic to a degree two cover of a l-sided 
surface. 

If Pi, P2 are two disjoint planes such that Pr lies on the positive side of PI, we will show 
that P‘z lies on the positive side of Pi in Ml. In the covering spaces Mr and M; the planes 
P2 and Pi project to surfaces F2 and F ;, disjoint from F1 and F; respectively. The lift cpi of 
9, which maps Ml to M; sends the positive and negative ends of Mi to the positive and 
negative ends of M; respectively, by our choice of orientations. Hence if P2 is a plane in 
M on the positive side of PI such that F1 is not compact then (p1(F2) has its ends on the 
positive side of F;. As rp, ( F2) is homotopic to F ; by a homotopy moving points a bounded 
distance, it follows that F ; has its ends on the positive side of F ;. As F; is disjoint from F;, 
we see that Pi is on the positive side of P’, as required. 

If P2 and Pi project to compact surfaces F2 and F ;, in M 1 and M; , then F2 and F 5 are 
disjoint parallel copies of F, and F; respectively. The surfaces F1 and F2 are disjoint 
because PI and P2 are disjoint. The surface F2 is embedded in Ml by Theorem 5.4 of [4], 
which implies that if a least area map is homotopic to a covering of a 2-sided embedded 
surface, then it is a covering of an embedded surface. Recalling that P2 = g2 PI, in this case 
g2 lies in the normalizer of stab(Pt) and stab(P;), and thus acts on Ml and M’, so as to 
carry F, to F2 and F; to F ;. Iterating this action carries FI to one of the two ends of 
M, and F; to one of the two ends of M’, unless g2 interchanges the two ends of MI or M;. 
The last case can not occur by our assumption that f is not homotopic to a degree two 
cover of a f-sided surface. The end in question is determined by a lift of the loop g2 to 
MI and M;, and thus if g2 F, lies on the positive side of FI then g,F ‘, lies on the positive 
side of F ‘, . It follows in both cases that if P2 lies on the positive side of PI then P; lies on the 
positive side of P ‘, . 

Now let P, and P2 be intersecting planes in h?. Lemmas 2.2 and 2.3 imply that P; and 
P; also intersect in a line. We consider all the planes P, which intersect PI. Note that the 
3-plane property implies that any two planes, each of which meets P,, are disjoint and 
hence that the lines of intersection of P, n { u P,} can not cross. Lemma 2.2 implies that the 
same is true for the planes { Pi). It follows that the pattern of lines of intersection on PI of 
PI I-I { u P,} is identical to that of P; n { u P;} on P;. 

An equivariant homeomorphism from the 2-complex formed by the union of the planes 
{P,} in 6 to the 2-complex formed by the union of the planes (Pi} in fi’ can now be 
constructed inductively. 

Next we consider the case when J is homotopic to a degree two cover of a l-sided map 
fz: C2 -+ M. The preceding proof needs elaboration, because the normalizer N(nI(C)) of 
xl(C) in xl(M) contains elements which interchange the ends of the covering Ml of 
M corresponding to ~~(2). When N@i(C)) is not equal to nr(C), there is no canonical 
equivariant bijection between the planes above f(X) in 16 and those above f’(X) in Ml, but 
given a plane P in 6 above f(E) the bijection is uniquely determined by a choice of 
a corresponding plane P’ in Ml. We need to specify how the choice of P’ is to be made. Note 
that if the quotient group N(II~ (C))/n1 (E) is 2 then there are infinitely many planes parallel 
to P in M, i.e. having the same stabilizer as P. There is correspondingly an infinite number 
of choices for P’. However, in this case no element of N(n,(C)) interchanges the ends of 
Mi so any choice will do as in the preceding argument. Standard results in 3-manifold 
theory show that thequotient group N(~t@))/rr~(C) is one of l,Z, Zlr or Zt * Z2 [I33 [28]. 
In the last case the quotient Wof 6 by N(n,(C)) is the union of two twisted l-bundles over 
closed surfaces, glued along X. This again presents the problem that in fi there are infinitely 
many parallel planes above C. We handle this by noting that the corresponding quotient W’ 
of M’ is homeomorphic to W by Waldhausen [30] as they are Haken manifolds. This 
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homeomorphism lifts to a N(n,(X))-equivariant homeomorphism of fi wth $‘, giving 
a bijection between the translates of P by N(n,(X)) and some of the planes in fi’ above 
f’(X). Let P’ correspond to P under this bijection, and choose corresponding orientations. If 
g lies in N(n, (I;)) and gP is on the positive side of P, then gP’ lies on the positive side of P’. 
Now the bijection between all translates of P and P’ yields an equivariant homeomorphism 
as in the first part of the proof. 

If N(JK~(~))/A~(X) is Zlr we need a slight modification of this argument as the quotients 
of G and h?’ by N(lrl (X)) are not known to be homeomorphic. Let P and gP denote the two 
planes in fi stabilized by xl(C). Note that g2P = P. There are two corresponding planes in 
fi’ and we need to choose which one corresponds to P. To do this consider the quotient 
M1 of fi by n,(E) and the corresponding quotient M’, of G’. Our homotopy equivalence of 
M with M’ determines a correspondence between the two ends of MI and the two ends of 
M’, . P and gP project to disjoint embedded surfaces F and gF in MI. Let e denote the end of 

Ml - gF which contains F, i.e. the end closer to F. We choose P’ so that the corresponding 
end of M’, - gF’ contains F’. We also choose the orientation on P’, which is not 
determined by the homotopy equivalence in this case, to ensure that gP is on the positive 
side of P if and only if gP’ is on the positive side of P’. This allows us to complete the proof of 
Lemma 4.1. 

THEOREM 4.2. Let {c,} be a collection of essential closed curves in general position on an 
orientable closed surface C, satisfying the l-line-intersection and 34ine properties. Let {c;} be 
another collection of the same number of essential closed curves on C, also in general position, 
satisfying the l-line-intersection and 3-line properties, and such that c; is homotopic to c, for 
each i. Then there is a permutation a of the indices and an isotopy of C carrying {c;} to {c,,,,}. 

Remark. The same result also holds in the non-orientable case. The proof needs much 
the same idea as the second part of the proof of Lemma 4.1. 

Prooj: Let C denote the union of cl,. . c, and C’ the union of c’,, . . . , cl and let 
N(C), N(C’) denote regular neighborhoods of C and C’. First consider the case when n = 1. 
We argue as in the proof of Lemma 4.1. Let f and f’ be homotopic immersions of S ’ into z. 
If f were homotopic to a map which factors through a covering of circles and f2 : S’ + X, 

then the covering would be of degree 2 and fz would be one-sided. As E is orientable, 
f cannot be homotopic to such a map. Thus the first part of the proof of Lemma 4.1 shows 
that there is a homeomorphism h of N(C) to N(C’) which induces the identity on the images 
of their fundamental groups in II~(E). This homeomorphism extends to a homeomorphism 
of Z which induces the identity on xl(C). For if a boundary curve S of N(C) is inessential in 
X the corresponding curve S’ in aN(C’) will also be inessential, so that h extends to the 
union of N(C) with the 2-disk bounded by S. After repeating, we can assume that all 
components of aN(C) are essential. This implies that dN(C) is homotopic to dN(C’) and 
hence isotopic to aN(C’), so the rest of the extension problem is clear. The resulting 
homeomorphism of C is homotopic to the identity and hence isotopic to the identity. This 
provides the required ambient isotopy of X. 

For n > 1, the proof that disjoint lines in the universal cover which correspond to covers 
of the curves in C and C’ lie on determined sides of one another may fail. But it fails only 
when two of these lines project to distinct but homotopic curves. In this case we may have to 
do some relabeling. If X is not the torus, a given line in the universal cover can only be 
parallel to finitely many other lines. Thus the required re-ordering of the labels is clear. If 
E is the torus, we will have infinitely many lines all parallel in the universal cover even in the 
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case n = 1. In this case we can argue as follows. As each ci is not homotopic to a proper 
power in rrr (Z), we see that each ci is a simple closed curve. The 3-line property implies that 
there are at most two isotopy classes of the c;s. Thus either the c,‘s are all disjoint or they 
divide Z into quadrilaterals. The same comments apply to the c; family, so that the required 
result is clear. 

THEOREM 4.3. Suppose that f and f’ are least area maps in general position and that 
f: I5 + M satisfies the l-line-intersection and 4-plane properties. Then f and f’ can be 
homotoped so rhat the 2-complex formed by the union of the planes ( Pi} in &? is equivariantly 
isomorphic to the 2-complex formed by the union of the planes {Pi} in h?‘. 

Proof As in the proof of Lemma 4.1, we consider the case when f is not homotopic to 
a degree two cover of a l-sided surface. We can extend to the general case by using the same 
arguments as in the second part of the proof of Lemma 4.1. 

Theorem 3.1 tells us that we can homotop f and f’ preserving the l-line-intersection 
and 4-plane properties so that the double curves have the l-point-intersection property. We 
claim that for a surface in general position in M satisfying all these conditions, the existence 
of a 3-gon prism region in $ is equivalent to the existence of three planes which meet 
pairwise and whose stabilizers have a common infinite cyclic subgroup. This is immediate 
from the definitions if I!? contains a 3-gon prism region. Conversely, suppose that II? con- 
tains planes PI, Ps and Ps such that P, meets P, in a line It, with a common stabilizer 
generated by a. Then each pair of these lines must be disjoint or meet in infinitely many 
points. As we are assuming that the double curves of f have the l-point-intersection 
property, these lines must be disjoint or coincide. As f is in general position they must be 
disjoint, so that there is a 3-gon prism region in fi bounded by PI, P2 and P3. Now it 
follows that the absence of 3-gon prism regions in G implies the absence of 3-gon prism 
regions in h7’. 

For clarity of presentation, we will assume temporarily that there are no 3-gon prism 
regions in G. This assumption can often be shown to hold in specific situations, such as 
those of Examples 1.5 and 1.6, and makes the completion of the proof much simpler. For we 
will see that this implies that the unions of the families of planes in fi and fi’ are 
equivariantly homeomorphic without further homotopies off and f’. After handling this 
case we will return to the case where there are 3-gon prism regions and show how to deal 
with the additional complications. 

We begin with a plane PI and consider a plane P2 which crosses it in a line ;1. The 
corresponding planes Pi and P; also cross in a line X. If any other planes cross 1 trans- 
versely, then the order in which they do so is the same as that with which the corres- 
ponding planes of { P;} cross I.‘, as any two planes crossing 1 are disjoint by the 4-plane 
property, and we saw in Lemma 4.1 that the order of disjoint planes is the same in G and 
h?‘. Thus we can construct a homeomorphism of a neighborhood of I. taking planes P, in 
G to the corresponding planes P; in G ‘. This can then be extended, line by line, to 
a neighborhood of the component of PI A { u PI} containing 1. 

Next suppose that P3 is a plane intersecting PI in a line p disjoint from 1. If P3 is disjoint 
from P2 then it lies either on the positive or negative side of Pz and the corresponding 
statement holds for P; and P; in M’. If PJ does meet P2 then it does so in a line v disjoint 
from P,. The planes P’, , P; and P; meet similarly in disjoint lines I’, p’, u’. Consider the 
quotient M2 of M by the stabilizer of Pz. Each of PI and P3 project to cylinders running 
from one end of Mz to the other. The intersection line p of P, and P3 projects to either 
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a circle or a line in M2, according to whether the stabilizers of the three planes have cyclic or 
trivial intersection. If p projects to a circle, then there is a 3-gon prism region in M, because 
P,, P2 and P3 intersect painvise and have stabilizers which intersect in an infinite cyclic 
group. This contradicts our assumption that there are no 3-gon prism regions. If the 
intersection line cc projects to a line in M1, then this line is contained in one end of M2. It 
does not lie within a finite distance of the projection of P2 to M2, and thus or does not lie 
within a finite distance of rl. By Lemma 2.5, p’ lies on the positive side of 1’, since 1’ lies 
within a finite distance of q(n). Thus we can extend the homeomorphism to the component 
of PI A { u P,} containing ~1. Continuing, we get a homeomorphism of PI to P; taking the 
intersections of planes Pi and PI in M to the corresponding intersections of planes P; and 
P; in M'. We can now extend to planes P1, P3, . . . obtaining an equivariant homeomor- 
phism of the two 2-complexes as desired. 

Finally we consider the situation where 3-gon prism regions may exist in fi. If a 3-gon 
prism region exists, we aim to collapse this region to a line. This move is rather different 
from our previous moves in that repetition of it may destroy the 4-plane property and 
l-line-intersection properties by causing two planes in n;i’ to intersect which were previously 
disjoint. This could occur if one of the edge lines of the prism region in A? has a curve of 
triple points on its boundary from a previous collapse, leadng to a curve of quadruple points 
when the prism region is collapsed. Two previously disjoint planes now meet non-trans- 
versely along this line. As this collapsing process is repeated, circles of k-tuple points may be 
created in M. 

Our collapsing process has to be defined carefully, as it is not clear that even one 
collapse can be made. For technical reasons, it seems simplest to collapse n-gon prism 
regions for all values of n. We restrict our attention to those prism regions whose edges 
contain no triple points. We call such a prism region a good prism region. Any plane which 
meets the interior of a good prism region divides it into two good prism regions. Note that 
under the equivariant bijection between the planes in fi and in A?‘, n-gon prism regions 
correspond and good n-gon prism regions correspond. This is by the same reasoning by 
which we showed that 3-gon prism regions in fi correspond to 3-gon prism regions in 6’. 

Recall that a prism region is innermost if it contains no other prism region. Let X be an 
innermost good prism region in fi. Then X is the closure of a component of h? minus the 
planes in G. Thus the image in M of X is the closure of a component of M -f(X), It will be 
called a compact prism region in M. As translates of X can only meet X in some union of 
strips and edges in dX, it follows that a regular neighborhood of a compact prism region in 
M is a Seifert fiber space in which the images of the double lines are fibers. If we let N denote 
a regular neighborhood of the union of all the compact prism regions in M, it follows that 
N is a Seifert fiber space, not necessarily connected. Note that the pre-image in G of N is 
a regular neighborhood of the union of all the good prism regions, not just the good 
innermost regions. 

As M is not a Seifert fiber space, N cannot equal M. As M is not Haken, each component 
of dN is compressible in M. Each component of 8N carries a loop essential in M, namely 
a fiber of the Seifert fibration of N. Thus no component of 8N can lie in a ball. Hence each 
component of dN bounds a solid torus in M. Let N,, denote a component of N and let T be 
a component of dNo. Let Vbe the solid torus in M bounded by T. We will show that Vmust 
equal N,,. Note that it is conceivable that No is contained in and not equal to V, or that 
Vn No = T, Let V, denote the union of all components of M -/(C) which meet Vand let 
U, denote a component of the pre-image in $ of V1. As the stabilizer of U1 is infinite cyclic 
and the quotient by this stabilizer is compact, it follows that U1 is a prism region. Now 
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Ui must be a good prism region as it meets the good prism regions in the pre-image of NO. 
This implies that Y lies in N and hence in No. We conclude that each component of N is 
a solid torus. 

We will collapse each component of N to a circle by a homotopy of J chosen so as to 
induce an isotopy of all of the Pi’s in G. This can be done as the Seifert fibration on N is 
such that f(Z) meets N in a union of fibers. This isotopy will have the effect of simultan- 
eously collapsing every good prism region in fi to a line. 

In order to keep track of the collapsing that occurs, we will define an equivalence 
relation on the double lines I,, formed by transversely intersecting planes P, and P,. If the 
planes PI, Pl, . . . , P, together bound a good n-gon prism region, then we define the 
intersection lines of Pi and PI+ 1 to be equivalent. We consider the family of equivalence 
classes generated by this relation. We consider a similarly defined equivalence class of lines 
I;, in M’. The lines in an equivalence class are precisely the lines which collapse to 
a common line in fi when all good prism regions are collapsed. It follows that an 
equivalence class of lines in fi corresponds to one in @‘. 

Before we can define the required equivariant homeomorphism, we need to prove some 
technical facts about the results of our collapse. These are contained in the following results. 

LEMMA 4.4. Let PI and P2 be two planes in h?. 

(a) If PI and P2 were disjoint before the collapse, then after the collapse their intersection 
consists of disjoint lines of non-transverse intersection. 

(b) If P, and P2 crossed before the collapse, then after the collapse they still meet in only 
one line and the intersection is still transverse. 

Prooj (a) This is clear as the collapse of each component of N produces at most one line 
of intersection between PI and P2 and this intersection is non-transverse. 

(b) Suppose that after the collapse PI and P2 meet transversely in a line 1 and 
non-transversely in a line 1. These lines must be disjoint. Then before the collapse, PI and 
P2 met transversely in 1 and both also met some component U of the union of all good prism 
regions in fi. Now PI n U and P2 n U must each consist of a finite union of strips in U. In 
particular, some element a which stabilizes U must also stabilize both PI and P2. As the 
intersection of their stabilizers is infinite cyclic by Lemma 2.3, it follows that a stabilizes 1. 
But this implies that there is a prism region W in 6 with 1 as an edge which meets U. As 
W meets U, it is a good prism region. We conclude that 1 lies in U and that 1 equals 1, 
a contradiction. This completes the proof of Lemma 4.4. 

Next we consider a line i. in fi which is the intersection of planes PI,. . . , P,. We know 
that the corresponding planes P;, . . . , P:, in fi’ intersect in a line 1’ corresponding to 1. We 
need to know that these families of planes are arranged in the same way around this 
common line. Let N be a regular neighborhood of 1 in G which is invariant under the 
stabilizer of 1.. Choose an orientation of 1 and let PI+ and PI_ denote the components of 
P, - I., with notation chosen according to some orientation convention. A choice of 
orientation for A is equivalent to a choice of a generator for stab(l). Thus we can make the 
corresponding choice of orientation of A’ and choose P;+ and Pi_ according to the same 
orientation convention as before. This means that when we homotop @(P,) to P; by our 
homotopy which moves points a bounded distance, we can arrange to homotop $(J.) to %‘, 
@(Pi+) to Pi+ and @(Pi_) to Pi_. The precise result we need can be stated as follows. 



512 Joel Hass and Peter Scott 

LEMMA 4.5. There is a homeomorphism of N wth N’ sending Pi n N to Pi n N’, 1 5 i I n, 
which is equitlariant with respect to rhe actions of the stabilizers of I and A’, sends Pi+ to 
Pi+ and sends Pi- to.Pi_, 1 5 i I n. 

Prooj We consider first any two planes PI and PZ. Lemma 4.4, shows that PI crosses 
P2 at I if and only if P; crosses P; at i.‘, and orientations are preserved, so we can construct 
a homeomorphism from N to N’ carrying P i+ to Pi+ and Pi- to Pi_, i = 1,2. If PI and 
P2 don’t cross, then we have shown in Lemma 4.4 that PI lies on the positive side of PZ if 
and only if P; lies on the positive side of P;. 

Since the planes meeting 1 resulted from the collapse of prism regions, given any pair of 
planes Q, Q’ meeting i. there is a sequence of planes Q = QI, Q2,. . . , Q’ = Qk such that 
Qi crosses Qi+ 1 for 1 < i < k. AS a result we can order the planes PI, P2, . . . , P, SO that 
each Pj crosses at least one of the planes PI, P1,. . . , Pi- 1 for 1 < i 5 n. 

We proceed by induction. Consider the case of adding an additional plane Pk to the 
planes P,, . . . , Pk_ I. We assume that there is a homeomorphism of N to N’ sending Pi n N 
toP;nN’fori=l,... , k - 1. We will show that there is a homeomorphism of N to N’ 
which in addition sends Pk to Pi. The planes P,, . . . , Pr_ 1 split N into 2k - 2 sectors 
which we label S,.. . . , S2k_2r and by induction there are sectors S;, . . . , S2k-2 in N’ 
corresponding by the homeomorphism of N to N’. To carry out the induction step it suffices 
to show that if a half-plane Pr+ is contained in a sector S,, the half-plane Pi + must lie in S;. 
Note by the k = 2 case that P;+ lies on the positive side of a plane Pi if and only if Pt+ lies 
on the positive side of P,. Suppose that Pi+ lies in a distinct sector S;. Then we can form 

a plane P by joining the two possible placements of the image of P,, in N’. P lies in S; u S; 
and does not cross any of P’, , . . . , Pi _ , , since each of its two halves lie on the same side of 
each of P;,. . . , Pk_ I. It follows that there is a plane Pi, 1 < j < k which does not cross 
p;.. . . , Pj_, , a contradiction. This establishes Lemma 4.5. 

WC now continue the proof of Theorem 4.3. We proceed to define an equivariant 
isomorphism of the 2-complex formed by the union of the planes {Pi} in fi with the 
2-complex formed by the union of the planes { Pi} in h?‘. We begin again with a plane 
PI and consider a plane P2 which meets it in a line ,l = i12. Lemma 4.5 shows that there is 
a homeomorphism of a neighborhood of 1 to a neighborhood of ,l’ which carries the planes 
P, meeting ,! to the planes Pi meeting X. If 1 was not obtained by collapsing, then only 
PZ crosses P, along 1 and there may be other components of PI n { u P,} crossing 1. As 
before, the order of these lines corresponds in fi and fi’. If d was obtained by collapsing 
then there are three planes mutually crossing along 1 so that there are no other components 
of PI A { u P,} crossing 2 by the four plane property. In either case this homeomorphism 
can then be extended, line by line, to a neighborhood of the component of PI n { u Pi} 
containing %. 

Suppose that p is a line of PI n { u P,) disjoint from the component of PI n { u Pi} 
containing L. There is at least one plane P3 crossing PI transversely at p. We will show that 
p lies on the same side of J. as p’does of 2. Note that P3 meets PI along exactly one line. We 
consider two possibilities as to how the three planes meet. 

Case I. If PJ does not cross P2 transversely then it lies either on the positive or negative 
side of PZ. and the corresponding statement holds for P; and P; in M’, so that /J lies on the 
same side of i. as p’ of i.‘. 

Case 2. If P, does cross P 2 transversely, then it crosses PZ in a line Y distinct from 1 and 
11. The planes P’, , pi and P; meet similarly in distinct lines J.‘, p’, u’. Consider the quotient 
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Mt of M by the stabilizer of P2. By Lemma 2.3 each of PI and P, project to cylinders 
running from one end of M2 to the other. The intersection line p of PI and PS projects to 
either a circle or a line in M2, according to whether the stabilizers of the three planes have 
cyclic or trivial intersection. If ~1 projects to a circle, then PI, P2 and Pa intersect trans- 
versely pairwise and have stabilizers which intersect in an infinite cyclic group. Since we 
have collapsed all 3-gon prism regions, the three lines of intersection of these planes in 
fi are already coincident, contradicting the assumption that I and p ae disjoint. So the 
intersection line p projects to a line in M2. This line is contained in one end of M2. so it does 
not lie within a finite distance of the projection of P2 to M2. Thus p does not lie within 
a finite distance of 1. It follows from Lemma 2.5 that $ lies on the positive side of X if and 
only if p lies on the positive side of A. 

Thus the side of J on which p lies in determined, and we can extend the homeomorphism 
to the component of PI n { u Pi} containing ~1. Continuing, we get a homeomorphism of 
PI to P; taking the intersections of planes Pi and PI in M to the corresponding intersections 
of planes Pi and P; in M’. We can now extend to planes P2, Pa,. . . obtaining an 
isomorphism of the two 2-complexes. Moreover, the isomorphism thus obtained extends to 
a regular neighborhood of these 2-complexes in fi and Ml. This completes the proof of 
Theorem 4.3. 

Remark. Instead of collapsing the solid torus components of N to circles, we could add 
N to a regular neighborhood of/(Z). Essentially the same arguments will then produce 
a homeomorphism from this union to the corresponding union in M’. 

$5. HOMEOMORPlIISMS OF NON-HAKEN IMANIFOLDS 

In $3 and $4, we assumed that all our maps of surfaces were in general position. A least 
area immersion f need not be in general position, see [4]. It can be perturbed to a general 
position immersion /‘, but f’ may not be least area. However, we can choose f’ so as to 
have the same key combinatorial properties as /: These properties can be summarized as 
follows. Let PI and P2 be planes in M in the pre-image of f(X) which cross and let G denote 
the intersection of the stabilizers of PI and P2. If S, and Sz denote the images of PI and 
P2 in MC, the quotient of M by G, then there are no compact product regions in 
Mo between S, and S2. As f has the l-line-intersection property, all the intersections of 
f are transverse. Thus a small perturbation /’ of f must have the same combinatorial 
properties as 1: Note that /’ need not have the same number of triple points as 1: Now these 
combinatorial properties of a least area surface are all that is needed to prove the results of 
Sections 3 and 4. It follows that the results in those sections can be applied to a map /’ 
which is a small perturbation of a least area map with the l-line-intersection property. 

The following is proved in Lemma 1.4 of [ll]. 

LEMMA 5.1. Let M be a non-Haken irreducible orienrable 3-manifold and let f: E + M be 
a least area surface immersed in M. Let N(F) be a regular neighborhood of f(F). Then the 
closures of the components of M - N(F) are handlebodies whose fundamental groups inject 
into n, (M). 

The proof of Lemma 1.4 in [ 11) does not require that f be in general position, nor that 
f be least area. It goes through as long as the planes in the universal cover of M have no 
closed curves of intersection. In particular, it applies to the 2-complex resulting from 
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collapsing of prism regions which may have lines of k-tuple points and lines of non- 
transverse intersection of planes. 

We now restate and prove the main theorem. 

THEOREM 5.2. Let M be a closed orientable irreducible 3-manifold containing an immer- 
sed surface F satisfying the 4-plane and l-line-intersection properties. Let M’ be a closed 
irreducible 3-mantfold homotopy equivalent to M. Then M’ is homeomorphic to M. 

Proof: By passing to a double cover of F if necessary, we can assume that F is orientable. 
We fix a metric on M and take f: F + M to be a least area surface in its homotopy class. 

f still satisfies the l-line-intersection and 4-plane properties by Lemma 2.4. We then perturb 
f so that it lies in general position. By the dicussion at the start of this section, we can 
continue to assume that f has the key combinatorial properties of a least area surface which 
are used in Sections 3 and 4. 

We first modify f to put it in a canonical position. We eliminate all 2-gons between 
double curves as in Theorem 3.1 and then collapse all good prism regions as in Theorem 4.3. 

Now Theorem 4.3 yields a homeomorphism from a regular neighborhood N off(C) to 
a regular neighborhood N’ off’(X). We need to extend this homeomorphism to a homeo- 
morphism from M to M’. Lemma 5.1 shows that M and M’ are obtained from the regular 
neighborhoods N and N’ by gluing in handlebodies. We need to specify how the handle- 
bodies are glued in. This is determined by specifying which curves of a component S of dN 
are homotopically trivial in the handlebody attached to it. We determine if a curve a is 
trivial by attempting to lift it to the cover 13 of N which is the lift of N to A?. If a lifts to 
iii’ then the curve is trivial in the handlebody, and if it does not lift, it is non-trivial. 
Theorem 4.3 shows that N and N’ are homeomorphic to N’ and fi’ respectively, so that the 
same set of curves lifts in each case. Thus we see that M and M’ are homeomorphic. 

56. HYPERBOLIC MANIFOLDS 

In this section we examine the relation between the 4-plane property and totally 
geodesic surfaces in hyperbolic manifolds. 

LEMMA 6.1. If four hyperbolic planes in hyperbolic 3-space or four Euclidean planes in 
Euclidean 3-space all intersect pairwise, then one of their dihedral angles is smaller than or 
equal to T, the dihedral angle of a regular Euclidean tetrahedron. 

Remark. T z 0.39183~ z 70.5288”. 

Proof First note that if three planes in Euclidean or hyperbolic space intersect pairwise 
but have no common point of intersection, then there exists a mutually perpendicular plane 
which intersects them in a triangle. This triangle has angles equal to the corresponding 
dihedral angles, thus one is no greater than n/3, which is less than T, and we are done. Thus 
we can assume that any three of the four planes meet in a common point. It follows that they 
bound a tetrahedral region. In hyperbolic space we can scale down the tetrahedron, 
increasing all dihedral angles. In the limit the 4 planes intersect in a single point, reducing us 
to the Euclidean case. 

We claim that if a Euclidean tetrahedron Thas all dihedral angles 2 r, then Tis regular. 
In particular, any Euclidean tetrahedron has at least one dihedral angle which is 5 T. 
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Although this result is probably known, we have not found an explicit statement in the 
literature, so a proof is presented. 

We represent the situation at a vertex u of T by a geodesic triangle on the unit sphere 
with angles equal to the dihedral angles of Tat u. The edge lengths of this triangle are the 
face angles at u. Hence an equilateral spherical triangle with all angles equal to r has edge 
lengths equal to x/3. The following fact from spherical geometry will be needed. 

LEMMA 6.2. Let A be a triangle on the sphere of radius one with all angles 2 T. Then 
either all the edge lengths of A are 2 x/3, or two of the edge lengths are 2 n/2. 

Remark. The case of two edge lengths > 42 and one < n/3 can occur. 

Proof Let ABC be an equilateral triangle on the sphere of radius one with all angles 
equal to T, and with A at the North pole. We let A’, B’ and C’ denote the vertices of the given 
triangle A and we assume that A’ equals A, that C’ lies on AC or its geodesic extension and 
that the angle B’A’C’ contains BAC. We will assume that at most one edge of A has length 
2 x/2, or the lemma is already proved. 

Case 1. At least two edges of A have length < x/3. By relabelling vertices, we can 
assume that A’C’ and A’B’ are < n/3. See Fig. 8. We claim that one of the angles A’B’C’, 
A’C’B is < t. For if AB = AC’ < 743 and B’A’C’ 2 T, then A’B’C’ and A’C’B’ are equal and 
< T. Now moving B’ towards A reduces the angle A’C’B’ and moving C’ towards A reduces 

the angle A’B’C’. Thus at least one of the angles A’B’C’, A’C’B’ is c T, as claimed. 

Case 2. Only one edge of A has length -z 43. Relabel A so that AC’ < x/3 and 
AL? c n/2. Choose B” on AB’ so that AB” = n/3. See Fig. 9. Then angle A’B’C’ c angle 
AE”C’ as we are assuming that AB’ < x/2. Now angle AB”C’ < angle AB”C = angle 
ACB” < angle ACB = T. Thus we have a contradiction to our hypothesis that all angles of 
A are 2 T. 

This completes the proof of Lemma 6.2. 
Let T be a Euclidean tetrahedron with all dihedral angles 2 T. Lemma 6.2 shows that 

for the three face angles at a vertex of Teither all three angles are 2 x/3, or two of them are 
2 n/2. Consideration of the possible cases shows that all the face angles must equal n/3, so 

that T is regular, as claimed. 

Fig. 8. Fig. 9. 
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COROLLARY 6.5. Let M be a hyperbolic 3-mangold containing an immersed totally 
geodesic surface F whose seljlintersections at each point form an angle larger than r. lf M’ is 
a closed irreducible 3-manifold homotopy equivalent to M, then M’ is homeomorphic to M. 

Proof It suffices to check that the Cplane and l-line-intersection conditions hold for 
F in order to apply Theorem 5.2. The l-line-intersection condition is clear, and the Cplane 
condition follows from Lemma 6.1. 

QUESTION 6.6. Does every non-Haken irreducible 3-manifold with infinite fundamental 
group contain a surface satisfying the l-line-intersection and 4-plane properties? In particular, 
do hyperbolic 3-manijolds contain such surfaces? 

Acknowledgements-The authors would like to thank the Mathematical Sciences Research Institute, Berkeley and 
the Hebrew University of Jerusalem for their hospitality during the course of this work. 

REFERENCES 

1. I. R. AITCHISON and J. H. RUBINSTEIN: An introduction to polyhedral metrics of non-positive curvature on 
3-manifolds, preprint. 

2. E. M. ANDREEV: On convex polyhedra in Lobacevskii spaces, Morh. LrSSR Sbornik 10 (1970). 413-446 
(English translation), 

3. H. BOEHME: Fast gcnugend gross irreduzible 3-dimensionale Mannigfaltigkeiten, fnoent. Math. 17 (1972). 
303-316. 

4. M. FREEDMAN, J. HASS and P. SCOTT: Least area incompressible surfaces in 3-manifolds. Invent. Much. 71 
(1983). 609-642. 

5. M. FREEDMAN, J. HASS and P. SCOTT: Closed geodesics on surfaces. Bull. London Marh SOC. 14 (1982). 
385-391. 

6. R. D. GULLIVER: Regularity of minimizing surfaces of precribed mean curvature, Ann. Math. 97 (1973). 
275-305. 

7. R. D. GULLIVER and P. Scot-r: Least area surfaces can have excess triple points, Topology 26 (1987). 345-359. 
8. J. HASS: Complctc area minimizing surfaces which are not totally geodesic, Pa@ J. Muth. 111 (1984). 35-38. 

9. J. HASS and P. SCOTT: The existence of minimal surfaces in 3-manifolds. Trans. Amer. Murh. Sot. 310. (1988), 
87-l 14. 

10. J. HASS, J. H. RUBINSTEIN and P. Scorr: Covering spaces of 3-manifolds, Bulletin of the A.M.S. 16 (1987). 
117-119. 

11. J. HASS. J. H. RUINSTEIN and P. Scorr: Compactifying coverings of closed 3-manifolds, J. Bifl Geom. 30 
(1989). 817-832. 

12. W. HEIL: On P*-irreducible 3-manifolds. Bull. Amer. Math. Sot. 75 (1973). 772-775. 
13. J. HEMPEL: 3-manifolds, Ann. Marh. Stud. No. 86, Princeton University Press, Princeton, N.J. 
14. W. JACO: Lectures on 3-dimensional topology, CEMS Lecture Notes 43, American Mathematical Society, 

Providence, (1980). 
IS. W. JACO and J. H. RUBINSTEIN: PL minimal surfaces in 3-manifolds, ./. Difl Geom. 27 (1988). 493-524. 

16. W. JACO and P. B. SHALEN: Seifert fibered spaces in 3-manifolds, Mem. Amer. Marh. Sot 220. (1980). 
17. K. JOHANNSON: Homotopy equivalences of 3-manifolds with boundary, Springer Lecture Notes # 761. 1979. 
18. S. LOJASIEWICZ: Triangulation of semi analytic sets, Ann. Scuola Norm. Sup. di Pisa 18 (1964). 449-474. 
19. G. D. MOSTOW: Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. 

I.H.E.S. 34 (1968). 53- 104. 
20. W. H. MEEKS III and P. Scorr: Finite group actions on 3-manifolds. Invent. Math. 86 (1986). 287-346. 
21. W. H. MEEKS III and S. T. YAU: Topology of three dimensional manifolds and the embedding theorems in 

minimal surface theory, Ann. Math. I12 (1980). 441-484. 
22. C. B. MORREY: Multiple integrals in rhe calculus o/ uoriorions, Springer-Vcrlag, Berlin (1966). 
23. R. OSSERMAN: A proof of the regularity everywhere of the classical solution to Plateau’s problem, Ann. Marh. 

91 (1970). 550-569. 
24. J. H. RUBINSTEIN: Free actions of some finite groups on 8’. hfalh. Ann. 240 (1979). 165-175. 
25. J. SACKS and K. UIILENBECK: The cxistcnce of minimal immersions of2-spheres, Ann. Moth. 113(1981), l-24. 
26. R. SCHOEN and S. T. YAU: Existence of incompressible minimal surfaces and the topology of 3-dimensional 

manifolds with non-negative scalar curvature. Ann. hforh. 110 (1979). 127-142. 



HOMOTOPY EQUIVALENCE AND HOMEOMORPHISM OF 3-MANIFOLDS 517 

27. P. Scorr: There are no fake Seifert fiber spaces, Ann. Math. 117 (1983). 35-70. 

28. P. Scorr: Normal subgroups in 3-manifold groups, J. London Moth. Sot. 13 (1976). 5-12. 

29. W. THURSTON: The geometry and topology o/3-mani/olds, Princeton University lecture notes. 

30. F. WALDHALJSEN: On irreducible 3-manifolds which are sufficiently large. Ann. Moth. 87 (1968). 56-88. 

Depatment of Mathematics 
University of California, 
Davis, CA 95616 

U.S.A. 

Department of Mathematics 

Unicersity of Michigan 
Ann Arbor, MI 48109 

U.S.A. 


