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We describe a method that serves to simultaneously determine the topological configura-
tion of the intersection curve of two parametric surfaces and generate compatible decomposi-
tions of their parameter domains, that are amenable to the application of existing perturbation
schemes ensuring exact topological consistency of the trimmed surface representations. To
illustrate this method, we begin with the simpler problem of topology resolution for a pla-
nar algebraic curve F(x, y) = 0 in a given domain, and then extend concepts developed in
this context to address the intersection of two tensor-product parametric surfaces p(s, t) and
q(u, v) defined on (s, t) ∈ [0, 1]2 and (u, v) ∈ [0, 1]2. The algorithms assume the ability
to compute, to any specified precision, the real solutions of systems of polynomial equations
in at most four variables within rectangular domains, and proofs for the correctness of the
algorithms under this assumption are given.

Keywords: curve topology, ambient isotopy, tensor-product surfaces, surface intersections,
trimmed surfaces, surface perturbations, topological consistency, domain decomposition

Mathematics subject classification (2000): 65D17

1. Introduction

The problem of guaranteeing exact agreement of two trimmed surface patches
along their common edge, defined by the intersection curve of the original (untrimmed)
patches, is of critical importance in computer-aided design and manufacturing [10]. Al-
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though the intersections of rational surfaces do not, in general, admit exact rational
parameterizations, it is nevertheless possible to impose small perturbations on the orig-
inal surfaces in such a manner that certain rational approximations of the intersection
curve are exact for these perturbed surfaces. Two such perturbation schemes for achiev-
ing exact “topological consistency” of trimmed surface representations were described
in [24] and [12]. In the former, a method is proposed by which the intersection is ap-
proximated in the parameter domains of the two surfaces, and surface perturbations are
determined so as to ensure an exact match of the images in R

3 of these parameter-
domain approximations. In the latter scheme, the intersection is directly approximated
as a parametric curve in R

3, and the surface trimming scheme employs triangular patches
incorporating this curve as one edge. In both schemes, provisions are made to ensure an
appropriate degree of continuity of the trimmed patches with untrimmed patches of the
original surface, along their common boundaries.

The topologically-consistent trimmed surface algorithms proposed in [24] and [12]
consider pairs of rectangular patches that intersect along a single diagonal arc. In order to
accommodate more general surface intersections, these algorithms require a pre-process
step in which the intersection curve of the original surfaces is dissected into “simple”
monotone segments. Also, the parameter domains of the two surfaces must be subdi-
vided so that each pair of corresponding subpatches intersect in a specified simple man-
ner. The goal of this paper is to give a detailed treatment of the pre-processing phase, in
which the topology of the intersection curve is resolved through a domain decomposi-
tion that facilitates subsequent application of the surface perturbation scheme to achieve
topological consistency.

Our focus in this paper is on methods that give topological descriptions of in-
tersection curves, and dissect them into a collection of “elementary” smooth segments
amenable to accurate polynomial or rational approximation. By the methods described in
[24] and [12], we may then impose perturbations on the surfaces in the vicinity of each
intersection segment, to ensure “water-tight” representations for the trimmed surfaces
they define. We seek methods that are mathematically precise and provably correct. The
archetypal context for our algorithms is the intersection of two tensor-product polyno-
mial Bézier patches, but the methods can be readily adapted to accommodate triangular
patches, B-spline surfaces, rational surfaces, etc.

We present a series of algorithms that analyze the zero sets of polynomial functions,
and the intersection curves of two surfaces in R

3. We rigorously prove that these algo-
rithms output topologically correct curve descriptions, given stated assumptions con-
cerning the ability to solve lower-dimensional intersection problems (in particular, to
compute the discrete real solutions of certain polynomial equations). The curve de-
scription algorithm characterizes the zero set of a bivariate polynomial F(x, y) in a
rectangular domain. The intersecting surfaces algorithm describes the pre-images of the
intersection of two parametric surfaces p(s, t) and q(u, v) defined on rectangular do-
mains (s, t) ∈ P and (u, v) ∈ Q. Finally, using the coordinated domain decompostion
algorithm we construct a subdivision of the two rectangles guaranteeing that the image
of each subpatch of P intersects the image of at most one subpatch of Q, and does so in
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a “simple” manner. The final output is a set of paired rectangular subpatches of the orig-
inal surfaces, each pair exhibiting the property that their mutual intersection is a smooth,
monotone segment traversing these subpatches between diagonally opposite corners.

Our plan for this paper is as follows. In section 2 we briefly review prior research on
the topological analysis of implicitly-defined curves, as background for the algorithms
described herein. The problem of characterizing the planar curve described by a polyno-
mial equation F(x, y) = 0 within a rectangular domain� is then considered in section 3.
This leads to the formulation of the curve description algorithm in section 4. In sec-
tion 5 we extend this algorithm to the context of greatest practical interest – namely,
the intersection of two parametric surfaces. It is essential, in this context, to decompose
the surfaces into (non-overlapping) paired rectangular subdomains if the surface pertur-
bation schemes of [12,24] are used to ensure exact agreement in R

3 of the intersection
approximations, and this requirement is addressed in section 6. Finally, in section 7 we
present a computed example to illustrate the working of the algorithm, and in section 8
we summarize our results and make concluding remarks on their practical use.

2. Topological analysis of curves

Although the topological characterization of “implicitly-defined” curves has, for
many years, been recognized as a fundamental problem in computational geometry,
computer-aided geometric design, computer graphics, and related fields, the research
literature that directly addresses this problem is (perhaps on account of its intrinsic dif-
ficulty) rather sparse. An algebraic curve in R

2 is specified implicitly as the zero set of
a bivariate polynomial, whereas in R

3 it is specified as the intersection of either two im-
plicit surfaces, or two parametric surfaces. Starting from such specifications, the topol-
ogy analysis must derive the most basic shape information about the curve – such as the
number and nature of its components, and their spatial relationships.

Algorithms to perform topological analyses necessarily involve both logical and
computational or “numerical” aspects. For the latter, one may envisage either the use of
infallible (but costly) “exact arithmetic” methods involving algebraic field extensions, as
commonly used in computer algebra systems, or finite-precision (floating-point) arith-
metic – the usual medium for practical applications. Another approach is variable-
precision arithmetic, where the number of digits is increased “on-the-fly” so as to ensure
that the numerical calculations yield consistent logical decisions. Our emphasis in this
paper will be on logical aspects of the curve topology analysis, under the assumption
that methods are available to compute the real roots of certain polynomial equations to
any desired accuracy.

Arnon and McCallum describe a polynomial-time algorithm to determine the topo-
logical type of a real (unbounded) plane algebraic curve [2,5] using cylindrical algebraic
decomposition [3,4]. Assuming a polynomial equation F(x, y) = 0 with integer coef-

� This can be considered as a special case of the intersection of two surfaces, where one surface is the graph
of a function defined over a plane as the other surface.
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ficients, this method relies exclusively on exact-arithmetic computations (an algebraic
number, for example, is represented by a rational isolating interval and minimal polyno-
mial, rather than a numerical approximation). Although this algorithm is infallible, the
computational cost may grow at an alarming rate as the degree of F(x, y) increases.

Gonzalez-Vega and Necula [15] have recently proposed a “semi-numerical”
scheme, which makes use of a computer algebra system to perform a symbolic pre-
processing of the curve prior to any numerical calculations. Related work on symbolic
and semi-numerical approaches for the determination of curve topology may be found
in [1,7,17,20,21].

In most applications, the curve under consideration is restricted to a finite (usu-
ally rectangular) domain, and the manner in which it enters and leaves this domain is
a key part of the specification of its topological configuration. To ensure that at least
one point is found on each component of the curve, the identification of “characteristic
points” has been proposed [9]: these include� border points (where the curve crosses
the domain boundary); turning points (where the tangent is horizontal or vertical); and
singular points (where the curve does not have a unique tangent). However, the use of
“curve tracing” [6] to ascertain how these points are connected can incur topological
errors.

Grandine and Klein [16] have presented a topology resolution scheme that is sim-
ilar in many respects to the algorithms described herein. The domain is subdivided into
a set of parallel “panels” delineated by the curve singular points and turning points with
respect to a prescribed direction. The panel boundaries dissect the curve into segments
that are monotone with respect to the chosen direction, and by suitable logic one can
identify which of the boundary points are actually connected by curve segments. Our
algorithms extend this scheme by ensuring that the curve segments are monotone with
respect to both directions, and in the case of intersecting parametric surfaces they guaran-
tee a one-to-one correspondence of the rectangular subdomains containing the monotone
segments. Proofs that the algorithms achieve these goals, under stated assumptions, are
included below.

The topology algorithm presented in sections 5 and 6 of this paper is motivated
and guided by specific requirements of the surface perturbation schemes described in
[12,24]. Correct topology is not per se sufficient to guarantee a “robust” surface inter-
section/trimming procedure – one must also ensure consistency of different approxima-
tions of the intersection curve segments. The methods described in [12,24] achieve this
by applying suitable (linear) perturbations to the surface control points. These methods
impose additional requirements on the curve subdivision scheme used in the topology
resolution. Specifically, we need a one-to-one correspondence of non-overlapping sub-
sets of the surface parameter domains, that identify smooth intersection segments (see
section 6).

� Finding such points involves computing the isolated roots of polynomial systems, and can be considered
the 0-dimensional analog of the 1-dimensional problem studied herein.
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3. Zero set of a polynomial in a rectangle

We first present a curve description algorithm, that characterizes the zero set of a
real polynomial in two variables F(x, y) within a rectangle R. Such sets generically
comprise a collection of disjoint arcs, but the algorithm can also accommodate non-
generic cases that exhibit singular points. This problem involves finding a certain graph
in the plane. To solve it, we assume that we have a method of solving corresponding
lower-dimensional problems.

The algorithm input is a polynomial F(x, y) specifying an implicit curve

α = {
(x, y): F(x, y) = 0

}
, (1)

on a rectangular domain

R = {
(x, y): a � x � b, c � y � d

}
. (2)

We allow for the possibility that α may have several components and isolated singular-
ities. The algorithm must accurately characterize the topology of α within R – it will
output a collection of vertices and edges, describing a piecewise-linear graph β that is
isotopic� to α (i.e., β can be transformed into α by a continuous deformation that fixes
the boundary ∂R of R). This guarantees topological correctness, so that α and β have the
same number of components and spatial relationships, such as containment and relative
location of components. Furthermore, α and β have the same basic geometric features,
including the number and location of their maxima and minima. This property will be
described precisely in theorem 4.1 below.

We call a point horizontal or vertical if it lies on α and has a horizontal or vertical
tangent line, respectively. Such points comprise the turning points of the curve. Turning
points are the real solutions within R to the system of two polynomial equations in two
unknowns (x, y) defined by

F(x, y) = 0

and one of

Fx(x, y) = 0 or Fy(x, y) = 0.

Singular points satisfy all three of these equations. Such points (if isolated) may be
found by standard root-finding procedures [18,23] for polynomials described in the
numerically-stable Bernstein representation [11,13,14].

Specifically, the curve description algorithm assumes the following:

1. The zero set of F(x, y) is one-dimensional, with isolated singular points.

2. F(x, y) contains no linear factors of the form x − x0 or y − y0.

� It should be understood that, whenever we speak of an isotopy between two curves or graphs, we are
referring to an ambient isotopy – a continuous family of homeomorphisms of some domain R containing
the curves or graphs that fixes the domain boundary ∂R.
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3. There exists a method to compute the real zeros of F(x, y) for any specified value
x = x0 or y = y0 of either variable.

4. There exists a method to compute the (isolated) intersections of the zero sets of real
polynomials G(x, y) and H(x, y) in the rectangle R.

Condition (1) disqualifies polynomials with 2-dimensional zero sets, such as
xy − yx = 0, or non-isolated singular points, such as (x − y)2 = 0. However, iso-
lated singular points, such as those of x2 +y2 = 0 or xy = 0, are allowed. Condition (2)
ensures that no problems arise in using vertical and horizontal subdivisions of the do-
main R to resolve the curve topology [16]. Condition (3) allows us to find intersections
of the curve with the domain boundary, or any horizontal/vertical line. Finally, by ap-
plying (4) to a polynomial and its partial derivatives, we can find all turning and singular
points of the curve.

The justification for these assumptions, which can be regarded as simpler lower-
dimensional versions of the main problem, is as follows (the rigor of the algorithm is
predicated on rigorous methods for these subproblems). We can verify condition (1)
by checking that the system F(x, y) = Fx(x, y) = Fy(x, y) = 0 has finitely many
solutions. Condition (2) involves identifying and removing any linear factors of F(x, y)

that depend on only one variable – this can be accomplished using univariate polynomial
gcd and root-finding procedures (alternately, as in [16], one may invoke a rotation to
ensure that linear factors do not define horizontal or vertical lines). Finally, standard
methods based upon the subdivision/variation-diminishing properties of the Bernstein
polynomial form [14,18,23] can be used to satisfy conditions (3) and (4). In principle,
these various requirements can also be implemented in exact symbolic computation for
ultimate robustness.

The curve description algorithm is actually applicable in a more general setting,
and can be used to determine the topology and key geometry features of any one-
dimensional piecewise-analytic set within a rectangle, as long as we can address the
lower-dimensional problems enumerated above.

4. Curve description algorithm

A typical curve α defined by the zero set (1) of a polynomial F(x, y) within the
domain (2) is illustrated in figure 1. We now describe an algorithm that determines
the topological configuration of such curves, and give a proof of its correctness un-
der the stated assumptions. This algorithm can actually accommodate any real analytic
curve (having only isolated singular points and a finite number of intersections with any
straight line), but for simplicity we focus here on the case of polynomial curves.

Curve description algorithm.

1. Find all the characteristic (border, turning, and singular) points of α.
Figure 1 shows these points for the example curve.
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Figure 1. Left: a typical zero set α for the polynomial F(x, y). Right: the set of characteristic (border,
turning, and singular) points for this curve.

Figure 2. Division of the domain R into vertical strips Ri that have no interior characteristic points. The
selected strip R6 is illustrated on the right.

2. Divide R into vertical strips without interior characteristic points.
If x1, x2, . . . , xN is the ordered sequence of the distinct x coordinates of all turning
points and singular points of α with 0 < x < 1, dissect R into N + 1 rectangular
strips R1, R2, . . . , RN+1 along the vertical lines x = xi , i = 1, . . . , N (note that
some turning or singular points may have coincident x coordinates). Find the addi-
tional intersection points of α with these vertical lines, as shown in figure 2.

Each vertical strip may have points of α on its left and right boundary, but their con-
nectivity is not currently known – there may be several different ways to connect
them with monotone arcs (see figure 3). The correct connectivity is determined in
the following step.
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Figure 3. There may be several different ways to connect points of α on the left and right boundaries of a
vertical strip, but only one of them is correct.

Figure 4. Separating the points of α on the left and right boundaries of each vertical strip Ri by further
subdividing with horizontal lines between them.

3. Determine connectivity of points on boundary of each vertical strip.
The following process is repeated for each strip Ri , i = 1, . . . , N + 1.

Let c = y0 < y1 < · · · < yni
< yni+1 = d be the ordered sequence of distinct y

coordinates of points of α on the interior of the left and right sides of Ri , at x = xi

and xi+1, augmented by the y coordinates of R.

Subdivide the strip Ri by the horizontal lines y = hj = 1
2(yj +yj+1) for 0 � j � ni ,

and let the subrectangle containing yj be denoted by Rij – see figure 4. Note that,
by construction, the left and right sides of Rij each contain at most one point of α.
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Figure 5. Intersecting with a vertical line to identify the number of increasing and decreasing arcs emanating
from a point on the left boundary – this uniquely determines the configuration within the subrectangle.

Compute the intersections of α with each of the horizontal lines y = hj within the
vertical strip, and order them left to right. Let

djk = (xjk, hj ) for 1 � k � mj

be the resulting sequence of points. Also, let the smallest and largest of the coordi-
nates xjk for 1 � k � mj and 1 � j � ni be xmin and xmax.

We inspect each subrectangle Rij , j = 1, . . . , ni in turn. If there is a point of α

at yj on the left edge of Rij , compute the intersection points of α in Rij with the
vertical line x = 1

2(xi + xmin). Let a1, a2, . . . , ap and ap+1, ap+2, . . . , ap+q be the
ordered y coordinates of these points below and above yj , respectively. Similarly,
if there is a point of α at yj on the right edge of Rij , we order the y coordinates
of the intersections of α with the vertical line x = 1

2(xmax + xi+1) into two groups
b1, b2, . . . , br and br+1, br+2, . . . , br+s – below and above yj , respectively.

We construct a temporary graph γij within Rij as follows:

(a) If there is a point of α at yj on the left side of Rij and p > 0, insert an edge
from it to each of the points dj,1, . . . , dj,p+1.

(b) If there is a point of α at yj on the left side of Rij and q > 0, insert an edge
from it to each of the points dj+1,1, . . . , dj+1,q+1.

(c) If there is a point of α at yj on the right side of Rij and r > 0, insert an edge
from it to each of the points dj,mj −r+1, . . . , di,mj

.

(d) If there is a point of α at yj on the right side of Rij and s > 0, insert an edge
from it to each of the points dj+1,mj+1−s+1, . . . , dj+1,mj+1 .

(e) If mj > p + r , insert edges that connect the mj − (p + r) pairs of points
(dj,p+1, dj+1,q+1), . . . , (dj,mj −r , dj+1,mj+1−s).

In steps (a)–(d), the edges are drawn through the appropriate points of α on the
vertical lines x = 1

2(xi +xmin) and x = 1
2(xmax +xi+1). This process is illustrated in

figure 5 for a simple case, and in figure 6 for a more complicated case – where there
are points at the same height yj on the left and right edges of the subrectangle Rij .
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Figure 6. A more complicated case – the curve topology in the subrectangle Rij is still uniquely determined
by its boundary points (this is a special case, with boundary points at height yj on both the left and the right

sides of Rij ).

Repeating this process on each subrectangle Rij for j = 1, . . . , ni , we obtain
graphs γij that consist of non-intersecting polygonal edges with end-points on the
boundary ∂Rij . The union of all the subrectangle graphs γij for 1 � j � ni yields
an overall graph γi for the vertical strip Ri . This graph γi consists of polygonal arcs
that are embedded and disjoint in the interior of the strip Ri , and its intersection
with each subrectangle Rij consists of polygonal disjoint segments with end-points
on ∂Rij . Each edge of γi is a sequence of edges in the subrectangles Rij that defines
a polygonal arc within Ri , beginning and ending at distinct sides of the boundary of
this vertical strip.

We form a new graph βi for Ri by replacing each polygonal edge of γi by the
straight-line segment connecting its end-points.�

4. Take the union β = ⋃N+1
i=1 βi of the graphs for all the vertical strips.

5. Output the resulting set of vertices and connecting edges, along with any isolated
vertices meeting no edges, as β.

We now prove the following properties the curve description algorithm:

Theorem 4.1. Assume a method exists to locate all the border, turning, and singular
points of the polynomial curve α = {(x, y): F(x, y) = 0} for (x, y) in a given rec-
tangle R. Then the curve description algorithm constructs a polygonal curve β that is

� By construction, βi is guaranteed to have the same topological configuration as γi . The introduction
of intermediate intersection points serves only to ensure correct connectivity of the points of α on the
boundary of the strip Ri (theorem 4.1). Preserving the structure of the intermediate graphs yields a more
complex, but still topologically accurate, graph.
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isotopic to α in R. The isotopy fixes the domain boundary ∂R, and leaves each turning
point, border point, and singular point of α fixed. All vertices of β are points on α, and
all turning points, border points, and singular points of α are located at vertices of β.

Recall that two curves or graphs in R are isotopic (rel ∂R) if there exists a con-
tinuous family It , 0 � t � 1 of homeomorphisms of R, each fixing the boundary ∂R,
with I0 the identity and I1 a homeomorphism carrying the first curve to the second. The
polygonal curve β captures the correct topology of α, and also captures its key geometric
features – the points where it crosses ∂R, where it has a vertical or horizontal tangent,
and where it is singular.

The description of β consists of listing the set of vertices v1, v2, . . . and the set of
edges ei = (vj , vk) – each edge being a line segment connecting two distinct vertices
(there may be some “isolated” vertices, not associated with any edge – for example, iso-
lated singular points of α or points on ∂R not connected to other points of α inside R).
If α is nonsingular, it is easy to order the edges so they successively traverse each com-
ponent of α.

We first give a proof of a fundamental result (well-known to topologists) concern-
ing the topology of arcs in the plane. This result extends the Jordan Curve Theorem to
the case of multiple arcs whose interiors are disjoint and embedded in a disk (note that
end-points of distinct arcs may coincide).

Lemma 4.2. Let R be a planar region homeomorphic to a closed disk D and let
γ = {γi}, i = 1, . . . , n be a collection of arcs in R with embedded, disjoint interiors
and end-points on ∂R. Let γ ′ = {γ ′

i }, i = 1, . . . , n be a second collection of such arcs in
R, γ ′

i having the same end-points as γi for each i. Then there is an isotopy of R carrying
the collection of arcs γ to γ ′.

Proof. The Jordan Curve Theorem states that any embedded closed curve in the plane is
isotopic to the unit circle. The proof of the theorem also shows that any two embedded
arcs in a disk with the same end-points are isotopic by an isotopy that fixes the disk
boundary [19]. This establishes the lemma for the case where γ , γ ′ each comprise a
single arc.

If γ has n > 1 components γ1, . . . , γn, lemma 4.2 follows by induction as fol-
lows. There is an isotopy Ft of D carrying γ1 to γ ′

1 and fixing ∂D. This isotopy carries
γ1, . . . , γn to arcs γ ′′

1 = γ ′
1, γ

′′
2 , . . . , γ ′′

n . The disk D is a union of two regions D1 and
D2, each homeomorphic to a disk, that have common boundary along the arc γ ′

1 = γ ′′
1 .

The interiors of D1, D2 each contain fewer than n of the arcs γ ′′
2 , . . . , γ ′′

n . By induction
applied to each disk in turn, there is an isotopy F ′

t of D carrying the arcs γ ′′
2 , . . . , γ ′′

n to
γ ′

2, . . . , γ
′
n while leaving the boundaries of D1, D2 fixed. The composition of F ′

t and Ft

gives an isotopy that fixes ∂D and carries γ1, . . . , γn to γ ′
1, . . . , γ

′
n as desired. �

Proof of theorem 4.1. By assumption, the curve α is a one-dimensional subset of R,
and the characteristic points required in step 1 of the algorithm are computable. Since
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F(x, y) is of finite degree and has no factors of the form x − x0 or y − y0, the curve α

intersects any horizontal or vertical line in finitely many points. In step 2 we subdivide
R by a set of vertical lines, breaking the problem of describing the curve α into a col-
lection of subproblems on vertical strips Ri . All turning points and singular points are
on the boundaries of these vertical strips, and within their interiors α consists of a set of
increasing or decreasing arcs. Each strip Ri is considered in turn.

In step 3 a further subdivision dissects each strip Ri along horizontal line segments,
resulting in subrectangles Rij . Each point of α on the left or right side of Ri is separated
from the others by a horizontal dividing line, with the possible exception of points on
the left and right that have equal y coordinates. Thus, each Rij has at most one point of
α on its left or right side, or one point on both sides when these points have identical y

coordinates. Since the interior of Rij contains no turning or singular points, the curve α

within the interior of Rij consists entirely of arcs, each of which is monotone increasing
or decreasing – there are no closed loops or isolated points.

Consider first the case where the left side of Rij contains a point of α at yj . Arcs
of α ∩ Rij leaving this point are either increasing or decreasing within Rij . There may
be several such arcs if the point at yj is a turning or singular point of α, and there may
be none if it is a turning point or isolated singular point. Any arc leaving this boundary
point and entering Rij must intersect the line x = 1

2(xi +xmin) in Rij , since in the portion
of the subrectangle to the left of this line, there are no intersection points of α with the
top or bottom sides, and no turning points. The number of arcs leaving the boundary
point is thus equal to the number of intersections of α with this line. The number p of
such arcs that are decreasing equals the number of intersection points that lie below yj ,
and the number q that are increasing equals the number of intersection points that lie
above yj .

If p > 0, the arc joining the left-edge boundary point at yj to the lowest intersec-
tion point of α with the line x = 1

2(xi + xmin) must continue descending monotonically
until it reaches the bottom side of Rij , since this subrectangle contains no turning points.
It meets this side at its left-most intersection point dj,1 with α. Continuing arc by arc, we
see that there is a unique point of ∂Rij to which every arc emanating from the left-edge
boundary point can connect, and as we proceed through the p points of α below yj on the
line x = 1

2(xi +xmin), they connect left to right in order to the points dj,1, . . . , dj,p. Like-
wise, q arcs of α connect the left-edge boundary point to the points dj+1,1, . . . , dj+1,q

ordered left to right on the top side of Rij (see figure 6). If a point of α lies on the right
side of Rij at height yj , a similar argument shows that arcs emanating from it into Rij

connect to uniquely-determined points on the upper and lower sides of Rij .
Any remaining “unused” points on the lower and upper sides of ∂Rij must be

connected in pairs by monotone arcs of α that run between these sides. In this process,
we systematically work from left to right in choosing pairs of points to connect, since
these arcs may not cross each other in the interior of Rij . Hence, all points of α on ∂Rij

connected by arcs of α can be joined by line segments with disjoint interiors, giving a
piecewise-linear graph γij in Rij , and by lemma 4.2 there is an isotopy taking α ∩ Rij

to γij .



J. Hass et al. / Surface intersections and trimmed surfaces 13

The algorithm then takes the union of all the graphs γij in subrectangles Rij for
1 � j � ni comprising the vertical strip Ri , and identifies common vertices in adjacent
graphs to form a single graph γi in Ri . The graph γi is piecewise-linearly embedded
in Ri , consisting of a collection of polygonal segments that are either increasing or de-
creasing. At the end of step 3, these polygonal segments are replaced by line segments
connecting their end-points, to form the graph βi . By a further application of lemma 4.2,
there is an isotopy taking γi to βi that fixes the boundary of Ri .

Finally, in step 4 we form an overall graph β for R by taking the union of the
graphs βi for each vertical strip Ri , i = 1, . . . , N + 1. Since we can define an overall
isotopy of R carrying β to α by taking the union of the isotopies for each vertical strip.
The completes the proof. �

5. Intersection of parametric surfaces

Consider now the intersection of tensor-product polynomial� surfaces p(s, t) and
q(u, v) in R

3, with parameter domains (s, t) ∈ P = [0, 1]2 and (u, v) ∈ Q = [0, 1]2.
We assume these surfaces are regular (i.e., ps × pt �= 0 and qu × qv �= 0) over these
domains. We also assume that the two surfaces are embedded – or, equivalently, that
p(s, t) and q(u, v) define one-to-one maps from P , Q to R

3 (i.e., they do not exhibit
self-intersections). We do not assume that they intersect transversely, but do require
singular points (where the intersection fails to be transverse), if any, to be isolated.

In formulating an algorithm to resolve the intersection curve topology we assume,
as before, a method to solve analogous lower-dimensional problems. Namely, we as-
sume we can find the intersection points of a parametric curve and a parametric surface
in R

3. We also assume that we can compute the points corresponding to all turning or
singular points of the intersection curve pre-images in the parameter domains P and Q

of the two surfaces.
The curve-surface intersection problem corresponds to three equations in three un-

knowns (that arise from equating coordinate components in R
3): the two surface para-

meters and the single curve parameter. The identification of turning points corresponds
to solving four equations in four unknowns (singular points involve an additional con-
dition). For polynomial surfaces, these problems can be solved by Bernstein-form root-
finding methods.

We now describe the intersecting surfaces algorithm. This closely parallels the
curve description algorithm of section 4, although the terminology is different. Theo-
rem 5.1 gives a formal statement of key properties of this algorithm. Let p(s, t) and
q(u, v) be mappings of the domains P = [0, 1]2 and Q = [0, 1]2 into R

3, each coor-
dinate component of p(s, t) and q(u, v) being a polynomial in the surface parameters.
Denote by αP and αQ the pre-images in P and Q of the intersection curve α of p(s, t)

� The method can be extended to rational, analytic, or piecewise-analytic surfaces – for brevity, we focus
here on polynomial surface patches.
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and q(u, v) in R
3. Assuming that αP and αQ have no components� of the form s = s0,

t = t0 and u = u0, v = v0 respectively, the algorithm returns two piecewise-linear
graphs βP ∈ P and βQ ∈ Q that give faithful topological descriptions of αP and αQ, as
indicated in theorem 5.1 below.

Intersecting surfaces algorithm.

1. Find all characteristic (border, turning, and singular) points of αP , αQ.
Border points can be found by intersecting the four boundary curves p(s, 0), p(s, 1),
p(0, t), p(1, t) of p(s, t) with q(u, v), and vice-versa (note that border points for
αP may correspond to points in the interior of the domain of αQ, and vice-versa).
The turning and singular points may be found [24] as solutions of four equations
in the four variables (s, t, u, v) – namely, the coordinate components of the vector
equation p(s, t) = q(u, v) and each in turn of the scalar equations (qu×qv)·ps = 0,
(qu × qv) · pt = 0 and (ps × pt ) · qu = 0, (ps × pt ) · qv = 0.

2. Divide P , Q into vertical strips without interior characteristic points.
If s1, s2, . . . , sN is the ordered sequence of distinct s values of all border points,
turning points, and singular points of αP with 0 < s < 1, dissect P into N + 1
rectangular strips P1, P2, . . . , PN+1 along the vertical lines s = si , i = 1, . . . , N ,
and find the additional intersection points of αP with these vertical lines. Likewise
for αQ.

3. Determine connectivity of points on the boundary of each vertical strip.
Apply step 3 of the curve description algorithm to construct graphs within each
vertical strip of P and Q that describe the connectivity of the exact points of αP and
αQ on the boundaries of these strips.��

4. Take the union of the graphs over all the vertical strips, to form overall graphs βP

and βQ in P and Q.

5. Output the resulting sets of vertices and connecting edges as βP , βQ.

We prove the following properties of the intersecting surfaces algorithm:

Theorem 5.1. Assume methods exist to compute the intersection points of a parametric
curve and a parametric surface in R

3, and to compute all turning points and singular
points of the pre-images αP ⊂ P and αQ ⊂ Q of the intersection of two surfaces
p(s, t) and q(u, v) defined on (s, t) ∈ P = [0, 1]2 and (u, v) ∈ Q = [0, 1]2. Then the
intersecting surfaces algorithm constructs a pair of piecewise-linear graphs, βP ⊂ P and
βQ ⊂ Q, that are isotopic to αP and αQ respectively. The isotopies fix the boundaries of
P and Q, and also fix each border point, turning point, and singular point of αP and αQ.

� As in section 3, this requirement can be addressed using gcd and root-finding procedures for certain
univariate polynomials.

�� The logic is identical to that of the curve description algorithm: the only difference is that border points
may occur in the interior of the domains P and Q (but not within the vertical strips).
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Proof. In the proof of theorem 4.1 for the planar curve case, we found a piecewise-
linear graph isotopic to a given curve by identifying border points, turning points, sin-
gular points, and intersections with horizontal or vertical lines. In the present context,
an additional type of point occurs. It is possible for an arc of αP or αQ to terminate at
an interior point of P or Q. The location of such points can be found by solving for the
intersection of the boundary curves of p(s, t) with the interior of q(u, v) and vice-versa.
Since we can identify such points on the curves αP ⊂ P and αQ ⊂ Q, following the
procedure of theorem 4.1 proves theorem 5.1 by identical arguments. �

Remark. The assumption that the surfaces are embedded can be weakened. It suffices
to assume that they are immersed. This means that each point of the surfaces has a
neighborhood that is embedded, but p(s, t) and q(u, v) may have self-intersections: the
self-intersections must be tranverse except at isolated points, as with the intersection of
p(s, t) and q(u, v). Vertices of αP that correspond to points in R

3 where p(s, t) intersects
a double curve of q(u, v) can be located by solving the six equations defined by

p(s, t) = q(u, v) and p(s, t) = q(u′, v′)

in the six unknowns s, t, u, v, u′, v′ where (u, v) �= (u′, v′). Points where p(s, t) is tan-
gent to itself and self-intersection points lying along a line s = s0 or t = t0 can be found
as before. The algorithm is modified so that, in step 2, additional vertical subdivisions
are made along points where αP or αQ have singularities in P or Q, respectively.

6. Subdomain correspondence algorithm

The algorithm described in section 5 resolves the topology of the parameter domain
pre-images αP and αQ of the intersection curve of p(s, t) and q(u, v), and subdivides
them into monotone segments. However, to apply the topologically-consistent surface
perturbation schemes [12,24] we must further process these representations, to ensure
a one-to-one correspondence between monotone segments within rectangular subsets
of the parameter domains P and Q of the surfaces. This is achieved by the algorithm
described below.

The assumptions in section 5 concerning the intersection of p(s, t) and q(u, v)

are also invoked for the present algorithm. Figure 7 shows a typical example. We also
assume, in the present context, that the intersection is nonsingular. This assumption is
motivated by the desire to maintain a succinct algorithm description, bypassing technical
difficulties with subdivision in the vicinity of singular points that warrant a separate
thorough investigation.

The pre-images αP and αQ consist of collections of simple closed loops and open
segments. The latter may have end-points lying on the boundaries of the surface do-
mains P and Q, or within their interiors. The algorithm of section 5 constructs polyg-
onal curves βP and βQ that are isotopic to αP and αQ. The curve βP is described by a
set of vertices {pi = (si, ti)} and a set of edges {ei = (pj , pk)} with each edge (pj , pk)
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Figure 7. The intersection of p(s, t) and q(u, v) has pre-images αP and αQ in the respective parameter
domains P and Q of these surfaces.

being contained in a subrectangle Pjk ⊂ P with pj and pk as diagonally opposite ver-
tices. The subrectangles Pjk are non-overlapping and contain only a single intersection
curve segment between opposite corners – a collection of such subrectangles is shown in
figure 12. The same properties hold for βQ, with vertices {qi = (ui, vi)} and monotone
edges {ei = (qj , qk)} contained within subrectangles Qjk having vertex pairs qj and qk

as opposite corners.
However, at this point, the subrectangles Pjk ⊂ P and Qjk ⊂ Q may not be in

one-to-one correspondence, which is essential to achieving topological consistency of
trimmed surfaces by the surface perturbation schemes [12,24]. A simple example illus-
trates this point. In figure 8 we show the intersection curve of figure 7 in the parameter
domains P and Q of the surfaces, with characteristic points (border points and turn-
ing points) indicated. Figure 9 shows a subdivision of the domains along vertical lines
through these points. In figure 10 a further subdivision of the domain P by horizontal
lines is shown (the images in Q of the turning points in P are also shown).

Each subrectangle now contains at most one diagonal segment, but these subrec-
tangles are not paired, since there are three in P and just one in Q. To achieve a pairing,
we need additional subdivision of Q by vertical and horizontal lines through the im-
ages in Q of the turning points in P , and vice-versa (see figure 11). Figure 12 shows
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Figure 8. Turning and border points of αP and αQ identified.

Figure 9. Subdivision along vertical lines through characteristic points.

Figure 10. Further subdivision along horizontal lines leads to diagonal arcs in each parameter domain.

Figure 11. The (u, v) vertices added to (s, t) domain, and vice-versa.
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Figure 12. Final rectangles come in pairs, each containing a monotone arc.

the final sets of paired subrectangles, achieved by this additional subdivision. At this
point, corresponding intersection segments connecting vertices {(pj , pk)} and {(qj , qk)}
of these subrectangles have identical images under p(s, t) and q(u, v) – as required by
the surface perturbation schemes.

We now give a formal description of the algorithm to achieve coordinated decom-
position of the surface parameter domains, and establish its properties.

Coordinated domain decomposition algorithm. Let p(s, t) and q(u, v) be smooth
surfaces defined by vector mappings into R

3 of the domains P = (s, t) ∈ [0, 1] × [0, 1]
and Q = (u, v) ∈ [0, 1] × [0, 1]. We assume these surfaces are embedded, and intersect
transversely in a nonsingular one-dimensional curve, the image of the curves αP ⊂ P

under p(s, t) and αQ ⊂ Q under q(u, v).

1. Divide P , Q into vertical strips without interior characteristic points.
Find all turning points and border points of αP and αQ (we assume that there are no
singular points), and subdivide P and Q into vertical strips through these points, so
that all characteristic points lie on the left or right boundaries of such strips. Note
that a border point for αP may lie in the interior of Q, and vice-versa.

2. Subdivide strips to obtain rectangles containing diagonal segments.
Apply the following process to each vertical strip si � s � si+1 of P . Draw a
horizontal line through each point of αP on the left side of the strip, and compute
the intersections (if any) of these lines with αP inside the strip. If there are no
such intersections, subdivision of the strip is not necessary. Otherwise, let smin be
the smallest s-coordinate of the intersection points. If smin < si+1, subdivide the
vertical strip si � s � si+1 into the two strips si � s � smin and smin � s � si+1.
Repeat this process for the strip smin � s � si+1, and keep repeating in this manner
until smin = si+1. Also apply the entire process to each strip for αQ in the domain Q.

3. Construct the graph representations βP , βQ.
Apply step 3 of the curve description algorithm to αP and αQ to obtain the
piecewise-linear graphs βP consisting of vertices {pi} and edges {(pj , pk)}, and
βQ consisting of vertices {qi} and edges {(qj , qk)}.
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4. Refine βP and βQ to obtain paired subrectangles.
For each vertex p∗ = (s∗, t∗) of βP , add a vertex q∗ = (u∗, v∗) to βQ with coor-
dinates satisfying q(u∗, v∗) = p(s∗, t∗), and vice-versa. If q∗ lies in the interior of
the subrectangle Qjk with vertices qj and qk as opposite corners, replace the edge
(qj , qk) with the two edges (qj , q∗) and (q∗, qk). The subrectangle Qjk containing
a diagonal segment is replaced by two subrectangles containing diagonal segments,
with a common vertex at q∗. Similarly, if p∗ lies in the interior of subrectangle Pjk,
replace the edge (pj , pk) with the two edges (pj , p∗) and (p∗, pk), and replace Pjk

by two subrectangles containing these edges.

Once βP , βQ have been refined in this manner, the new subrectangles of P , Q con-
taining diagonal edges are in one-to-one correspondence.

5. Output βP and βQ.
Output lists of vertices {pi} and {qi} and edges {(pj , pk)}, {(qj , qk)} defining βP

and βQ.

The following theorem establishes key attributes of the above algorithm (we again
assume the ability to solve the appropriate lower-dimensional root-finding problems).

Theorem 6.1. Suppose P = [0, 1] × [0, 1] and Q = [0, 1] × [0, 1] are mapped to
R

3 by polynomials p(s, t) and q(u, v), and these surfaces are embedded and intersect
transversely. Then the coordinated domain decomposition algorithm yields a pair of
polygonal curves βP ⊂ P and βQ ⊂ Q satisfying:

1. All turning points and boundary points are at vertices of βP , βQ.

2. Each edge (pj , pk) of βP defines a rectangle Pjk with pj , pk as diagonally opposite
vertices, and any two such rectangles have disjoint interiors in P . Similarly, edges
(qj , qk) of βQ define rectangles Qjk with qj , qk as opposite vertices, and these
rectangles have disjoint interiors in Q.

3. βP is isotopic to αP in P and βQ is isotopic to αQ in Q, by isotopies that fix all
turning points and boundary points.

4. There is a one-to-one pairing of vertices pi ∈ βP and qi ∈ βQ, with paired vertices
having the same images in R

3 under p(s, t) and q(u, v).

5. The arc of αP contained in Pjk and the arc of αQ contained in Qjk have the same
image in R

3.

Proof. Step 1 of the algorithm subdivides P and Q into vertical strips so that all turning
points and border points lie on the left or right sides of these strips. Step 2 further
subdivides each strip si � s � si+1 vertically, so that the subset to the left of the vertical
line s = smin has the following property: any horizontal line through a point of αP on the
left side does not meet αP in any other point, except possibly at the right side. It follows
that if we subdivide the strip si � s � smin into subrectangles along the horizontal lines
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t = ti corresponding to the t-coordinates of the points of αP on the left and right sides,
then each of these subrectangles is either empty or contains a segment of αP without
singular or turning points – i.e., a single monotone arc between diagonally opposite
corners. The same holds for αQ.

To establish that the vertical subdivisions in step 2 can occur only finitely many
times, note that any horizontal line t = t∗ can intersect αP in only a finite number
of points, since αP is an algebraic curve. The least horizontal distance between two
such points at height t = t∗ gives a function d(t∗) whose minimum is dmin > 0. Each
subdivision creates a rectangle whose width is at least dmin, so the subdivisions occur
finitely often.

Step 3 applies the third step of the curve description algorithm. This constructs a
diagonal segment of βP in each subrectangle if it is non-empty. Lemma 4.2 implies that
the diagonal segment connecting the two diagonally opposite vertices is isotopic to the
exact intersection curve within the subrectangle. A similar argument applies to βQ.

In step 4, extra vertices are added to βP and βQ. The image of each vertex of βP in
the domain Q is added to βQ, if it is not already present, and vice-versa. Upon adding
a new vertex to βP within a subrectangle that contains a single monotone arc of αP , the
existing edge of βP in that subrectangle is replaced by two edges, coincident at the new
vertex. The new graph βP therefore maintains its isotopic relationship to the αP . After
introducing these additional vertices, each vertex of αP and βP is paired with a vertex
of αQ and βQ and the augmented sets of subrectangles P and Q have the following
properties. Each contains a monotone arc of αP and αQ, and these arcs exhibit one-
to-one correspondence, established by the fact that pairs of them have the same images
in R

3 under p(s, t) and q(u, v). Since any two diagonals between given corners of a
subrectangle are isotopic, the isotopy class of βP and βQ is not changed by the vertex
additions. All conditions claimed in the theorem are thus satisfied. �

Although the intersecting surfaces algorithm (see section 5) can accommodate sin-
gular intersections, we restricted the coordinated domain decomposition algorithm to
nonsingular intersections. At singular points with distinct real tangents, it is not always
possible to separate the curve segments emanating from such points using just vertical
and horizontal lines, as required by our algorithm. This difficulty becomes even more
pronounced when the tangents at the singular point are not all distinct, as with a cusp.
For such cases, a different strategy is required to dissect the curve into monotone seg-
ments, contained within disjoint parameter subdomains that exhibit a one-to-one corre-
spondence between the two surfaces. This is a nontrivial problem, and we defer detailed
investigation of it to a subsequent study.

7. Computed example

We illustrate the application of the coupled topology resolution and domain de-
composition method in the context of the surfaces p(s, t) and q(u, v) shown in figure 13.
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Figure 13. Two parametric polynomial surfaces, p(s, t) and q(u, v), with the directions of the parameters
s, t and u, v shown. The topology resolution and domain decomposition scheme is to be applied to their

curve of intersection.

These are tensor-product polynomial parametric surfaces, of degree (5, 5) and (3, 3) re-
spectively in the surface parameters. Since a tensor-product surface of degree (m, n)

can be implicitized to obtain an equation f (x, y, z) = 0 of degree 2mn [22], Bezout’s
theorem indicates that the exact intersection of such surfaces is an algebraic space of
degree 900.

Figures 14 and 15 illustrate four successive stages in the progression of the algo-
rithm, within the parameter domains of the surfaces p(s, t) and q(u, v). In these illus-
trations, the figures in the left columns show particular steps to compute new vertices,
while those in the right columns show corresponding updates to the graph structures
(the exact intersection loci are also shown in the left-column figures, for ease of refer-
ence).

The first rows of these figures show the computation of all characteristic points
(border points, turning points, and singular points) of the intersection in the (s, t) and
(u, v) planes. Note that some of the border points may lie in the interior or exterior of the
parameter domains (s, t) ∈ P = [0, 1]2 and (u, v) ∈ Q = [0, 1]2 of the two surfaces.
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Figure 14. Four stages during the progression of the topology resolution and domain decomposition scheme
in the parameter domain of the surface p(s, t).
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Figure 15. Corresponding stages of the algorithm for the surface q(u, v).
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Figure 16. Illustration of the one-to-one correspondence of subdomains of p(s, t) and q(u, v) generated
by the algorithm. A selection of corresponding subdomains, encompassing intersection segments that are

monotone with respect all four surface parameters, are indicated here by color coding.

As shown in the right-hand columns, the connectivity of the characteristic points is not
known at this stage.

In the second rows of the figures, vertical lines are drawn through each of the inte-
rior characteristic points in the (s, t) and (u, v) domains, and the additional intersections
of these lines with the (s, t) and (u, v) pre-images of the intersection are computed (left
columns). Once these additional points have been inserted, the graph structures shown
in the right-hand figures can be determined by the procedure described in section 5.

The third rows of figures 14 and 15 illustrate step 2 of the coordinated domain
decomposition algorithm (see section 6). In this particular example, only one vertical
strip requires further subdivision in step 2. In the left columns of these figures, we
compute the intersection of the horizontal lines with αP and αQ, and then subdivide the
vertical strip by the vertical lines passing through the intersection points. In the right
columns, we update the graph structure with the additional points thus generated. Note
that the subrectangles containing each edge are now all mutually disjoint.

Finally, step 4 of the algorithm is illustrated in the last rows of figures 14 and 15.
Each vertex of βP in the domain P is mapped to the domain Q (if its image is not already
present in that domain), and vice-versa. Existing edges in the graph structures βP and βQ

are replaced by edge pairs wherever necessary, in order to accommodate the introduction
of these new vertices. Upon completion of this process, the edges of the refined graph
structures βP and βQ are in one-to-one correspondence.

In figure 16 we show the final graph structures βP and βQ representing the pre-
images αP and αQ of the intersection curve, together with the parameter subdomains
generated by the algorithm of section 6. A selection of corresponding pairs of subdo-
mains are shown color-coded in this figure.
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8. Closure

We have described algorithms to resolve the topology of the intersection curve of
two polynomial or rational parameteric surfaces p(s, t) and q(u, v) and to perform a
coordinated decomposition of their parameter domains, such that the rectangular subdo-
mains contain single monotone intersection segments and are in one-to-one correspon-
dence. Such algorithms are prerequisites for application of surface perturbation schemes
[12,24] that ensure topological consistency of the trimmed surfaces delineated by the
intersection curve, by applying small displacements to the surface control points in its
vicinity.

The algorithms assume the ability to compute, to any desired precision, the real
roots of univariate polynomials within a given interval, and of pairs of bivariate polyno-
mials within given rectangles. The focus of the algorithm descriptions is on their logical,
geometrical, and topological aspects, rather than particular details of the computational
model. For practical software implementations in double-precision floating-point arith-
metic, a high degree of robustness in the root-solving functions can be achieved by ex-
ploiting the subdivision and variation-diminishing properties of the numerically-stable
Bernstein representation [11,13,14]. If ultimate robustness is desired, the algorithms
could be implemented using symbolic computation, assuming the surfaces are specified
exactly by control points with rational coordinates.
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