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Abstract—A new algorithm is presented that provides a constructive way to conformally warp a triangular mesh of genus zero to a

destination surface with minimal metric deformation, as well as a means to compute automatically a measure of the geometric

difference between two surfaces of genus zero. The algorithm takes as input a pair of surfaces that are topological 2-spheres, each

surface given by a distinct triangulation. The algorithm then constructs a map f between the two surfaces. First, each of the two

triangular meshes is mapped to the unit sphere using a discrete conformal mapping algorithm. The two mappings are then composed

with a Möbius transformation to generate the function f. The Möbius transformation is chosen by minimizing an energy that measures

the distance of f from an isometry. We illustrate our approach using several “real life” data sets. We show first that the algorithm allows

for accurate, automatic, and landmark-free nonrigid registration of brain surfaces. We then validate our approach by comparing shapes

of proteins. We provide numerical experiments to demonstrate that the distances computed with our algorithm between low-resolution,

surface-based representations of proteins are highly correlated with the corresponding distances computed between high-resolution,

atomistic models for the same proteins.

Index Terms—Conformal mapping, mesh warping, Möbius transformation, nonrigid registration

Ç

1 INTRODUCTION

FINDING efficient algorithms to describe, measure, and
compare shapes is a central problem in image proces-

sing. This problem arises in numerous disciplines that
generate extensive quantitative and visual information.
Among these, biology occupies a central place. For example,
registration of brain anatomy is essential to many studies in
neurobiology [1], [2], [3]. In parallel, the belief in molecular
biology that the structure (or shape) of a protein is a major
determinant of its function has led to the development of
many methods for representing, measuring, and comparing
the shapes of protein structures [4], [5], [6], [7].

In general, methods that compare shapes can be
classified into two categories: those that derive features
(also called shape descriptors) for each shape separately
that can then be compared using standard distance
functions, and those that directly attempt to map one shape
onto the other, thereby providing both local and nonlocal
elements for comparison. In this paper, we are concerned
with the latter. More specifically, we restrict ourselves to
methods that generate mappings between two shapes that
are defined by surfaces of genus zero.

Surface-based shape comparison techniques aim at
defining directly a map between any two surfaces that is
as close to an isometry as possible. There have been many
methods developed to find such mappings. These methods
usually rest on 1) the definition of a distance measure that
evaluates how close the map is to an isometry, 2) choices of

sets of landmark points on the two shapes, and 3) an
algorithm for finding the mapping between these sets of
points that minimizes the distance measure. Note that
item 2) is optional, as described below.

An isometry, or map that precisely aligns two surfaces
with no distortion, preserves both angles and distances.
When the shapes are different, then no isometry can be
found, and so some metric distortion is necessary in any
alignment. The harmonic or Dirichlet energy [8], [9], the
Procrustes distance and its continuous variants [10],
the Gromov-Hausdorff distance and variants [11], [12],
and the conformal Wassterstein distance and variants that
mimic mass transportation [13], [14], [15] are popular
metrics used in this context.

Ideally, landmark points should be homologous between
the two shapes, should conserve their relative positions,
should provide adequate coverage of the shape, and should
be found reliably and consistently [16]. In the case of the
human cortex for example, landmark points are usually
chosen to follow its sulci and gyri patterns (in some cases,
the whole curves are considered). The task of finding such
meaningful landmark points is most successfully per-
formed manually by skilled technicians with many years
of training, with the resulting danger of variability between
operators. Many methods have therefore been developed,
however, to either automate this process or to circumvent
the need to use specific point correspondence in the
registration procedure. Methods that fall in the former
category rely either on geometric properties of the surface
such as critical points identified in the process of flattening
the surface [15], or on existing knowledge, such as an atlas
for the shape of interest [17]. It is worth mentioning that
these methods work on the premise that knowledge of a
mapping on a small number of correspondences can be
extended to give the full map between the two surfaces of
interest [11], [18], [19]. Landmark-free methods, on the other
hand, rely on a geometric representation of the surface in
which each vertex is assigned a signature, under the
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premise that points with similar signatures are more likely
to correspond. Spectral techniques fit in this category.
Rustamov, for example, introduces the global point
signature (GPS) of a point on the shape, which encodes
both the eigenvalues and the eigenfunctions of the Laplace-
Beltrami operator evaluated at that point [20]. Guibas et al.
introduced the heat kernel signature, a similar robust and
multiscale invariant defined on each point of the surface.
This invariant is found by solving a partial differential
equation involving the same Laplace-Beltrami operator [21].
Fischl et al. assigned to each vertex on a mesh an average
convexity, which is then used to drive the alignment of
cortical surfaces [22], [23]. Vaillant and Glaunès introduced
a representation of surface in the form of currents and then
imposed a Hilbert space structure on it, whose norm is used
to quantify the similarity between two surfaces [24].

In the special case that the two surfaces to be mapped
are of genus zero (i.e., the surfaces are topologically
equivalent to the 2-sphere), two alternate approaches have
been used to generate the closest to-isometric mapping,
namely, those that apply first a parameterization (or
mapping) of the surfaces onto the sphere, and those that
directly align the surfaces in their own coordinates (usually
the 3D Cartesian coordinates).

The existence of a conformal mapping of a genus-zero
surface to the round sphere is guaranteed by the Uni-
formization Theorem [25], [26]. Various methods have been
proposed to generate such a conformal mapping in the
discrete case (i.e., when the surface is represented by a
mesh), including building a linear system that approx-
imates the Laplace-Baltrami operator [27], using circle
packing [28], solving for degree one harmonic maps [29],
[30], or minimizing an angle-based functional [31]. Once
two genus-zero surfaces have been mapped conformally
onto the sphere, the search for (near) isometries between
them can be made more tractable by restricting to a search
within the Möbius group, the group of bijective conformal
self-mappings of the sphere. The Möbius group acts on the
sphere with six degrees of freedom. A single Möbius
transformation, and therefore a conformal mapping be-
tween the two surfaces, is determined by specifying
correspondences between exactly three points. Lipman
and Funkhouser implemented this idea by sampling
random triplets of points over each surface, computing
the Möbius transformation defined by those triplets, and by
“voting” over the samples, using as a ranking criteria the
estimated deviation from isometry [32]. This idea was
further extended to automatically quantify the overall
similarity between surfaces [15]. It was also previously
used by Tosun et al. [33] and Gu et al. [30] to minimize
sulcal distances when aligning brains.

A conformal mapping between two surfaces of genus
zero can only align exactly three points; exact matching of
more than three landmark points therefore requires relaxa-
tion of the constraints of angle preservation. Wang et al.
[34], for example, introduced an approach for comparing
two genus-zero surfaces C1; C2 that balanced conformability
with landmark correspondence. They computed a confor-
mal map f1 : C1 ! S2 and then searched for a second map
f2 : C2 ! S2 that minimizes an energy function with two

terms E1 þ E2. The first term E1 is the standard Dirichlet
energy, whose minimizer gives rise to a conformal map.
The second term is given by E2 ¼

P
kf2ðqiÞ � f1ðpiÞk2,

where the norm represents the euclidean distance of two
points on the round sphere, and fpi 2 C1g and fqi 2 C2g are
matching landmark points. Joshi et al. introduced a similar
extended cost function that includes a strain energy (based
on the Laplace-Beltrami operator) and a penalty term for
sulci matching, with the alignment being performed on a
flat surface instead of the sphere [35].

In this work, we are interested in generating a globally
optimal conformal mapping between two surfaces of genus
zero. In contrast to the works of Wang et al. [34] and Joshi
et al. [35] mentioned above, we do not relax the constraints
of angle preservation; instead, we propose a new algorithm
that fully eliminates the use of landmarks, thereby generat-
ing a mapping based only on the knowledge of the two
surface triangulations. In this approach, the whole mesh
representing the source surface is warped onto the target
surface, using the mapping defined through the composi-
tion of discrete conformal mappings of the surfaces onto the
sphere and the Möbius transformation between these
mappings. The discrete mappings onto the sphere are
generated using the algorithm introduced by Springborn
et al. [31]. The Möbius transformation is then optimized by
gradient descent to lead to minimal distortion between the
source mesh and its image, where distortion is measured as
difference from isometry. A good choice of initial maps is
essential for success for this kind of method, as one expects
many local minima to exist in the 6D space of conformal
maps that we explore. We generate initial alignments based
on choices of triplets of points in each surface computed
from a best ellipsoid approximation for each. The success of
such an approach is likely to be problem dependent. We
note that our optimal conformal mapping is a composition
of Möbius transformations; as each Möbius transformation
is a homeomorphism, it is therefore a homeomorphism
between the two surfaces.

This paper is organized as follows: Section 2 provides the
mathematical background for our algorithm: discrete
conformal geometry and distance measures between
meshes. In Section 3, we provide the details of its
implementation, focusing on how to ensure its robustness.
Section 4 presents the results obtained by our algorithm on
automatic registrations of brains, as well as on comparing
surfaces of protein structures. We conclude the paper with a
discussion on future developments.

2 BACKGROUND

2.1 Basic Ideas

Let S1 and S2 be two surfaces of genus zero, represented by
the meshes M1 and M2, respectively. Both meshes are
taken to be triangular, with M¼ ðV ;E; T Þ and V ¼ fvig,
E ¼ feijg, and T ¼ ftijkg denoting the vertices, edges, and
triangles, respectively. We note that these two meshes are
independent of each other and are likely to have different
combinatorics. Our goal is to define a discrete map f :
M1 ! fðM1Þ where fðM1Þ is a geometric realization ofM1

onto S2, that is as close as possible to an isometry, i.e., that
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minimizes the distortion of pairwise distances between
vertices. The key observation [32] that makes the problem
tractable is that f can be understood as the composition of
three discrete conformal mapping functions, C1, m, and C�1

2

(see Fig. 1). The group of conformal self-mappings of the
sphere is well understood and is called the Möbius group.
Any transformation m in this group is defined by specifying
the image of three points, and thus has six degrees of
freedom. The mapping f is then constructed by optimizing
m so that the composition C�1

2 �m � C1 is as near to an
isometry as possible. We use this structure to develop an
automatic algorithm for comparing two genus-zero sur-
faces. This method involves two main steps: 1) generation of
parameterizations C1 and C2 of the meshes M1 and M2

onto the sphere, and 2) optimization of the Möbius
transformation m. Mathematical details for each of these
two steps appear in the next sections.

2.2 Discrete Conformal Mapping to the Sphere

While Riemann’s Uniformization Theorem guarantees that
any smooth genus-zero surface S can be mapped con-
formally (with angles preserved) to the unit sphere, in
applications we are forced to work with discrete approx-
imations of these underlying smooth objects. The theoretical
underpinnings of the theory of discrete conformal maps are
still being developed, but many methods have been
developed to compute them in practice. We follow the
approach proposed by Springborn et al., which introduces a
notion of discrete conformal equivalence [31]. While we
refer the reader to their paper for a full description of this
approach, we summarize it here to introduce definitions
and equations relevant to our algorithm. Derivations of the
formulas given below can be found in their paper.

Let us consider a triangular mesh M¼ ðV ;E; T Þ em-
bedded in a 2D manifold. We do not restrict its topology or
assume the presence of a boundary. The intrinsic geometry
ofM is encoded in its edge lengths.

Definition 1. A discrete metric on M is a function l defined on

the set of edges E that assigns to each edge eij a length lij such

that the triangle inequalities are satisfied for all triangles in T ,

so that no side of a triangle has length longer than the sum of

the other two side lengths.

The notion of discrete conformal equivalence is defined
as follows.

Definition 2. Two discrete metrics l and ~l on M are discretely
conformally equivalent if, for some assignment of numbers
ui to the vertices vi, the metrics are related by the formula:

~lij ¼ eðuiþujÞ=2lij: ð1Þ

Starting with some discrete metric l, we are interested in
finding a new discrete metric ~l that is discretely conformally
equivalent and that has particularly nice geometric proper-
ties. In the following, we set l to be euclidean distance,
meaning that the relations between lengths and angles of
triangles are those of the classical euclidean case. Note that
other metrics are possible. Given such a metric l and a
triangle tijk in M, the angle �ijk at vertex vi opposite edge ejk
can be recovered from the lengths of the sides of the triangle
by standard euclidean trigonometry, giving the formula:

�ijk ¼ 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlij þ ljk � lkiÞðljk þ lki � lijÞ
ðlki þ lij � ljkÞðljk þ lki þ lijÞ

s
: ð2Þ

The curvature Ki at an interior vertex vi is given by the
excess angle sum:

Ki ¼ 2��
X
vi2tijk

�ijk: ð3Þ

The problem of mesh parameterization can then be stated
as finding weights ui such that the new corresponding
metric ~l has curvature 0 at all interior vertices in the mesh.
These conditions lead to a system of nonlinear equations,
one per interior vertex. Springborn et al. [31] have shown
that if a solution to this system of equations exists, it can be
found as the unique minimizer of the convex energy in u:

CEðuÞ ¼
X
tijk2T

fðui; uj; ukÞ þ �
X
vi2V

ui; ð4Þ

where

fðui; uj; ukÞ ¼
1

2

�
~�ijk

~�jk þ ~�jki
~�ki þ ~�kij

~�ij
�
þ JI

�
~�ijk
�

þ JI
�

~�jki
�
þ JI

�
~�kij
�
� �

2
ðui þ uj þ ukÞ;

ð5Þ

with

~�ij ¼ 2 logðlijÞ þ ui þ uj; ð6Þ

and JI is Milnor’s Lobachevsky function:

JIðxÞ ¼ �
Z x

0

log j2 sin tjdt: ð7Þ

This can be understood by considering the partial deriva-
tives of the energy:

@CE

@ui
¼ 1

2
2��

X
tijk3vi

~�ijk

 !
; ð8Þ

so that rCEðuÞ ¼ 0 if and only if the scaling factors u solve
the problem and give a zero curvature metric.

The method described above allows for the flattening of
a mesh topologically equivalent to a disk onto a plane.
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Fig. 1. Globally optimal conformal mapping.



When used in combination with stereographic projection
from the plane to the sphere, it can be applied to the
problem of mapping meshes with spherical topology onto
the sphere with the following algorithm (see also Fig. 2).

Algorithm 1. Discrete conformal mapping of a genus 0 meshM
with discrete metric l to the unit sphere [31], [36].

(1) Initialization. Select vertex v0 with smallest curvature.

Set uj ¼ �2 log lj0 for all vertices vj in the link of v0.

(2) Let M0 be M minus the open star of v0. M0 is
topologically a closed disk.

(3) Flatten M0 by solving iteratively for ui that minimize

the energy CEðuÞ defined in Section 4.

(4) Layout M0 on the plane under the minimized metric ~l.

(5) Project planar layout on the sphere stereographically

and reinsate v0 at the North Pole.

(6) Apply Möbius normalization to ensure that the center

of mass of all vertices is at the origin.

The choice of the vertex v0 in step (1) is arbitrary; we
have found that choosing the vertex with the smallest
curvature works best in practice. The minimization in
step (3) is performed over all interior vertices of the mesh
M0. The vertices at its boundary, i.e., those that correspond
to the link of v0, have their weights fixed to their values
given in step (1).

The result of this procedure, if it exists, is a polyhedron
with vertices on the sphere that is discretely conformally
equivalent to M. It may not exist, as the set of nonlinear
equations solved in step (3) is not guaranteed to have a
solution. Indeed, while the variational energy CE is convex,
we do not have a convex optimization problem. The set of
weights ui that results in new edge lengths that satisfy the
triangle inequalities is not convex. We can circumvent to
some extent this difficulty by extending the domain of CE:

if ~ljk > ~lki þ ~lij then ~�ijk ¼ � and ~�jki ¼ ~�kij ¼ 0:

This simple fix still does not guarantee that a solution exists.
We will discuss this further in Section 3.

The parameterization resulting from this algorithm is not

unique. The choices made in the algorithm can lead to

parameterizations that differ by a rotation of the sphere. By

imposing the zero mass-center (step (6)), the mapping is at

least unique up to the euclidean rotation group.

2.3 Möbius Normalization for Zero Mass-Center

In his elegant paper [37], Springborn proved that for “n � 3

distinct points in the d-dimensional unit sphere, there

exists a Möbius transformation such that the barycenter of

the transformed points is the origin.” He did not, however,

include a practical method for building such a transforma-

tion. We show here that searching for this transformation

can be formulated as a nonlinear optimization problem

with four variables.
Let us consider n � 3 distinct points in the 2D unit

sphere. The stereographic projection from the North pole of

this sphere onto the xy-plane takes the point vi with

coordinates ðxi; yi; ziÞ to the point:

Pi ¼ ðXi; Yi; 0Þ ¼
xi

1� zi
;
yi

1� zi
; 0

� �
;

that can be identified with the complex coordinate

zi ¼ Xi þ iYi.
A Möbius transformation m that maps infinity to infinity

in the Riemann plane (i.e., that maps the North pole of the

sphere to itself) can be represented as a linear form

mða; bÞ ¼ azþ b, where a and b are complex numbers and

a 6¼ 0. The point Pi is mapped into a point P 0i with complex

coordinate z0i ¼ azi þ b. Let us define !0i ¼ jz0ij
2 ¼ ðazi þ

bÞðazi þ bÞ The inverse stereographic projection of P 0i gives

the following formula for the coordinates of the image v0i ¼
ðx0i; y0i; z0iÞ of vi under the transformation m:

v0i ¼
azi þ azi þ bþ b

1þ !0i
;
azi � azi þ b� b

ið1þ !0iÞ
;
!0i � 1

!0i þ 1

� �
:

The transformation m satisfies the zero mass center

condition if and only if the functional

F ða; bÞ ¼ 1

n2

Xn
i¼1

x0i

 !2

þ
Xn
i¼1

y0i

 !2

þ
Xn
i¼1

z0i

 !2
0
@

1
A ð9Þ

satisfies F ða; bÞ ¼ 0. The summations extend over all points,

and the coordinates are nonlinear functions of a and b, as

given above. We find the best (in the least-squares sense)

transformation mða�; b�Þ by solving

ða�; b�Þ ¼ arg min
a;b

F ða; bÞ: ð10Þ

2.4 Warping the Source Mesh onto the Destination
Surface

Following the idea illustrated in Fig. 1, a mapping f

between the source and destination surfaces S1 and S2 can

be written as the composition f ¼ C�1
2 �m � C1, where C1

and C2 are the discrete conformal mappings of S1 and S2 on

the sphere, respectively, and m is a Möbius transformation.

Any such transformation m is characterized by four

complex numbers and is given by the closed-form formula:
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Fig. 2. Discrete conformal mapping to the sphere. The mesh
representing the surface S1 (A) is first mapped to the plane (B) after
removal of a vertex v0 and its open star to make it topologically
equivalent to a closed disk. The planar layout is then projected
stereographically to the sphere (C), with v0 being reinstated at the
North pole. The spherical mesh is then normalized to ensure zero mass-
center (D). Note that the sulci appear clearly on the normalized mesh.



mðzÞ ¼ azþ b
czþ d with ad� bc ¼ 1: ð11Þ

For convenience of notation, we store the four complex
numbers a; b; c, and d into a vector ~h and define m ¼ mð~hÞ.
Note that ~h contains eight real numbers, but corresponds to
six degrees of freedom only, as ad� bc ¼ 1.

Let us call M1 and M2 the genus-zero meshes
representing S1 and S2, and SM1 and SM2 the images on
the sphere obtained from the discrete mappings C1 and C2.
We generate the warping WmðM1Þ of M1 onto the surface
S2 by locating the successive images v0i, v

00
i , and v000i of a

vertex vi inM1 for the mappings C1, a Möbius transforma-
tion m, and the inverse of C2, in this order. Both v0i and v00i lie
on the sphere, with v00i ¼ mðv0iÞ. The key idea to finding v000i is
to locate v00i in the spherical triangulation SM2 and transfer
this location onto M2. To speed up this location step, we
partition the unit sphere, using uniform subdivisions in the
polar coordinates ð�; �Þ. We then find a representative
triangle in SM2 for each subdivision. The algorithm for
warping M1 onto the surface S2 is given in Algorithm 2.

Algorithm 2. Warping a genus 0 mesh M1 on a destination

surface S2 defined by a mesh M2.

for all vertices vi in M1 do

(1) Compute v00i ¼ mðv0iÞ, where v0i is the vertex

equivalent to vi in SM1.

(2) Identify the subdivision of the sphere containing v00i
and its representative triangle t0.

(3) Compute barycentric coordinates ð�; �; �Þ of v00i in

triangle t0.

while � < 0 or � < 0 or � < 0 do

(4) Identify vertex p of t0 corresponding to one of

the negative barycentric coordinates. Update t0

with its adjacent triangle opposite to p.

(5) Update barycentric coordinates ð�; �; �Þ.
end while

(5) Compute position of v000i ¼ fðviÞ on the surface S2

by propagating the barycentric coordinates ð�; �; �Þ
onto the triangle t in M2 that corresponds to t0.

end for

The result of this procedure is a new mesh, WmðM1Þ, on
S2, with the same combinatorics as M1, but different
geometry. Note that a different warping WmðM1Þ is
obtained for each Möbius transformation m.

2.5 Measuring the Distance between Two Meshes

The two meshes M1 and WmðM1Þ have the same
combinatorics ðV ;E; T Þ but different geometries (encoded
in the positions of the vertices), asM1 is a representation of
S1 while WmðM1Þ sits on the surface S2. By construction,
WmðM1Þ ¼ fðM1Þ. We define the elastic energy L associated
with this mapping f as

LðfÞ ¼
X
eij2E

kfðvjÞ � fðviÞk
kvj � vik

� 1

� �2

; ð12Þ

where k:k is the usual L2 norm.
LðfÞ is a measure of the differences between the two

shapes represented by the surfaces S1 and S2.
A mapping f with LðfÞ ¼ 0 is called an “isometry” and

the two meshes M1 and WmðM1Þ are then said to be

isometric. Note that this is a weak concept of isometry.
Formally, we can only state that if f is an isometry of the
underlying surfaces, then LðfÞ ¼ 0.

We work in the class of conformal maps, so angles are
preserved. The remaining distortion of a map from an
isometry is exactly reflected in the conformal stretching
factor. The elastic energy LðfÞ defined above measures the
average stretching of the edges in a mesh and thus reflects
the distance of a conformal map from an isometry.

2.6 A General Algorithm for Mapping Two Surfaces
of Genus Zero

As illustrated in Fig. 1, we rely on the idea that a conformal
mapping f between two surfaces S1 and S2 of genus zero
can be written as the composition of two discrete conformal
mappings C1 and C2 that parameterize S1 and S2 onto the
sphere, and a Möbius transformation m. In optimizing the
map produced from this composition, C1 and C2 are fixed,
while m is variable and depends on six degrees of freedom
summarized in a parameter vector ~h (see (11)). The key to
our approach is to choose the transformation m to yield the
minimum weighted distance between the mesh M1

representing S1 and its image WmðM1Þ warped onto S2.
This approach eliminates the need to define correspon-
dences between landmark points on the two surfaces. The
weighted distance between a mesh and its image under the
conformal mapping f is measured by the elastic energy
LðfÞ of f . For convenience of notation, it is written LðfÞ ¼
Lðmð~hÞÞ ¼ Lð~hÞ as only m is variable. We have developed
all the tools we need to perform this optimization, namely:
1) an algorithm for computing the discrete conformal
mappings C1 and C2 (see Algorithm 1), 2) an algorithm
for generating the warping of a discrete mesh onto a surface
for a given Möbius transformation m (see Algorithm 2),
and 3) a definition of the elastic energy LðfÞ that measures
its distance to an isometry (see (12)).

Simple calculations provide the analytical expressions for
the elastic energy function Lð~hÞ and its gradient with respect
to ~h. This allows us to apply a steepest descent algorithm to
optimize the Möbius transformation m. Our general algo-
rithm for comparing the two surfaces S1 and S2 is then:

Algorithm 3. Correspondence-free comparison of two discrete

surfaces of genus zero.

Initialization. Apply algorithm 1 to map M1 and M2

onto the sphere.

(1) Initialize Möbius transformation m0 ¼ mð~h0Þ.
for n ¼ 0; . . . until convergence do

(2) Generate WmðM1) using algorithm 2 where

m ¼ mð~hnÞ.
(3) Compute Lð~hnÞ and its gradient rLð~hnÞ with

respect to ~hn.

(4) Update ~hnþ1 ¼ ~hn � �nrLð~hnÞ.
(5) Check for convergence: if Lð~hnþ1Þ < TOL, stop.

end for

The damping parameter �n in step (4) is obtained by
solving the equation Lð~hn þ �nrLð~hnÞÞ � Lð~hnÞ using a line
search method. The value of TOL is set to a small constant
related to machine error.

The result of this procedure is a warping of the meshM1

onto the surface S2 that minimizes distance from an
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isometry among nearby conformal maps, with distance
measured by the elastic energy. In addition, it gives a
measure of the distance betweenM1 and its warped image
that reflects the geometric differences between the two
surfaces. In many cases where the surfaces S1 and S2 are
isometric, the procedure will produce the isometry.

3 IMPLEMENTATION

There are several issues to address in generating a robust
implementation of the algorithms discussed above that is
fast enough to be usable in practice. In the following, we
describe with details the implementations of the main steps
of the method. We do not provide a convergence or
complexity analysis, and leave those for future work.

3.1 Discrete Conformal Mapping on the Sphere

Flattening a mesh topologically equivalent to a disk. Following
the formalism developed by Springborn et al., we have
shown in the previous section that the discrete mesh
parameterization problem can be recast into an uncon-
strained convex optimization problem with explicit for-
mulae for the target function CEðuÞ (see Section 4), its
gradient, and its Hessian (see [31]). As noted by Springborn
et al., the Hessian is positive semidefinite with only the
constant vector in its null-space. To find the vector u that
minimizes the extended energy, we use a trust region
Newton method as implemented in the program TRON [38].

TRON is globally convergent and will find a vector u that
minimizes CE. It does not guarantee, however, that the
solution is feasible: It is possible that the minimum is
reached for u that defines a new discrete metric ~l that does
not satisfy the triangle inequalities. In all the cases we have
tested, we observed that the violations of triangle inequal-
ities, if any, occurred in sliver triangles, for which one of the
interior angles is smaller than 5 degrees. This lead us to the
following strategy for eliminating the violations:

1. solve the convex optimization problem for u,
2. compute all edge lengths based on the new metric ~l,
3. detect all triangles whose edge lengths violate the

triangle inequality and flip the edges opposite to
their smaller angle, and

4. repeat points 1-3 until all triangle inequalities are
satisfied.

The same strategy of edge flipping was already considered
by Springborn et al. [31]. For most of the test cases described
in the result section, a single cycle was found to be
sufficient; in the remaining cases, two cycles removed all
violations.

We note that this simple strategy will not work if the
mesh contains regions with high densities of sliver
triangles. In such cases, remeshing is required.

Laying out the planar mesh. Once the weights u have been
found and it is verified that the corresponding discrete
metric ~l is free of triangle inequality violations, we have new
edge lengths that guarantee that the mesh M is flat, i.e., it
can be laid out in the plane after removal of a vertex. We
assume that the mesh is oriented, and that the vertex lists for
all triangles are ordered with consistent orientation. We
generate the coordinates of all N vertices in M under the

metric ~l using the following layout procedure. Each triangle
inM is assigned a flag, vt, initially set to zero; a similar flag
vv is assigned to each vertex v. We create an empty master
list L. We pick a triangle t0 at random in the mesh structure.
One of its vertices i is set at the origin of the plane, and a
second one j is placed on the x-axis, with its distance to the
origin set to ~lij. The triangle t0 is added to the list L and its
flag is set to one; the flags vv of the two vertices i and j are
set to one. The layout algorithm proceeds as follows.

Algorithm 4. Planar layout of the parameterized mesh.

Set nv ¼ 0

while jLj 6¼ 0 do

t ¼ popðLÞ).
(1) Let t ¼ ði; j; kÞ and SðtÞ ¼ vvðiÞ þ vvðjÞ þ vvðkÞ.
if SðtÞ < 3 then

(2) Let i be the vertex with vvðiÞ ¼ 0. Build i using

standard geometry; vvðiÞ ¼ 1; nv :¼ nvþ 1.

end if

for all tn adjacent to t with vtðtnÞ ¼ 0 do

vtðtnÞ ¼ 1; L ¼ L
S
ftng.

end for

if nv%10;000 ¼ 0 or nv ¼ N then

(3) Regularize layout

end if

end while

In step (1), the triangle t is either t0 or a neighbor of a
triangle that was already laid out; in both cases, at least two
of its vertices have already been considered and SðtÞ � 2.
The construction process in step (2) is then very simple: The
positions of two vertices of t in the plane are known, and
the distances from these vertices to the third vertex are
given by the new edge lengths of the mesh. This is a simple
geometric problem that has two solutions, one for each
orientation. When building the first triangle, one solution is
picked at random. For all other triangles, only one solution
is feasible as the orientation of t must match the orientations
of its neighboring triangles. In theory, this breadth-first
approach will lay out meshes of any size. We have observed
in practice, however, that accumulation of numerical errors
can lead to significant distortions, especially for meshes
with large length ratios. To circumvent this problem, we
have introduced a regularization process as step (3). At a
stage in the process with nt triangles already built, we can
compute a distortion error as follows:

DE ¼
X
eij

�
ðxi � xjÞ2 þ ðyi � yjÞ2 � ~l2ij

�2
; ð13Þ

where the summation extends over all edges eij in the
nt triangles, and ðxi; yiÞ are the planar coordinates of vertex
vi. If DE is small (we use a cutoff of 10�8), the layout is
considered correct. Otherwise, we perform a nonlinear
optimization of the coordinates of the vertices to reach a
minimum of DE. Simple calculations provide explicit
formulae for the gradient and Hessian of DE, and we
can use the Newton trust region method as implemented
in TRON to perform this optimization. To save computing
time, regularization is only performed at multiples of
10,000 vertices and when the layout is complete. In all
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examples described in the results section, this procedure
yields worst relative length errors bounded by 10�7.

Möbius normalization for zero mass-center. As described in
Section 2, the normalization is cast into a nonlinear
optimization problem (see (10)). An explicit formula for
the dependence of F ða; bÞ on the parameters a and b of the
Möbius normalization is available (see (9)). It is also easy to
compute its gradient and Hessian. We can therefore again
use the Newton trust region method as implemented in
TRON to perform this optimization. Typical examples
indicate that we only need up to 10 iterations with TRON
to reach krF ða; bÞk2 � 10�12.

3.2 Warping the Source Mesh onto the Target
Surface

The method we propose for warping a mesh M1 onto a
surface S2 is quite simple. Starting with a vertex vi in M1,
we identify its corresponding point v0i in the spherical mesh
SM1. We then locate its image v00i ¼ mðv0iÞ on the spherical
mesh SM2 and transfer this location onto the meshM2. The
implementations of these steps is straightforward, with
the exception of the point location problem. As this
procedure needs to be repeated for all vertices in M1

(which can be on the order of hundreds of thousands), and
subsequently for many trials for the Möbius transformation
m, we need it to be fast and reliable.

Our approach is akin to the “jump-and-walk” algorithm
used for point location in 2D or 3D triangulations. Given a
point v00i on the sphere, we first “jump” to a trial triangle t in
the spherical mesh SM2. If the (spherical) barycentric
coordinates of v00i with respect to t are all positive, v00i is
inside t and the algorithm stops. If one of the coordinates is
negative, we identify the corresponding vertex in t and
“walk” toward the triangle adjacent to t that is opposite this
vertex. The procedure is then iterated until the correct
triangle is identified. It is easy to see that this method is
guaranteed to converge. It may not be fast, however, as its
speed depends on the quality of the jump, i.e., on how close
the initial trial triangle is from the actual triangle containing
v00i . Standard jump-and-walk techniques pick the initial
triangle from a random subset. We propose an alternative
approach that requires preprocessing. A similar method
was proposed by Wu et al. [39].

We first put a grid G on the sphere based on spherical
coordinates. We chose 400 divisions for the azimuthal
angle � and 200 divisions for the polar angle �, correspond-
ing to a total of 80,000 rectangular subdivisions on the
sphere. We numerically define the coverage of a triangle t in
SM2 by sampling uniformly 20 points inside t and
computing their polar coordinates. The subdivisions of the
grid G that contain these points are assigned t as a
representative. This procedure is repeated for all triangles
in SM2. Any rectangular subdivision s that does not have a
representative at this stage is processed further. First, we
find the closest subdivision to s with a representative, t0,
using a breadth-first algorithm. The triangle containing the
center of s is then located with the jump-and-walk
procedure described above, using t0 as the initial trial. This
triangle is set as the representative of s. As a result of the
this procedure, all subdivisions in the Gaussian grid are
assigned a representative triangle in SM2. The initial trial

triangle for a vertex v00i is then taken to be the representative
triangle of the subdivision that contains v00i .

3.3 Optimal Möbius Transformation
for Near-Isometry

The Möbius transformation that leads to a closest to
isometric mapping among conformal maps between the
two surfaces of interest is obtained as the solution of a
nonlinear optimization problem (see Algorithm 3). We have
adapted a steepest descent approach to solve this problem.
Steepest descent methods are usually fast and easy to set up.
They are, however, very sensitive to local minima and highly
dependent on the quality of the initial guess for the solution.

A random or a trivial initial guess (such as the identity
transformation) is likely to lead to a local minimum. We
have therefore developed a simple procedure to automati-
cally generate better starting points. The idea is to use the
best ellipsoid approximation to each surface to give the
initial alignment. While this alignment is specified by
setting the images of three points, we do not rely on user
selected landmarks or on local geometric features to select
these points. Instead, we simply compute the principal
components of the sets of points representing the two
shapes. For the mesh M1, we compute the covariance
matrix over its set of vertices:

C1 ¼
X
vi

ð~vi � ~	Þð~vi � ~	ÞT ; ð14Þ

where ~vi is the vector of coordinates for vertex vi, 	 is the
center of mass of the vertices, and the summation runs over
all vertices. The ellipsoid whose axes are defined by the unit
eigenvectors of C1, scaled by the associated eigenvalues, is
the best fit ellipsoid to the mesh M1. These three axes cut
the surface represented by M1 in three pairs of points,
ðA1; A

0
1Þ, ðB1; B

0
1Þ, and ðC1; C

0
1Þ. Using the same procedure

onM2, we get three corresponding pairs of points, ðA2; A
0
2Þ,

ðB2; B
0
2Þ, and ðC2; C

0
2Þ The three points ðA2; B2; C2Þ defines a

direct orientation for M2. There are four choices of triplets
of points on M1 whose correspondences to these three
points lead to an alignment of the axes of the two ellipsoids
with proper orientation; these are ðA1; B1; C1Þ, ðA1; B

0
1; C

0
1Þ,

ðA01; B01; C1Þ, and ðA01; B1; C
0
1Þ. Each of these correspondences

defines a unique Möbius transformation. One of the
advantages of choosing these points is that they are well
separated, which leads to stability in the corresponding
transformation. Each of these transformations is then used
as an initial guess for the steepest descent approach. This
leads to four different optimizations. The solution with the
lowest resulting elastic energy L is chosen to define the
optimal Möbius transformation.

We have implemented the whole procedure into a
Fortran program, MatchSurface.

4 EXPERIMENTAL RESULTS

4.1 Brain Surface Mapping

We demonstrate the feasibility of our algorithm by applying
it to the brain surface matching problem. We consider a
set of cortical surface models extracted from in-vivo MRI on
38 anonymous subjects [40]. These are the same models that
were used by Yeo et al. to evaluate the performance of their
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Spherical Demons algorithm [41], with the exception that
we removed Subject6, as its database of manual parcellation
is incomplete. This data set covers significant anatomic
variability as it contains young, middle aged, and elderly
subjects and Alzheimer’s patients. For each subject, the left
and right cortical surface models are provided as discrete
genus-zero surface meshes, as well as information on their
manual parcellation into 35 regions [42], as described in [41,
Table II]. The left and right hemispheres of Subject39 are
considered as templates (or Targets) on which all the other
corresponding surfaces (Sources) are registered followed
the procedure outlined in Algorithm 1; the optimization of
the Möbius transformation from the unit sphere to itself
was performed four times, each with a different initial
guess derived from the principal components of the mesh
(see implementation above). Usually, three of these optimi-
zations led to local minima while the fourth one provided a
good alignment between the template and source meshes,
as illustrated in Fig. 3 for Subject1 in the database.

To assess the performance of our new algorithm, we
repeated the Source to Target registrations described above
with two widely used landmark-free registration methods
as well as with a modified version of MatchSurface that
uses landmarks. We first applied the FreeSurfer registration
algorithm [23] using the default FreeSurfer settings. We also
used the Spherical Demon algorithm [41]. As the latter only
performs a registration of the sphere on itself, we used as
input the spherical representations of the hemispheres
generated by FreeSurfer. Finally, we used a modification of
MatchSurface in which the landmark-free energy function
LðfÞ defined in (12) is replaced with a function CðfÞ that
computes the discrepancies between the positions pTi of
landmark points on the Target and the images fðpSi Þ of the
corresponding points on the Source meshes:

CðfÞ ¼
X
i

���f�pSi �� pTi ���2
: ð15Þ

Landmark points were set to sample uniformly the
boundaries of all 35 regions. Each boundary was represented

with 70 to 500 points, for a total of 9,136 points. We note that
all four methods include a mapping to the sphere.

To measure the quality of the cortical registrations
provided by all four methods (MatchSurface, Freesurfer,
Spherical Demon, and the modified MatchSurface which
we refer to as Landmark), we used a modified Hausdorff
distances [43]. We projected each of the 35 regions from
each of the Source subjects onto the Target surfaces and
computed the mean distance between their boundaries.
Fig. 4 displays the average distance per structure for the
four algorithms, for the left and right hemispheres.
Standard errors are shown as bars. The numbering of the
structures correspond to [41, Table II]. Of the three
landmark-free methods, the Spherical Demon algorithm
performs best, followed by FreeSurfer, then by MatchSur-
face. The improved performance of Spherical Demon
compared to Freesurfer was already noticed [41]. Here
we report that these two methods perform better than
MatchSurface. We observe, however, that the differences
between the three methods are small. It should be noted
that FreeSurfer and Spherical Demons are designed to
provide high-quality local alignments, while MatchSurface
generates a global alignment of the two surfaces. It is
therefore significant that a fully conformal correspondence
gives landmark matching that is of comparable quality to
nonconformal correspondences. The local versus nonlocal
behavior is also significant to understand the results of the
landmark-based method. Landmark performs significantly
worse than the two local landmark-free methods, and
slightly worse than MatchSurface. While Landmark is
designed to obtain a good alignment of the landmarks, the
optimization is performed globally in the space of
conformal maps of the sphere to itself, i.e., in the space
of Möbius transforms. Any such map can only align
exactly three points between two representations of the
sphere. When more landmarks are present, it provides a
best-fit solution to the alignment problem with the
constraint of imposing conformality, leading to some
structures being poorly aligned. This limitation has already
been described [34].

In Table 1, we compare the running times of the three
landmark-free registration methods. MatchSurface is sig-
nificantly faster for generating the mapping of a genus-zero
surface onto the sphere as it solves this problem by
minimizing a functional energy. MatchSurface is slower in
generating the registration. We note, however, that our
current implementation includes four minimizations of the
elastic energy with four different initial conditions; we are
working on eliminating this requirement, which would
reduce the running time for registration by 4. The total
running time of each method is obtained by summing the
registration running time with twice the time needed for
spherical mapping (as it is performed on the target and
source meshes). MatchSurface is then found to be signifi-
cantly faster than the two other methods.

4.2 Morphodynamics of Protein Structure Surfaces

Different experimental techniques provide different repre-
sentations of protein structures. For example, high-resolution
X-ray and NMR techniques generate atomistic models of
proteins that are accurate at the Angstrom level, while
techniques based on electron microscopy (EM) provide much
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Fig. 3. Automatic brain surface mapping. The best registrations of the left
and right hemispheres of the brain of Subject1 (Source) from the Anon
database [40] onto the corresponding hemispheres of the template brain
of Subject39 (Target) are shown on the inflated cortical surfaces of the
target. The boundaries between the 35 regions obtained by manual
parcellation (see text for details) are shown in red and green for the target
and the images of the Source, respectively. Note that these are shown
for illustrations only, as they were not used in the registration process.



lower resolution (typically 10-35 Angstroms) 3D electron

density maps for the proteins of interest. While high

resolution is preferred, the complexities of applying the

corresponding techniques on large molecular systems and

the comparative ease with which low-resolution EM and

MS techniques can be used on the same system mean that

low-resolution models are often available long before their

high-resolution counterparts. Many techniques have been

developed to achieve more details from EM and MS data by

fitting atomic-resolution models into the low-resolution

density maps. These techniques work well if such models
are available. However, such information is not available for
many protein complexes, especially those that are dynamic.
There is, therefore, a need to develop techniques that can
analyze and measure the density maps directly. As these
maps define surfaces, we can test the method described
above and compare protein structures at a coarse level. We
illustrate these tests on one protein, calmodulin. Results are
shown in Fig. 5.

Calmodulin is a calcium binding protein expressed in all
eukaryotic cells. It is a small protein that consists of two
small domains separated by a linker region. The flexibility
of this linker is key to the ability of calmodulin to bind to a
wide range of substrates [44].

We consider two static structures for calmodulin corre-
sponding to two different conformations, the apo (ligand-
free) and holo (ligand-bound) forms, with PDB codes 1CLL
and 1A29, respectively. We generated two trajectories
between these two conformations that mimic the corre-
sponding structural transition with MinActionPath. This
program calculates the most probable trajectory between two
known structural states, in the sense of maximum likelihood
or minimum action [45]. The trajectory is described with
50 all-atom conformations. We then measured the evolution

474 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 3, MARCH 2014

TABLE 1
Running Times for Landmark-Free Registration

Fig. 4. Comparisons of MatchSurface, FreeSurfer, and Spherical Demons in registering cortical surfaces. The mean modified Hausdorff distances
computed over the boundaries of the 35 structures are shown for (A) the left hemisphere, and (B) the right hemisphere.



of the structures of calmodulin along these trajectories by

computing their coordinate root mean square deviations

(cRMS) computed over C� to the initial and to the final

conformations. Results of these calculations are shown in

Fig. 5 as solid and dashed lines, respectively. Note that these

measures are based on knowledge at high resolution, as they

are computed from the positions of the atoms.
In parallel, we compared the structures along the

trajectories based on their skin surfaces [46]. We use the

standard model in chemistry of representing a structure as a

union of balls, with each ball corresponding to an atom. The

skin surface of a protein is computed from the boundary of

the union of these balls, where the center of a ball is given

by the coordinates of the atom, and its radius is set to its

van der Waals radius plus a probe radius of Ra ¼ 1:4 �A. We

generated quality meshes for the skin surfaces of all protein

conformations along the trajectories for calmodulin using

the program smesh, described in detail in [47] and [48]. The
corresponding triangular meshes have similar sizes for all
proteins, with, on average, approximately 40,000 vertices
and 70,000 triangles. We compared these meshes using
MatchSurface. Results of these calculations are shown in
Fig. 5. We note that it was not possible to perform the
comparisons for all conformations, as for some their skin
meshes have a genus larger than zero, and our method is
currently limited to surfaces with genus zero. Higher genus
is introduced when two nonadjacent patches of a protein
surface come into contact and create a new handle.
Geometric changes in the surface also occur when two
adjacent patches fold together and no longer form part of
the protein’s boundary surface. While not changing the
genus, this folding can cause abrupt changes in the elastic
energy required to deform one surface onto another. We do
observe that for all genus-zero conformations for which the
comparisons were possible, the distances measured based
on their surfaces (elastic energy, low resolution) correlate
well with the distances measured based on the atomic
coordinates (cRMS, high resolution), with correlation
coefficients above 0.95.

4.3 MatchSurface Is Robust with Respect to the
Quality of the Discrete Representations
of the Surfaces

The implementations of the algorithms presented in
Section 2 into the program MatchSurface were designed to
be fast and robust. However, we do not control the qualities
of the input meshes (both source and destination). To
measure the sensitivity of MatchSurface to the mesh quality,
we considered again the calmodulin protein and generated
four different meshes for the same skin surface, from a fine
mesh with 32,721 vertices and 65,438 triangles, to a much
coarser mesh with 3,523 vertices and 7,042 triangles. The
three coarse meshes were generated from the fine mesh
with a procedure that maintains topology [49]. We then
compared the skin surface with itself using MatchSurface,
for all four possible source meshes and all four possible
destination meshes, for a total of 16 comparisons. Results
are shown in Fig. 6.

We note first that all elastic energies for the 16 compar-
isons are small, much smaller than the values recorded for
different configurations of the surface (see Fig. 5). While
this is expected as we are basically comparing a surface to
itself, it remains a reassuring result as it illustrates the
robustness of the method under change of mesh, as long
as the mesh remains fine enough to accurately represent
the geometry of the surface. The elastic energy can only be
compared directly for the same source mesh, as it depends
on the number of edges in the mesh, and increased elastic
energy for finer meshes does not reflect increased
geometric differences. For coarse source meshes, the
quality of the destination mesh has little impact on the
result. For a fine source mesh however, there is a loss of
quality if the destination mesh is coarse. This is expected,
as a coarse destination mesh provides a poor representa-
tion of its surface and the fine mesh will need to be
distorted to fit on this coarse surface. This is seen in Fig. 6
for the case where the source mesh has 32,721 vertices, but
not for the other cases.
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Fig. 5. Coarse and high-resolution analyses of the dynamics of
calmodulin. We have generated a trajectory with 50 conformations
between the ligand-free structure and a ligand-bound structure of
calmodulin. This protein undergoes a considerable change of conforma-
tion as it transforms into the bound state, as is evident in the rightmost
figure. The cRMS distances between the high-resolution structures of
these conformers and the apo structure (conformation 0) are plotted
versus the conformation number as a red solid line. We also plot the
elastic energy between the surface meshes representing the same
conformers and the surface mesh of the ligand-free protein as red dots;
note that data are missing for some conformations as their skin meshes
have genuses greater than zero. We note a high level of correlation
(0.96) between these two measures. The same behavior is observed
when comparing the 50 conformations with the ligand-bound structure
for cRMS (dashed blue line) and with the surface of conformer 47 for the
surface-based comparison (blue dots); we could not use the surface of
the ligand-bound structure as its genus is greater than 0. The surfaces
reconstructed from the warped meshes and cartoon representations of
the high-resolution structures are shown for a few conformations along
the trajectory. The red dots on the protein surfaces illustrate the
positions of landmark points manually picked on the ligand-free structure
on the successive warped meshes.



4.4 MatchSurface Is Sensitive to Small Variations in
the Surfaces

To assess the sensitivity of MatchSurface to variations in
the details of the surfaces, we generated different skin
surfaces for the protein calmodulin by varying the probe
radius Ra. A low probe radius defines a surface that
follows closely the envelope of the union of atoms, also
referred to as the vdW surface of the protein, while a large
probe radius generates a much smoother surface, as all
atoms have been significantly inflated (see Fig. 7). The skin
surface obtained with Ra ¼ 1:5 is the closest match to the
accessible surface of the protein [50]; we use it as a
reference. All the skin surfaces are then compared to this
reference using MatchSurface. The resulting elastic energies
are plotted against the probe radius Ra in Fig. 7. In these
calculations, the reference mesh is used as a source, and
warped around the different skin surfaces. Clearly,
MatchSurface is very sensitive to the coarseness of the
surface. The sensitivity is more pronounced as the source
mesh is warped onto a surface with more details (see
panel (B) of Fig. 7). We note that the differences measured
between these different skin surfaces are much larger than
the differences observed between different representations
of the same surface (see Fig. 6).

5 SUMMARY AND CONCLUSIONS

We have developed a new method for automatically
generating a conformal map between two surfaces of genus
zero. This new approach leads to flexible registration of the
two surfaces and accurate measurements of their geometric
dissimilarities, without the need for the selection of land-
mark points. Its implementation within the program
MatchSurface is based on fast and robust numerical
methods, making surface comparisons feasible for a wide
range of data sets. We have illustrated its use for brain
surface mapping and protein surface comparisons. We have

compared MatchSurface with FreeSurfer and Spherical
Demon, two landmark-free methods for brain surface
mappings. We have shown that a fully conformal corre-
spondence generates surface registration that is of compar-
able quality to a non-conformal correspondence. We have
demonstrated that the distances computed with our
algorithm between low-resolution, surface-based represen-
tations of proteins are highly correlated with the corre-
sponding distances computed between the high-resolution,
atomistic models for the same proteins.

This paper, however, is just a first step toward achieving
automatic, landmark-free registration of general surfaces.
The current method has limitations that suggest direction
for future work.

First, the method applies only to surfaces of genus zero.
The discrete conformal mappings from the surfaces to the
sphere rely on this property. In addition, we use the fact
that a conformal self-mapping of the sphere belongs to the
group of Möbius transformations, which provides signifi-
cant simplification as a closed analytical form is available
for members of that group. The concept of discrete
conformal equivalence can be extended to surfaces with
arbitrary topology, either through the introduction of cone
singularities [31], or through the definition of a discrete
conformal equivalence between a euclidean triangulation
on the surface and a hyperbolic triangulation [36]. These
alternate definitions lead to (discrete) mappings of the
surface onto a domain in hyperbolic space (which can
be represented by the Poincare disk model.) In general,
there are no conformal maps between two surfaces of
higher genus, though there are various constructions of
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Fig. 7. Sensitivity to surface fluctuations. (A) The elastic energy values
obtained when comparing skin surfaces for calmodulin with the
reference skin surface are plotted against the probe radius Ra used to
generate these surfaces. We show three examples of these skin
surfaces, for Ra ¼ 0.5, 1.5, and 3.0 �A. (B), (C), and (D) (bottom row)
show the surfaces generated by the reference mesh after it has been
warped on these three skin surfaces.

Fig. 6. Sensitivity to mesh quality. We performed all pairwise
comparisons of four different discrete meshes representing the same
skin surface of the protein calmodulin. Three of these meshes (two
coarse and one fine) with 3,523, 7,810, and 3,2721 vertices are shown
on top. The corresponding elastic energies are plotted as a function of
the number of vertices in the destination meshes, for the different source
meshes. We note that all energy values are small (see Fig. 5 for
comparison). This is expected as the underlying surface is the same; it is
still encouraging as it illustrates robustness.



closest-to-conformal mappings. Finding closest-to-isometric
mappings for such surfaces is a topic for future studies.

Second, our algorithm works well for surfaces with
uniform geometry with no extreme protrusions or spikes.
This is usually the case for brain surfaces as well as for
protein surfaces, but it is not true in general. In particular,
MatchSurface does not perform well on models of humans,
as illustrated on Fig. 8. The problem can be ascribed to the
singularities introduced by the arms and legs of the models.
Their discrete conformal mappings to the sphere introduce
very large negative scaling factors on the vertices located at
the hands and feet (see the left panel in Fig. 8, which in turn
lead to infinitesimally small edge lengths in the projected
metric ~l and consequently large numerical errors. This
problem is not specific to our method, as it appears in many
conformal mapping procedures. In some cases approximat-
ing by a conformal map appears to be too restrictive for
accurate alignment. One solution is to introduce cone
singularities in the regions with the worst distortions (see,
for example, [31]). This brings us back to the first limitation
discussed above and its possible resolution through the use
of hyperbolic geometry.

Finally, our algorithm is limited to finding global
matchings between a pair of surfaces of genus zero. A
number of important applications would benefit from an
extension that allows for partial matching. We are currently
working on implementing such an extension.
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