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Let M be a Riemannian manifold and let F be a closed surface. A map 
f: F---,M is called least area if the area of f is less than the area of any 
homotopic map from F to M. Note that least area maps are always minimal 
surfaces, but that in general minimal surfaces are not least area as they 
represent only local stationary points for the area function. The existence of 
least area immersions in a homotopy class of maps has been established when 
the homotopy class satisfies certain injectivity conditions on the fundamental 
group [18, 17]. 

In this paper we shall consider the possible singularities of such immer- 
sions. Our results show that the general philosophy is that least area surfaces 
intersect least, meaning that the intersections and self-intersections of least area 
immersions are as small as their homotopy classes allow, when measured 
correctly. One should note that evidence supporting this view had been found 
by Meeks-Yau in their embedding theorems for minimal disks and 2-spheres 
[13, 143 . 

Our main result asserts that if a least area immersion is homotopic to an 
embedding, then it has no self-intersections, which clearly exemplifies the 
above philosophy. The precise result is the following. 

Theorem 5.1. Let M be a closed, Pa-irreducible Riemannian 3-manifold and let F 
be a closed surface, not S 2 or p2. Let  f :  F ~ M  be a least area immersion such 
that f ,  : ~ I ( F ) ~ I ( M )  is injective and such that f is homotopic to a two-sided em- 
bedding g. Then either 

(i) f is embedding, or 
(ii) f double covers a one-sided surface K embedded in M and g(F) bounds a 

submanifold o f  M which is a twisted 1-bundle over a surface isotopic to K. 

This result answers conjectures of Meeks [123 and Uhlenbeck [22]. Partial 
results towards Theorem 5.1 have been obtained by Schoen and Shalen in the 
case of the torus and by Uhlenbeck [22] in the case of hyperbolic manifolds. 
Some of the ideas in this paper originated in Uhlenbeck's work. In [13] and 
[14], Meeks and Yau prove their versions of Dehn's Lemma and the Sphere 
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Theorem for analytic metrics and then approximate a smooth metric by 
analytic metrics to obtain the smooth case. They also need to use the deep 
theorem of Lojasiewicz that semi-analytic sets are triangulable. In this paper, 
we extend a technique due to Meeks and Yau [13] for approximating non- 
transverse minimal surfaces by transverse surfaces. This enables us to give a 
comparatively direct proof of our result with no mention of analytic metrics. 
Our methods could also be used in the Meeks-Yau papers [14] and [ t3]  to 
give a very substantial simplification of their arguments. 

A simple example of case (ii) of the theorem can be obtained by taking the 
product of the flat Moebius band with the circle [7]. There is a family of 
totally geodesic tori homotopic to the boundary of this 3-manifold, each of 
which has the same area and each of which minimizes area in its homotopy 
class. One member of this family double covers an embedded one-sided torus. 
An orientable example can be obtained by taking the orientable/-bundle over 
the Klein bottle and considering the class of tori homotopic to the boundary. 

Theorem 5.1 and its method of proof allow us to prove many more results 
on intersections and self-intersections of least area immersions. The first result 
is a generalization of Theorem 5.l and asserts that if a least area immersion is 
homotopic to a covering of an embedding then it is a covering of an embed- 
ding. Next we consider the self-intersections of a least area immersion which 
can not be homotoped to a covering of an embedding. The natural way to 
measure the complexity of the self-intersection of a self-transverse immersion is 
to count the double curves. This count needs care if the immersion contains 
curves of triple points and can not be made at all if the immersion is not self- 
transverse. In the case when the surface involved is the torus or Klein bottle, 
however, we show in w that any least area immersion is self-transverse and 
must have the minimal possible number of double curves. For higher genus 
surfaces, both these statements are false. We give in w an example of a least 
area immersion of the closed orientable surface of genus two into a 3-manifold 
which is self-transverse and has more than the minimal number of double 
curves. However, there is a different, but still natural, measure of the com- 
plexity of the self-intersection of an immersion, which is also defined for 
immersions which are not self-transverse. Using this measure, we show in w 
that any least area immersion has least self-intersection. 

Simultaneously with the above, we also consider the intersection of two 
least area immersions. The first result we obtain states that if the two least 
area immersions are homotopic to disjoint maps, then they are either disjoint 
or their images coincide. If two least area immersions can not be homotoped 
apart, our results are similar to those on the self-intersections of a single 
surface. Two least area immersions, one of which is an immersed torus or 
Klein bottle, always intersect transversely and with the minimal number of 
double curves. This is false in general, but as before, an alternate method of 
counting complexity of intersections yields least intersection in all cases. 

The organization of the paper is as follows; in w we discuss some of the 
basic properties of least area surfaces. In w we prove a crucial special case of 
the main theorem, when the surface is mapped in by a homotopy equivalence. 
In w we then make some simple but important deductions from this result. 
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We prove an existence theorem for the non-orientable case and extend the 
results of  the previous section to this case. In w we prove a result in 3- 
dimensional topology which will be used later. In w 5, we prove the embedding 
result, Theorem 5.1, and some related results. In w we apply the methods of 
w 5 to show that least area surfaces intersect least. In w we consider extensions 
of  our results to the relative case and to reducible 3-manifolds. In w we give 
two examples. The first is a simple example of  two embedded least area 
surfaces in a 3-manifold which intersect non-transversely. The second is an 
example of a self-transverse least area immersion of  a surface of  genus two in a 
3-manifold, which does not  have the least possible number  of  double curves. 

The main results of this paper make sense if the dimensions involved are all 
reduced by one, and the ideas of our p roof  still work. For  example, Theo- 
rem 5.1 becomes the result that if f :  S1--,F is an essential loop on a closed 
surface F which is homotopic  to a two-sided embedding and is a shortest loop 
in its h o m o t o p y  class, then f is an embedding or double covers a one-sided 
embedded circle in F. We have written up the results about  shortest loops on 
surfaces in a separate paper [5]. The reduction in dimension eliminates many  
technical p rob lems-and  we hope that [5 3 will demonstrate  clearly the sim- 
plicity of the ideas in the present paper. 

w 1. Results About Least Area Surfaces 

We work in the C a' category. We will state our results for surfaces and 
manifolds with no boundary,  al though all the results go through straightfor- 
wardly if the 3-manifold is allowed to have a boundary  whose mean curvature 
vector field is zero or inward pointing [15]. This will be discussed further in 
w 

We will use the following terminology. A map f :  F ~ M  is incompressible if 
it induces an injection on the fundamental  group. Note  that we depart from 
general usage by not requiring an incompressible map to be an embedding. 
Such a map is two-sided if its normal  bundle is trivial. An immersion f is self- 
transverse if given two points x and x', with f (x)=f(x ' ) ,  there exist small discs 
about  x and x' which are embedded by f and intersect transversely. Note  that  
this is not  the same as being in general position. It is possible for a self- 
transverse immersion to have an arc of triple points or a countable infinite set 
of  triple points, for example. 

Let F 1 and F 2 be a pair  of embedded two-sided surfaces in a 3-manifold M 
which intersect transversely. A compact  submanifold X of M is said to be a 
product region between F 1 and F 2 in M if there are compact  subsurfaces S 1 of 
F 1 and S 2 of  F 2 with SI(~S2~-~SI=~S2 and with S l w S 2 = 3 X  and such that  
the pair (X, Si) is homeomorph ic  to the pair (S 1 x I, S 1 x i). We also require 
that  ~S i be non-empty.  Note  that F1 and F 2 are allowed to meet the interior of 
X. 

When we consider covering spaces it will always be assumed that the 
Riemannian  metric on the cover is induced by the covering map, so that the 
covering projection is a local isometry. We often refer to a map f :  F ~ M  simply 
as a surface, in a manner  similar to the way one talks about  paths in manifolds. 
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Existence results for least area surfaces were established by Schoen-Yau 
[18] and by Sacks-Uhlenbeck [17]. Let M be a closed Riemannian n-manifold 
and let F be a closed orientable surface, not  S 2. Let g : F ~ M  be incom- 
pressible. Then there is a branched immersion f :  F ~ M  whose act ion on n 1 is 
conjugate to that of  g and f minimizes area among all such maps. If  n2 (M)=0 ,  
then f and g must be homotopic.  In  the case when M is 3-dimensional, the 
methods  of  Osserman [16] and Gulliver [6] show that f is actually an 
immersion. This establishes the following result which we state for future 
reference. 

Theorem 1.1, Let  M be a closed p2-irreducible Riemannian 3-manifold and let F 
be a closed orientable surface not S 2. I f  g: F ~ M  is an incompressible map, then 
there is a least area map f :  F ~ M  which is homotopic to g, and any such can be 
parametrised as an immersion. 

Remark. We shall extend this to the case when F is not  orientable in Theorem 
3.2. 

We will prove our results about  least area surfaces by geometrical  argu- 
ments involving little analysis. However,  our  methods are not  totally inde- 
pendent  of the existence theorem above. Although, all our results have the 
assumption that  one is given a surface of least area, we need Theorem 1.1 in 
the p roof  of  L e m m a  3.3, and this lemma plays a crucial role in all our later 
results. It would be interesting to know if this dependence on Theorem 1.1 can 
be removed. 

The  purpose of  the next lemma is to establish a useful proper ty  of  least 
area surfaces and at the same time present an argument  which will be used 
throughout  the paper, the area swap argument.  

Lemma 1.2. Let  F 1 and F 2 be a pair o f  two-sided, least area surfaces, embedded 
in a 3-manifold M, which meet transversely. Then there are no product regions 
between them. 

Remark. The result remains true if F 1 and F 2 are disjoint parallel surfaces, as 
our definition of  product  region required that 0S i be non-empty.  

Proof  o f  Lemma 1.2. Suppose there is a product  region X between F 1 and F 2 
with ~X = S~ w S 2. Consider  the two surfaces F; = F 1 - S 1 -1- S 2 and F~ = F 2 - S 2 -4- S 1 . 

The new surface F{, while possibly singular, is clearly homorop ic  to F~, i 
--= t, 2. As the total surface area of  the two new surfaces equals that  of  the two 
old surfaces we must  have the inequality 

area (Ff) __< area (Fi) 

for i =  1 or 2. F i' however has a folding curve along 0S~ whereas a least area 
map can be parameterized as an immersion and thus can not have a folding 
curve. Hence F i' is not  a least area surface, contradict ing our assumption that  
F i was. It follows that there can be no product  region between F 1 and F 2. 

L e m m a  1.2 will often be used to prove that  two given least area surfaces 
are disjoint. However  if the surfaces F~ and F 2 do not  meet transversely, then 
L e m m a  1.2 is not  applicable. It is quite possible for two least area surfaces to 
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meet non-transversely. We give a simple example in w 8. But a technique due to 
Meeks and Yau [14] allows one to circumvent this problem. The local nature 
of the intersections and self-intersections of  minimal surfaces is well under- 
stood. See Lemma 1.4 below for details. A minimal immersion of a surface into 
a 3-manifold either factors through a covering of  surfaces or is self-transverse 
except at a finite number  of  points. Further, in a ne ighbourhood of  a point  of 
non-transverse intersection of  two sheets, the picture is that  of a generalised 
saddle point. 

A s tandard model  of this situation in 1R 3 is to take one sheet as the x~x  2- 
plane and the other sheet to be given by x3=Re(z") ,  where z = x  t +ixa,  and n 
is an integer, n > 2 .  Thus the intersection of  the two sheets consists of  a union 
of straight lines through the origin. In particular, the self-intersection set has 
no isolated points. Similar comments  apply to the intersections of  two minimal 
surfaces. The proof  of  the following lemma shows the Meeks-Yau technique in 
action. 

Lemma 1.3. I f  F1, F 2 are two-sided embedded incompressible surfaces o f  least 
area in a p2-irreducible 3-manifold M and the inclusion o f  each is a homo- 
topy equivalence, then they are either disjoint or have the same image. 

Proof  Assume first that  the two surfaces intersect transversely. The methods of 
Waldhausen [23] or  of w show that there exists a componen t  of  M-{F  1 ~F2} 
which is a product  piece and Lemma 1.2 gives a contradiction. 

If  they do not intersect transversely and their images do not coincide, we 
can find a point x in F 1 ( 3 F  2 such that  a small disk D 1 about  x in F 1 intersects 
a small disk D 2 about  x in F 2 transversely along an arc c~. 

Cutting along this arc gives four half-disks, A 1 and A 2 on D1, and B 1 and 
B 2 on D 2. These can be pasted together in one of  two ways when a "cut  and 
paste" takes place along the arc, either joining A 1 to B 1 and A 2 to B e or A 1 to 
B 2 and A 2 to B~. Either of  these cut and pastes will produce a pair of folding 
curves along c~, which can be smoothed out to allow a reduction of  area in a 
small ball about  x. Let e be a sufficiently small constant  so that either of  the 
above cut and pastes yields an area reduction of at least e. We will show that 
we can perturb F 1 by a small isotopy to get a new embedded surface F 3 which 
is transverse to F 2, with Area(F3)<Area(FO+e and such that F 3 agrees with 
F 1 on D t and 0 2. A s  F 2 and F 3 are transverse, we know that there is a 
product  region between them and can carry out an area swap to obtain 

D I ~  D2 

Fig. l.l 
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surfaces F;  and F;  with the same total area but with folding curves. We must  
choose the point x to lie on one of  these curves. Then we know that  smooth-  
ing out the folds to obtain surfaces 172' and Fs will reduce the total area of  
our  surfaces by at least e. Thus 

' , Area(f; ' )  + Area(f ; ' )  _ Area(F;)  + Area(F3) - 

= Area(f2) + Area(F 3 ) - e < Area(F2) + A r e a ( f  0. 

Hence either Area(F; ' )<Area(F2) or  Area(F;')<Area(F1). In either case, this 
contradicts the least area property of F 1 or F2, completing the proof  of  
Lemma 1.3. 

It remains to explain how to isotop F 1 and how to choose x on an 
appropria te  double curve. The idea is very simple but, for clarity, we defer the 
precise details to the proofs of Lemmas  1.4 and 1.5. Recall that  a s tandard 
model  for the situation in a ne ighbourhood  of a point  0 at which F 1 and F 2 
intersect non-transversely is to take F1 as the x lx2-plane  in IR 3 and F 2 to  be 
given by x3=Re(zn), where Z=Xl+ix  2 and n > 2 .  Thus 0 is the origin of  this 
model. It is easy to perturb F 1 slightly in this model  by pushing F 1 upwards 
(or downwards)  near 0, and we can perform a similar isotopy of  F~ near each 
point  of non-transverse intersection with F 2. The new surface F 3 will have area 
close to that of  F 1 and will be transverse to F 2. A further crucial fact is that  
the curves forming F 3 ~ F  2 differ from F~caF 2 only near the non-transverse 
points of  F1 ( 3 F  2 and that the change which occurs is as shown in Fig. 1.2. 
Case a) or b) will occur depending on whether we push F 3 up or down near 0. 
This last fact is what allows one to choose the point  x appropriately. One 
might  be unable to choose x appropriately if the change from F~ ( 3 F  2 to  

F 3 ( ~ F  2 introduced some small circle near 0, for example. The clearest way to 
see how to choose x is actually to choose many  points xl, as follows. Recall 
that  F~ c~F 2 is a 1-manifold except at a finite number  of points where the 
picture consists of  n lines with a c o m m o n  point. Hence f~ c~F 2 with the non-  
manifold points removed has only finitely many  components  and we choose a 
point  x i on each such component .  As before, each x~ gives rise to a positive 
number  el which is a lower bound  for the area decrease of  F~ ~ F 2 obtained by 
cut and paste on the double curve through x~; and we let e denote the 
min imum of the e{s. When  we perturb F 1 t o  F3,  the fact that the double curves 
alter as described means that each componen t  of  F 3 n F  2 contains at least one 

/ 7  

j --.. < 
a) Fig. 1.2 b) 



Least Area Incompressible Surfaces in 3-Manifolds 615 

xi, and this allows the previous argument to apply to give the required 
contradiction. 

Later in this paper, we will need a refined version of this technique. Before 
discussing this refinement, however, we need to establish more precisely the 
local description of the situation when two sheets of minimal surface meet 
non-transversely. Here is the statement we need. 

Lemma 1.4. Let M be a Riemannian 3-manifold and let F be a closed surface. 
Let f: F ~ M  be a minimal immersion and let a and a' be distinct points of F such 
that f (a)= f (a') and the two sheets o f f ( f )  through f (a) have a common tangent 
plane. Choose a chart, with coordinates (x~,x2, x3) , in the smooth structure on M 
so that the origin 0 is at f (a)  and the xtx2-plane is tangent to both sheets of 
f (F)  at f(a). Let V and V' be sufficiently small neighbourhoods in F of a and a' 
respectively, so that f (V )  and f (V ' )  are the graphs of smooth functions 05 and 4)' 
on some neighbourhood U of 0 in the X~ Xz-plane. 

Then either 4)= 4)' on some neighbourhood of 0 in which case the two sheets 
coincide in this neighbourhood of O, or there is a Cl-change of coordinates in the 
xlxz-plane which transforms the function 4)-4)' into c. Re(z N) on some neigh- 
bourhood of O, where z = x l  + ix  z and N is some integer, N > 2 ,  and c is some 
non-zero constant. 

Remark. It follows that either f: F--,M factors through a covering of surfaces 
or the non-transversal points are isolated, and in a neighbourhood of a non- 
transversal point the double curve picture is Cl-equivalent to n straight lines 
in 1~, 2 with a common point. 

Proof of Lemma 1.4. This proof is based on the proof of Lemma 2 of [,14]. Let 
P denote the function 05-05' on U and suppose that P is not identically zero 
on any neighbourhood of 0. Since both 05 and 05' satisfy the minimal surface 
equation in M, it follows that P satisfies a second order linear homogeneous 
elliptic P.D.E. with smooth coefficients, say L(P)=0.  Also P vanishes at the 
origin. A theorem of Bers [-1] asserts that, as P is not identically zero on any 
neighbourhood of 0, there is a non-zero homogeneous polynomial PN(X) of 
degree N >_-2 such that 

P(x)=pN(x)+O(lxlN+~), where 0 < e <  1, 
and 

01 0 l 
Ox~ Ox~ P(x)=  Ox] OxS2 pu(x) + O(lxl N-~ + ~), 

for all l<N,  and pN(X) satisfies the equation Lo(pN)=0, where L 0 is obtained 
from the second-order part of L by replacing each coefficient a(x) by the 
number a(0). Thus pu(x) satisfies a second order linear homogeneous elliptic 
P.D.E. with constant coefficients. 

By a linear change of coordinates in the X~Xz-plane, we can assume that 
pN(x) is harmonic i.e. satisfies ApN=O. A further orthogonal change of coor- 
dinates in the XlX2-plane will arrange that pN(X)=C. Re(zN), where z = x  I + i x  z 
and c is constant. Hence the only critical point of PN is the origin. Now a 
linear coordinate change will not affect the order of the error term P(x)--pN(X), 
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so we still have P(x)=pN(x)+O(lxlN+~), where 0 < e <  1, and the same comment  
applies to the order of the l-th partial derivatives of P(x)-pN(x),  for l<N,  
where pN(x) is now equal to c. Re(zN). In particular, all the l-th partial de- 
rivatives at 0 of P(x) are equal to the corresponding derivatives at 0 of pN(x), 
when l<__N. Thus the N-jets at 0 of P(x) and pN(x) are equal. Of course, this jet 
is zero apart from the terms of order N. One can now see that the result we 
need is a standard type of result in singularity theory. We have a given N-jet 
pN(x) and wish to show that given any smooth function P(x) with this N-jet at 
0, there is a Cl-change of coordinates in the x 1 x2-plane transforming P(x) into 
pN(x) in a neighbourhood of 0, i.e. we want to show that the N-jet of pu(x) is 
Cl-sufficient. The result we need is that if pN(x) is a homogeneous polynomial 
of degree N and if there are positive numbers e and 6 such that 
[VpN(x)l>=~lxl N-~, for all x in some neighbourhood of 0, then pN(x) is C 1- 
sufficient. This is proved by Cheng [2]. See also p. 153 of Lu's book [11]. Now 
I VRe(zN)[=NIz[ N-l, so c. Re(z N) clearly satisfies the required condition. Note 
that, in general, Cl-sufficiency involves a Cl-change of coordinates in source 
and target. However, because our functions are real valued, a change of 
coordinates in the source suffices. This is also in [2] and [11]. This completes 
the proof  of Lemma 1.4. 

We now have a precise picture of the situation when two sheets of minimal 
surfaces are tangent. Next we must consider perturbations of this situation as 
already discussed in the proof of Lemma 1.3. Note that if we perform a smooth 
isotopy in our model, we may only obtain a Cl-isotopy in the manifold M. 
This is not a serious problem, as areas still change continuously under a C 1- 
isotopy so the arguments of Lemma 1.3 can be applied using a C~-surface F 3. 
Also a C~-surface can be perturbed to a smooth surface by an e-isotopy, so 
one could still obtain a smooth surface F 3 with all the properties required for 
the proof  of Lemma 1.3. However, for our more refined applications it will be 
convenient to define our isotopy in a chart for the smooth structure on M. 

Lemma 1.5. Let U be a neighbourhood of the origin in the XlXz-plane and 
let if) and ~' be smooth functions on U with ~ - 0 '  denoted P such that 
P(x )=c .  Re(zN)+O(Ixl N+~) where e>O. Let h be a Cl-diffeomorphism of U 
with a neighbourhood V of the origin in the ylya-plane such that the diagram 
below commutes. 

P 
U ~IR 

V 

Let r be a positive real number such that U contains the disc of radius r 
center 0 and let 0 be a smooth function on U such that 0 ( x ) = 0  /f Ix[>r and 
0(x )=  1 if Ixl < 1/2r. For any real number t, let O~(x)=c~(x) + t. O(x). 

Then there is a t 0 > 0  such that if 0 < l t l < t 0 ,  the graph F((at) of Ot meets 
F(4)') transversely in curves obtained from F((o)c~F(4)') as shown in Fig. 1.2. 

Proof. First observe that if Ixl _-> r, then ~bt(x ) = q~(x), so that 

r (~ , )  n r ( ~ ' )  = r ( ~ )  n r ( ~ ' )  
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when Ix[ > r for all t. Next consider lxi <= 1/2r. For such x, we have ~b~(x) = q~(x) + t. 
Thus F(O,)~F(O') is simply a level curve of P, namely the curve P(x)=t .  
But h defines a Ci-diffeomorphism of the level curves of P with the level 
curves of c-Re(zN). Hence F(qSt)nF(qS' ) has the required shape when Ixl< 1/2r, 
for all t. Finally, when 1/2r<=lxl<__lr], we use the fact that F(q~) is transverse to 
F(~b'). Thus there is t o > 0  such that when 0_<t_< to, F(~b,) is still transverse to 
f(~b'), when 1/2r<=lxl<lrl, and F(dp,)c~C(O') is isotopic to F(~b)nF(qS'). These 
three facts together complete the proof of Lemma 1.5. 

Now let M be a Riemannian 3-manifold, F a closed surface and f:  F-~M a 
minimal immersion which does not factor through a covering of surfaces. We 
want to perturb f to be self-transverse. Lemma 1.4 shows that the non-trans- 
verse points of f are isolated. If two sheets V and V' of f (F)  pass through a 
point 0 and have common tangent planes, then Lemma 1.5 shows how to 
regularly homotop f so that V and V' become transverse, and this homotopy 
can be supported on as small a neighbourhood of 0 as desired. Hence, if no 
other sheets o f f ( F )  pass through 0, we can choose our regular homotopy o f f  
so that the double curves of f do not alter except in V and V'. If  a sheet W of 
f (F)  passes through 0 but is transverse to V and V', then a suitably small 
isotopy of V will only alter Vc~W by an isotopy in V and W. Only finitely 
many sheets of f (F)  can pass through 0, so a suitably small isotopy of V will 
only alter Vc~ W~ by an isotopy for every sheet W~ of f (F)  through 0 which is 
transverse to V and V'. 

Finally we may have many sheets of f (F )  through 0, all tangent to V. In 
this case, choose a chart in the smooth structure of M such that the common 
tangent plane at 0 is the xlx2-plane. For a suitably small neighbourhood U of 
the origin in the xlx2-plane , each sheet is given as the graph of some smooth 
function on U. For a suitably small neighbourhood of 0, the intersection of V 
with each of the other sheets W~ tangent at 0 is Cl-equivalent to the standard 
model as proved in Lemma 1.4. Now we deform the sheet V exactly as in 
Lemma 1.5. For a suitably small such deformation, the intersection of V with 
each W~ will alter as described in Lemma 1.5. Now we have one less sheet 
through 0 and can repeat the argument using still smaller deformations. The 
following is a precise statement of what we have achieved. For convenience, we 
have taken t o to be 1, which can always be arranged by a scale change in the 
t-parameter. 

Lemma 1.6. Let M be a Riemannian 3-manifold, let F be a closed surface and let 
fo: F ~ M  be a minimal immersion which does not factor through a covering of 
surfaces. Let ~ be a positive constant. Then there is a regular homotopy f :  F ~ M ,  
O<_t< 1, such that 

(i) f coincides with fo outside an s-neighbourhood of the points of non- 
transverse intersection, 

(ii) f is self-transverse, if t>0 ,  
(iii) the double curves o f f ,  t>0 ,  are obtained from those o f f  o as shown in 

Fig. 1.2. 

Remarks. The maps f need not be in general position. However, general 
position maps F ~ M  are certainly dense in the space of all maps F--*M. For 
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given t, a general position map close enough to f will have isotopic double 
curves i.e. corresponding double curves in F will be individually isotopic in F. 
Of course the entire double sets need not be isotopic but this will be irrelevant. 
Hence, it is clear that we can find general position maps F ~ M  with double 
curves isotopic to those of f l  and with area as close as we like to the area of f 

We will want to apply the same technique to a general minimal immersion 
f as we used in Lemma 1.3 when considering two embedded minimal surfaces. 
As in that argument, one chooses point x~ on the double curves of f(F),  so 
that there is one on each segment of each double curve, where the segments 
are formed by removing the points of nontransversal intersection. If there is a 

needs to regard this as ( ~ ) d o u b l e  curves with the curve of n-tuple points, one 

same image and we choose (~)dis t inct  points xi one for each intersecting pair 

of sheets. For each point x~ consider two sheets passing through x i and ignore 
the others. One chooses a ball Bi center x~ and obtains a number e~ which is a 
lower bound for the area decrease in f obtained by cut and paste of the two 
sheets through x~ along their double curve. Let e denote the minimum of the 
e/'s. One can find a general position map f ' :  F ~ M  with double curves isotopic 
to those of J~ such that A r e a ( f ' ) <  A r e a ( f ) +  e and for each i, f '  agrees with f 
on the two 2-discs of F mapped into B~. Thus any cut and paste on f ' (F)  will 
yield surfaces which can be deformed to have total area strictly less than the 
area of f .  

w 2. Least Area Homotopy Equivalences 

Theorem 2.1. Let M be an oriented Riemannian 3-manifold without boundary of 
the homotopy type of some closed oriented surface F, not S 2. I f  f: F ~ M is a least 
area, immersed homotopy equivalence then f is an embedding. 

Proof. We will start by assuming that f is in general position. Set N = r e g u l a r  
neighborhood of f (F) ,  N ~  M. Since the natural map g: F-~N factors f which 
is a homotopy equivalence, gj: Hj(F;Z2)~Hj(N;Z~)  is an injection, j =  1 or 2. 
We begin by supposing gl is also onto. All homology and intersection theory 
will be with coefficients Z z unless specified to the contrary. 

It is well known that there must be an embedding of F in M which is a 
homotopy equivalence. From this the following fact is easily deduced: 

Fact. M has two ends and the generator f leH2(M ) is characterized by having 
intersection number = 1 with any line l running from one end to the other. 

It follows that any such l meets f (F).  Thus any I meets N. Thus any I meets 
ON. So c~N separates the ends of M. It follows that some possibly disconnected 
union of boundary components A~(?N must carry ~, i n c , [ A ] = ~ s H 2 ( M  ). 
Since A is bordant via N to the sum of all other boundary components, if we 
set B=c~N--A, A and B each carry ,8. Thus we have: 

inc 2 [A] = inc 2 [B] = g2 IF]  e H  2 (g). (*) 
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Call this homology  class c~; inclusion carries c~ to ft. 
At this point  there are two cases to consider:  

Case I. gl:H1(F)---,HI(N) is onto  and, by a previous remark,  gl is an iso- 
morphism.  

Case 2. gl is not  onto. 

In case 1 we are content  to work with the manifold N. In case 2 we must  
use a tower a rgument  to pass to a manifold  N k. First we construct  N k and 
second we will derive an appropr ia te  version of the formula  (*) for N k. As g~ is 
not  onto, there is a connected double covering space M 1 of N such that  
f: F-- ,N lifts to a m a p  f l :  F ~ M ~ .  Let N~ be the regular ne ighbourhood  of 
ft(F). By repeat ing this a rgument  for N,, one constructs in the usual way [-8] a 
tower of  double  coverings which must terminate  for the usual reason. We set 
Ki = f~(F). 

Here is the complete  tower:  

/,/ / 
f ~ Ko~---~N ~-,M 

2-fold cover 

2-fold cover 

In case 1, N k would simply be N. In any case, HI(F)~H~(Nk) is an isomor-  
phism. 

K~ is a quot ient  space of F with quot ient  m a p  f~, 0_<i<k.  The quotient  
m a p  identifies pairs of  normal ly  immersed  circles in F and at the normal  
crossings triples are identified. 

L e m m a  2.2. All intersection numbers x . fk[F] are zero for xeHl(Nk). 

Proof Let c c F  be a loop. Because the normal  bundle of  F ~ N  k is trivial, the 
intersection of c in N k with fk[F] can be computed  as ~ c - ~  where 7~ is the 

i 
collection of immersed  curves identified by fk" But the 7~'s come in pairs and 
since fk factors a h o m o t o p y  equivalence the pairs of  immersed  circles identified 
under  fk must  be freely homotop ic  in F, thus ~ c . 7 f = 0 .  The  proof  is com- 

i 
pleted by remarking  that  any class x is in the image of some loop c since 
HI(F)~HI(Nk) is an isomorphism.  | 

Here  is our  general izat ion of (*): 

Corollary 2.3. N k - K  k admits a two coloring. Let A k denote the black and B k the 
white boundary components. A k and B k each carry fk[F]. 
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Proof  We follow an argument given in [4]. Color one point of N k - K  k white 
and let the color of any other point be determined by the intersection number 
with K k (or fk[F]). Lemma 2.2 shows that this procedure is well defined. The 
second assertion is proved by constructing a deformation retraction N k ~ K  k 
which carries both A k and B k onto K k as Z2-homology cycles. | 

If  k = 0  (case 1) we may regard A k=A and B k=B. 

Lemma 2.4. A k consists of  the disjoint union of  a surface F k diffeomorphic to F 
and spheres, A k = Fk~S2's.  Similarly, B k = G k u S2's. 

Proof  In the exact homology sequence of the pair (Nk, 0Nk) the two maps 

H2(Nk, ~ g  k) P-~ H 1 (t}N k) q-~ H I (gk) 

are dual, p being the Poincar6 dual of Ht(Nk)~HX(ONk) which is homq. Thus 
image p = kernel q ~ coker p. Set d = dimension H x (Nk) = dimension H 1 (F) = 2 ge- 
nus F. Now dimension (image p )<  dim H2(Nk, ~?Nk)=d so 

d i m e n s i o n H l ( A k ) + d i m e n s i o n H l ( B k ) = d i m e n s i o n H l ( O N k ) < 2 d .  (**) 

Mapping down the tower we find maps A k - * M ~ - F  and Bk-*M"~F  of 
degree 1 (mod2). In particular, the maps Ak-*F and B k ~ F  are of non-zero 
degree, and s o  A k and B k must each have a component  whose genus equals or 
exceeds the genus of F. Consulting (**) we see that this component  must have 
the same genus as F and map to F with degree one (mod 2) and the remaining 
components of A k and B k must be spheres. 

We need the following criterion for recognizing when a map from F to M 
is a homotopy equivalence. 

Lemma 2.5. A map F & M which induces an isomorphism on homology with Z 2- 
coefficients and is an embedding is necessarily a homotopy equivalence. 

Proof  Compose with the homotopy inverse of f:  F - ~ M .  The composite map 
F ~ F  is of odd degree. As it induces an isomorphism on HI(F), this degree 
must be one except possibly when F is the torus. In this case we use the fact 
that h is an embedding to conclude that h is degree one. This is because 
divisible integral classes in an oriented n-manifold cannot be the image of the 
fundamental class of a connected embedded (n-1)-manifold.  it follows that h 
must be a homotopy equivalence in all cases. 

If  fk is not an embedding, Meeks and Yau [14] show how to choose the 
regular neighborhood N k so that area ONk<2areafk(F).  Thus either F k or G k 
(say Fk) will have less area than fk(F). If fk is an embedding we omit the regular 
neighborhood altogether and will use the same symbol F k for fR(F)=Kk.  So in 
either case a r e a  F k <= area fk(F ). 

Under the first projection Pk" Fk--~Nk-1 pairs of disjointly embedded circles 
may be identified. Since the composition down the tower F k ~ M  is a Z 2- 
homology equivalence, the identified circles must be homologous. Thus such a 
pair bounds a region R i c F  , and R i may be cut out and glued back to obtain a 
new surface F~ diffeomorphic to F k. But now when Pk is restricted to F k a 
double curve can be eliminated by a small, area reducing perturbation called 
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"rounding the corner" [14]. If this is done, sequentially for all the pairs then 
we will call the resulting embedded surface Fk_ 1 o N  k_ 1. Since the cutting and 
gluing did not affect the Z 2 homology class, Pk[Fk]=[Fk_I]EHz(Nk_I) we may 
repeat the procedure to obtain Fk_ 2. Proceeding down the tower we finally 
arrive at F o c N c M .  The inclusion is a Z2-homology equivalence so by Lem- 
ma 2.5 it is a homotopy equivalence. 

Let Xk: Nk---'M be the composition which descends the tower diagram. 
Covering projections are local isometries and so do not change area. The 
procedure that eliminates double curves - cut-glue-round corners - may al- 
ways be taken to reduce area. Since F 0 results from F k by a sequence of these 
two procedures area(Fo)<area(Fk). Equality holds if and only if xklF k is 1 - 1 ,  
that is only if there are no double curves to eliminate. But area(Fk) < area(fk(F)) 
with equality if and only if f k is an embedding. Also area(~(F))=areafo(F) .  By 
our least area hypothesis area fo(F)<area(Fo) forcing the two earlier inequal- 
ities to be equalities. As a result f k and XRlfk(F ) are both 1 - 1 .  Thus f = x k o f  k 
is also 1 -- 1. This completes the proof of Theorem 2.1, in the case when f is in 
general position. 

If f:  F--*M is not in general position, we perturb it to a general position 
map f '  as described in Lemma 1.6 and the remarks which follow it. We then 
apply all the foregoing arguments to f ' .  The arguments up to and including 
Lemma 2.5 do not refer to area and so they all apply. 

Immediately after Lemma 2.5, we say that i f fg is not an embedding, we can 
find a regular neighbourhood N k of fk(F) so that Area c~Nk<2Areaf k. Of 
course, Areafk=Area( f ) .  In our new situation, the last sentence of w 1 shows 
that if the corresponding map fk' is not an embedding, we can find a regular 
neighbourhood N k of fk'(F ) So that Area(ONk)<2Area( f ) .  Now the rest of the 
argument applied to the maps fk' yields a contradiction unless f '  is an embed- 
ding. It follows that f must be an embedding which completes the proof  of 
Theorem 2.1. 

Corollary 2.6. Let  F be a closed surface, not S 2 or p2 and let M be a pZ_ 
irreducible Riemannian 3-manifold. Let  fi: F ~ M  be two least area immersions, i 
= 1, 2. I f  f l  is homotopic to f2 by a homotopy f ix ing a base point than f l (F)  

= f2(F). 

Proof  Let M' be the cover of M determined by ~#/~l(F). Consider the lift off1 
to M'. Since f2 is homotopic to f l  it too will lift to M' by Theorem 2.1. Since 
the homotopy fixes a point the two lifted maps will intersect. Both lifts are 
least area and must be embeddings. Lemma 1.3 shows that there is a product 
region between the two lifts if they intersect transversely, which then yields a 
contradiction. The assumption of transversality is dealt with as before. 

w 3. Coverings of Least Area Maps 

We start this section by using the results of w to extend Theorem 1.1 to the 
case where F is non-orientable and two-sided. 

Theorem 3.1. Let  M be a p2-irreducible 3-manifold that covers a closed Riemann- 
Jan 3-manifold and let F be a closed surface not S 2 or p2. Let  f: F - ~ M  be a 
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two-sided incompressible map. 7hen there exists a least area immersion homotopic 
to f 

Proof  If M and F are orientable this is known [17, 18] for the case when M is 
compact. This extends to the case when M covers a compact 3-manifold M' by 
noting that a least area map f '  in the homotopy class of maps re f, where ~ is 
the covering projection, exists by the compact version of the theorem, f '  lifts to 
a least area immersion in the homotopy class of f 

If F and M are non-orientable let /7 and M denote their orientable double 
coverings and let f :  ff--+M denote the map covering f This map  exists because 
of our assumption that f was two-sided. Let M F denote the covering of M with 
Z~x(Me)=f , (~l (F))  and let M e denote the covering of M with ~I(Mr)  
=f,(z~l(/~)). Clearly M e is the orientable double covering of M e. See Fig. 3.1. 
Let z denote the covering involution o f / ~ e .  Let f l :  F ~ M v  be the lift o f f  and 
let f l :  f f ~ M e  be the map covering f l-  The existence theorem for the orientable 
case shows that f : /~- - ,M is homotopic to a least area map and hence so is 
f l :  fi-+Mv. Let g: f i -+M e denote the least area map. Theorem 2.1 shows that 
is an embedding. Now Lemma 1.3 shows tha t  g(ff) and z~,(ff) are either disjoint 
or equal, as both surfaces are two-sided in M e. In either case g(P) projects to 
an embedded incompressible surface in M e . But any such surface must have 
fundamental group equal to nl(F), since f l (F )  is two-sided in M e [3, 9, 19]. We 
must therefore have z~(fi)=~(ff), thus determining an embedding g of F in M e 
which is homotopic to f l (F).  This embedding must be a least area map for if it 
were homotopic to a map h: F ~ M  of less area, the double covering map 
l~: F- - ' /~e  would be a map of less area then ~ contradicting the fact that ~ is 
elast area. This uses the obvious fact that the area of ~: P~M~,  is exactly twice 
the area of g: F- - ,M v. This least area embedding g: F ~ M  v projects into M to 
give a least area map from F to M homotopic to the original map f This 
concludes the proof of Theorem 3.1. 

We can use essentially the same argument to extend Theorem 2.1 to the 
non-orientable case. 

Theorem 3.2. Let  M be a p2-irreducible Riemannian 3-manifold and let F be a 
closed surface not S 2 or p2. Let  f :  F--+M be a two-sided least area map which is 
a homotopy equivalence. 77wn f is an embedding. 

V - -  ~ N 

I , 1 
F ~ N 

Fig. 3.1 
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The same argument also yields some results about the behaviour of cover- 
ings of least area maps. 

Lemma 3.3. Let M be a 3-manifold which covers a closed Riemannian 3-manifold. 
I f  f: F -~M is a two-sided homotopy equivalence, M is a finite cover of M and F 
is the corresponding cover of F, so that the .following diagram commutes, 

F -~ N 
Fig. 3.2 

then f is least area if and only if f is least area. 

Proof. Clearly if f is least area, so is f. If not, there exists a map g: F--+M of 
smaller area which is homotopic to f and a corresponding lift ~ which is of 
smaller area than f. This argument uses the obvious fact that the area of ~,(/~) 
is d times the area of g(F) and the area of f (F )  is d times the area of f (F),  
where d is the degree of the covering map A4-~M. 

Conversely, assume first that the cover is regular and f has least area. Let a 
least area map in the homotopy class of f be ~. (Note the use of Theorem 3.1 
to ensure the existence of ~.) Then ~ is an embedding of F, and the covering 
translates of ~,(P) all intersect trivially by Lemma 1.3, as each is two-sided. This 
implies that ~(P) projects down to a cover of an embedded surface in M. This 
surface, F 1, is homotopic to F as it is an embedded incompressible surface in 
M. If ~ has less area than f, then the area of F 1 is smaller than that of f (F),  
yielding a contradiction. 

Assume now that the cover is not regular. Then ~1(~) is not a normal 
subgroup of ~I(M). However there exists a subgroup of ~1(M) which is of finite 
index and normal in gl(M); just intersect all the conjugates of ~1(~). There 
exists a corresponding regular cover M and a corresponding lift f: F - , M .  See 
Fig, 3.3. As f is least area, it follows that f has least area. It then also follows 
from the above that f has least area. 

F 
Fig. 3.3 

- - -N 
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Theorem 3.4. Let  M be a p2-irreducible 3-manifold which covers a compact 
Riemannian 3-manifold. Let  f:  F ~ M  be a two-sided map which induces an 
injection of the fundamental group. Let  M x be a covering of  M and let F 1 be a 
finite k-fold cover of  F such that f l  : F I ~ M 1  is a lift o f f  Then f is least area if 
and only if f l  is least area. 

Remark. M~ may be an infinite covering of M or even M itself. 

Proof  Consider the following diagram: 

MF 

F1 ~ ,,,,,.. M 1 

F ~ N 

Fig. 3.4 

M e is the covering space of M whose fundamental group corresponds to the 
map f, and similarly My is the covering space of M corresponding to f~. 

Clearly f is least area if and only if f is, and similarly for f l  and fl-  By 
Lemma 3.3, f is least area if and only if f l  is, as each induces a homotopy 
equivalence. Hence f is least area if and only if f l  is least area, as required. 

Note that the above result does not assume that the maps f and f~ are 
embeddings. 

w 4. Some 3-dimensional Topology 

In w 1 we discussed the importance of finding product regions between minimal 
surfaces. We will need to know when these exist even in the case where the 
minimal surfaces under consideration are not compact. The next lemma gen- 
eralizes results of Waldhausen [23]. 

Lemma 4.1. Let  M be a PZ-irreducible 3-manifold without boundary and let F 1 
and F 2 be incompressible, two-sided, possibly non-compact, embedded surfaces in 
M with no boundary. Suppose that F 1 and F 2 intersect transversely, that the 
natural map ~ I ( F a ) ~ I ( M )  is an isomorphism and that F 1 separates M into two 
components whose closures are A and B. I f  F2f~A or F 2 n B  has a non-empty 
compact component then there is a product region between F 1 and F 2 in M. 

Proof  First observe that the result is trivial if F 1 or F 2 is S 2. Note that in all 
cases F a f~F 2 consists of a disjoint collection of lines and circles. 
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Case 1. There is a circle C in F I ~ F 2 which is null homotop ic  in M. 

As F 1 is incompressible, C must also be nul l -homotopic  in F1. Hence C 
bounds  a 2-disk D 1 in F 1. We choose C to be innermost  in F 1 so that D 1 meets 
no other component  of F 1 c~F 2. As F 2 is also incompressible, C bounds a 2-disk 
D 2 in F 2. The disks together form a 2-sphere which is embedded because C 
was innermost. This sphere bounds a 3-ball X in M as M is irreducible and X 
is clearly a product  region between F~ and F 2. 

Case 2. There are no circles in F 1 c~F 2 which are null homotop ic  in M. 

In  this case we claim that each componen t  of  F 2 ~ A  or F 2 c~B is incom- 
pressible in A on B. Let S be a component  of  F2c~A. If  S is compressible in A, 
the loop theorem provides an embedded essential circle C in S which is null- 
homotop ic  in A. Hence C is null homotopic  in M and must  bound  a 2-disk in 
F 2. As C is essential in S, the 2-disk must contain a boundary  componen t  C' 
of  S. Then C' is a circle in F1 c~ F 2 which is null homotop ic  in M, contradicting 
our  hypothesis. 

N o w  suppose that S 2 is a compact  component  of F2~A. We will show that 
there is a surface S 1 in F 1 and a product  region X in M with 8X=S~ t . j S  2. In 
the following arguments Z 2 coefficients are assumed for the homology  groups. 

As F 1 is incompressible in M, A is PZ-irreducible. Hence A is aspherical. It 
follows that the inclusion of/71 into A is a h o m o t o p y  equivalence. In particu- 
lar, Hz(A, F1)=O. Now 8 2 represents an element of  Hz(A, F1). Hence there is a 
compact  submanifold X of A and a compact  subsurface $1 of F~ such that 8X 
= S I U S  2. Let Y denote the closure of A - X .  As A is not compact  and X is 
compac t ,  it follows that Y is not  compact.  

Let M denote the covering of M with n l (M)= n l (S2 )  so that S 2 lifts into M. 
Let /i denote the pre2image of  A and let fl  denote the pre-image of  F~. As 
above we have Hz(A, F1)=O. As S 2 represents an element of  this group we have 
a component  )( o f / I - S  2 whose closure is compact.  As Jf must  be a covering 
of  X or Y and as Y is not compact  we see that  Jf is a covering of X. Now 8)? 
consists of S 2 and a subsurface of  if1. Hence the projection map 37-oX is of 
degree one as it is of degree one restricted to the pre-image of  S 2. It follows 
that  the projection map is a homeomorphism.  N o w  the equations 

7C 1($2) = ~ 1 (/1) = 7c 1(2)*~ 182)7~ 1 ( "~ ) 

show that n l (X)=nl (S2) .  The relative h-cobordism theorem [21] shows that 
the pair (X, S2) is homeomorph ic  to the pair (S 2 x I, S 2 x {0}). Hence X is a 
product  region between F~ and F 2 in M as required and we have proved 
L e m m a  4.1. 

Remark. One could simplify the proof  of the above Lemma if one knew that A 
were homeomorph ic  to F~ x [0, 1). In that case it is clear that  ni(Y)=~Zl(F~) as 
Y contains F~ x {K} for suitably large K, so that the equation 

nI(F1)=7~l(A)=~l(X)*l s~ nl(Y) ( ) 

implies at once that n~(X)=n~(Sz) which is all that  we need to show that X is 
a product  region. In fact, in most  of  the situations which we will concern 
ourselves with, A will indeed be a product. 
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w 5. The Embedding Theorem 

In this section we prove the main result of the paper which tells us that least 
area surfaces are embedded whenever possible. The precise result is the follow- 
ing. 

Theorem 5.1. Let M be a closed, PZ-irreducible Riemannian 3-manifold and let F 
be a closed surface not S 2 or p2. Let f:  F-+M be a least area incompressible 
map which is homotopic to a two-sided embedding g. Then either 

(i) f is an embedding or 
(ii) f double covers a one-sided surface K embedded in M and g(F) bounds a 

submanifold of M which is a twisted 1-bundle over a surface isotopic to K. 

Proof Our method will show that f covers an embedded surface K in M. 
Clearly ~I(F) is a subgroup of ~I(K) up to conjugacy. Now it is proved in [9] 
or [19] that if F is a two-sided embedded surface in M and ~ a ( F ) ~ x ( K )  then 
either ~I(F)=~I(K)  or ~I(F) has index two in ~I(K) and F bounds in M a 
twis ted/ -bundle  over K. Hence knowing that f covers an embedded surface is 
enough to prove the theorem. 

We will assume that f is self-transverse. At the end of the section we will 
explain how to obtain the general case. 

We use some general facts about covering spaces of M. Consider an 
incompressible embedding g: F - * M  homotopic to f in a covering M of M, the 
pre-image of g(F) will consist of various disjoint, embedded, incompressible 
surfaces each of which is a covering of F. If we homotop g to the map f, the 
number and homeomorphism type of the surfaces in M will not alter, but each 
of the surfaces will be homotoped to a new possibly singular surface in A4. It is 
also possible that distinct surfaces may meet each other or even become 
coincident. In this case these surfaces will not, strictly speaking, be the com- 
ponents of the pre-image of g(F). However it will be convenient to refer to 
them as components. The self-intersections and mutual intersections of the 
components reflect the singularities of the map f As f is self-transverse all 
these intersections are also transverse. 

Now we consider some specific covering spaces of M. Let M v denote the 
covering of M with ~z l (Mr )= f ,~ l (F  ) and let fF: F-*MF denote the lift o f f  fv  
is a least area map because f is least area. Since M and therefore M r are 
aspherical, it follows that f r  is a homotopy equivalence. Hence Theorem 3.2 
tells us that f f  is an embedding. To simplify the notation we will denote the 
image of r e  by F also. 

Let M denote the universal cover of M and let P denote the pre-image in 
A~ of F in M f. P is homeomorphic  to the universal cover of F and so is an 
embedded plane in A4. Hence the pre-image in M of f ( F )  in M consists of a 
collection of embedded planes which are the translates of P under the action of 
7Zl(M ) on M. The stabilizer of F is a surface group which contains ~I(F) as a 
subgroup of index one or two, this number being two only if f factors through 
a 2-fold cover. 

Showing that f covers an embedded surface is equivalent to showing that 
the distinct translates of P by ~I(M) are disjoint. Let us consider F and one of 
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its translates gF such that gF is distinct from F. The stabilizer of gF is the 
conjugate by g of the stabilizer of F. In particular, the stabilizer of gF contains 
gnl(F)g -1. Let G denote the subgroup n l (F)~gn l (F)g  -~ of nl(M). Let Ma 
denote the cover of M with n l (M~)=G and let Mgv denote the cover with 
rc1(mgv)=gnl(F)g -1. M G covers each of M e and Mg v. As gF is an embedded 
surface in M and as gn~(F)g -1 leaves the surface invariant, the image of gF in 
Mg v must be an embedded surface homeomorphic to F. We shall abuse 
notation slightly and call this surface gF. 

The images in M o of P and g/~ are two embedded surfaces, F 1 and F2, each 
with fundamental group isomorphic to G. It follows that F1 separates M G into 
two components, let A and B denote the closures of these two components. 

We next show that either F2c~A or F2c~B is compact. To see this, recall 
that f is homotopic to an embedding g. This homotopy will induce homotopies 
of F 1 and F 2 in M a so that F~ and F 2 become disjoint. As F is compact, there is 
an upper bound d to the distance moved in M by any point during the 
homotopy of f to g. Hence in the induced homotopies of F1 and F 2 in Ma no 
point of F 1 or F 2 moves a distance greater than d. Hence F 2 c~A or F 2 c~B must 
lie within a neighborhood W of F~ consisting of all points of distance less than 
2d away from F1. Now consider the projection p: M o ~ M  v. The image of W in 
M v must be compact. 

Since g%(F)g  -a is a subgroup of index one or two in Stabilizer(gF), it 
follows that G=nl(F)c~grcl(F)g -1 is also of index one or two in 
nl(F)c~Stabilizer(gP ). Therefore p: F 2 ~ M  F factors through a covering of de- 
gree at most two. It follows that p restricted to F 2 is a proper map. The 
simplest way to see this is to triangulate F and M so that f is simplicial and 
triangulate all covering spaces in the natural way. Then p: F 2 ~ M  F is at most 
2-to-1 on 2-simplices. It follows that F2c~A or F2c~B must be compact as 
claimed. 

Now Lemma 4.1 tells us that either F~ and F z are disjoint or there exists a 
product region X between F~ and F 2. In the first case, /~ and g/~ must also be 
disjoint, as required. So we now assume that F~ and F 2 intersect and will arrive 
at a contradiction. As in previous situations we denote the boundary of X by 
S~ wS 2 where S i lies in F~. 

If both FI and F 2 were closed surfaces we could use the area swapping 
arguments of Lemma 1.2 to get a contradiction, but neither one need be 
compact. If X were to project injectively into M r and Mg F we could still make 
this argument work by comparing areas of F - S ~ + S  2 in M e and g F - S 2 + S  ~ 
in Mg F. Unfortunately there is no apparent way to show that X injects into 
these spaces. However the situation is rescued by injecting X into an in- 
termediate space. For this purpose we need some special properties of surface 
groups. The main theorem of [20] states that surface groups are subgroup 
separable, or LERF. We use this result in the form of Lemma 1.4 of [20]. 

Lemma 5.2. Let Y be a Hausdorff topological space with a regular covering f 
and covering group F. Then F is subgroup separable if and only if given a finitely 
generated subgroup G of F and a compact subset X of f/G, there is a finite 
cover Y' of Y such that the projection f / G ~  Y factors through Y' and X projects 
injectively into Y'. 
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We will apply this to our situation by taking Y=MF,  f'=~/l, F = n l ( F  ) and, 
of course, f ' / G = M  G. It would seem that we need to show that G is finitely 
generated. This is true for the above situation, but this fact will not be needed. 
For if G is not finitely generated, we can find a finitely generated subgroup H 
of G such that our product region X in M~ lifts to M n. We do this by simply 
choosing H equal to nl (X  ). We can then replace G by H in what follows. 
Hence we will apply Lemma 5.2 assuming that G is finitely generated. 

As n~(F) is subgroup separable, there is a finite covering M'  of M t such 
that the projection M G ~ M  e factors through M' and X projects injectively into 
M'. Similarly there exists a finite cover M" of M, such that the projection 
MG~Mg r factors through M" and X projects injectively into M". Let F' 
denote the pre-image in M' o f F  in M F and let F" denote the pre-image in M" o fgF 
in Mg F. Each of F' and F" is an embedded closed surface. Lemma 3.3 tells us 
that both are least area. We now use an area swapping argument to get a 
contradiction, just as in Lemma 1.2, using the (possibly singular) surfaces F'  
- S I + S  2 in M'  and F " - S 2 + S  1 in M". This completes the proof  of Theo- 
rem 5.1 when f is self-transverse. 

To handle the case when f is not self-transverse we repeat the above 
argument and use Lemma 1.6. In finding a product region X in M G we used 
Lemma 4.1 which assumed transverse intersection of the surfaces F 1 and F 2. In 
general this need not be true. See w 1. Lemma 1.6 allows us to find a family of 
maps f homotopic to f and identical to f outside a neighborhood of the non- 
transersal points of f so that f satisfies the conditions given in the lemma. 
Going through the steps of the proof of Theorem 5.1, but using fa instead o f f ,  
we eventually wind up with a product region X~ in M G. We now apply the 
subgroup separability of n l (F ) using a neighborhood of X 1 such that the 
corresponding product region X~ obtained from f lies in the neighborhood, for 
all t>0 .  Then there is a k-fold covering M" of M e and an /-fold covering M" 
of Mg e such that the neighborhood of X~ projects injectively into M' and M". 
For each t, 0 < t < l ,  X t projects injectively into M'  and M". Recall that F'  
denotes the pre-image in M'  of F in M e and F" denotes the pre-image in M" 
of gF in Mg e. When t is non-zero, we denote the corresponding surfaces by 
F'(t) and F"(t). We have the product region X~ and can consider the new 
surfaces F' ( t ) -S l ( t )+Sz ( t  ) in m '  and F"( t ) -Sz ( t )+S l ( t )  in m".  Now F'(t) and 
F"(t) do not alter with t except in small neighbourhoods of the non-transversal 
points. Hence there is a positive constant e, independent of t, such that, after 
rounding corners, our area swap achieves a reduction of at least e in Area F'(t) 
+ Area F"(t). 

Let A(t)= A r e a l - A r e a l  It follows that 

A r e a F ' ( t ) - A r e a F ' = k . A ( t )  and A r e a F " ( t ) - A r e a F " =  l.A(t). 

Hence 

Area F'(t) + Area F"(t) = Area F' + Area F" + (k + l ). A(t). 

If  we choose t so small that (k +l). A(t)<e, we obtain a contradiction to 
our assumption that F' and F" are least area. 
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Theorem 5.3. Let  F be a closed surface, not S 2 o r  p2 and let M be a p2_ 

irreducible Riemannian 3-manifold. Let  f: F - * M  be a two-sided least area immer- 
sion which is homotopic to a map g which is a composition of  two maps 
g~: F--*F' and g2: F'-*M,  where gl is a covering map of  degree k and g2 is a 
two-sided embedding. Then f is a composition of  two maps f l :  F--*F" and 
f2: F"--*M, where f2 is an embedding and J~ is a covering map of  degree k or 2k 
and if the latter holds then f2 is a one sided embedding. 

Proof  The map g: F ~ M  has no transverse self-intersections. The proof  of 
Theorem 5.1 applies to show that f also has no transverse self-intersections, so 
that f covers an embedded surface F" in M. We claim that F '  is homotopic to 
F" or to a double cover of F" which will complete the proof. To see this, 
consider the covering M" of M with lrl(M")=~zl(F" ). Clearly f: F--*M lifts to 
f " :  F--*M" and y" covers an embedded copy of F" in M". Hence g: F - , M  also 
lifts to M" and g must cover an embedded surface L in M", where L is some 
covering of F' and hence is two-sided. But the embedded surface L can only be 
homotopic to F" or to a double covering of F" [9, 19], and in the second case 
F" must be one-sided in M". It follows that if F" is two-sided in M, then the 
projection of L into M is homotopic to F" and if F" is one-sided in M then the 
projection of L into M is homotopic to a two-sided embedded surface forming 
the boundary of a regular neighborhood of F". In either case projection of L 
into M is homotopic to a two-sided embedding. As ~zl(L)~nl(F') and as F' is 
two-sided, it follows that ~ I ( L ) = ~ I ( F  ) [9, 19] which establishes the claim. 

Theorem 5.4. Let  F be a closed surface, not S 2 or p2 and let M be a p2_ 
irreducible Riemannian 3-manifold. Let  f: F - * M  be a two-sided least area immer- 
sion which is homotopic to a map g which is a composition of  two maps g~: F ~ F '  
and g2: F' -*M,  where gl is a covering map of  degree k, g2 is two-sided and k is 
maximal. 7hen f is a composition of  two maps f l  : F-*F"  and f2: F " ~ M ,  where 
f l  is a covering map of  degree k or 2k and if the latter holds then f2 is a one- 
sided mapping. 

Proof  Consider the space M F, which is finitely covered by M r. f lifts to M v, 
where it is homotopic to a k-fold cover of the lift of g2. The map g2 is a 
homotopy equivalence into M F, and therefore homotopic to an embedding. 
Theorem 5.3 now gives that the lift of f to M r is either a k-fold or 2k-fold 
cover of an embedding. The result follows by projecting this map to M. 

w 6. Intersections of Least Area Surfaces 

Let M be a compact, PZ-irreducible Riemannian 3-manifold. Let F 1 and F 2 be 
closed surfaces, not S 2 or p2 and let f~: F~--,M be a two-sided least area 
incompressible map, i= 1,2. We shall examine the self-intersections of f l  and 
the intersection of f l  with f2- 

Pick a subgroup lrl(F~) of ~I(M) from the conjugacy class of subgroups 
determined by f/. Let M i denote the covering of M with group ~(F~) and let F/ 
denote the image in M i of the lift of f .  Note that this image is an embedded 
two-sided copy of F~, by Theorem 3.4. Let A4 denote the universal covering 
space of M and let ~ denote the pre-image in ~t of F~ in M i. As F~ is an 
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embedded surface in M~, i~ is an embedded plane. The full pre-image of f~(F~) 
in M consists of embedded planes which are the translates of ~ by nl(M). The 
stabilizer of/~ is a surface group which contains nl(F/) and so the stabilizer of 
g~ contains gnl(Fi)g -1. Let Mg,~ denote the cover of M with nl(Mg,i) 
=gnl(F~)g -1 and let gF i denote the image of g~ in Mg,i. Let G 
=nl(F~)c~gnl(Fj)g -1 and let M G denote the corresponding cover of M. Let L i 
and gLj denote the images in M e of ~ and g~.  Li and gLj are embedded 
surfaces. 

Lemma 6.1. Suppose that L~ meets gLj transversely. 7hen there can be no 
product regions between L~ and gLj, 

Proof If there is a product region X in M e between L~ and gLj, we can use 
the argument at the end of the proof of Theorem 5.1 to get a contradiction. As 
in that proof, we can assume that G is finitely generated. Then the subgroup 
separability of nl(F~) and nl(F~) implies that X projects injectively into suitable 
finite coverings of M i and M~.j. This then gives a contradiction by the area 
swapping argument. 

Our first result on intersections of least area surfaces deals with the case 
when the expected intersection is empty. 

Theorem 6.2. Let M be a compact, p2-irreducible, Riemannian 3-manifold. Let F 1 
and F 2 be closed surfaces, not S 2 or P2 and let fi: Fi-~M be a two-sided, least 
area, incompressible (possibly singular) map, i= 1, 2. I f  f 1 and f2 can be homo- 
toped to have disjoint images then fl(F1) and fz(F2) are disjoint or are equal. In 
the second case, f l  and f2 are coverings of an embedded surface in M. 

Proof As usual it suffices to consider the case when f l  and f2 intersect 
transversely. The surfaces L 1 and gL 2 in M e intersect transversely or trivially. 
There is a homotopy of the original maps f1 and f2 to maps with disjoint 
images. It follows as in the proof of Theorem 5.1 that either L~ and gL 2 are 
disjoint or there is a product region between L 1 and gL 2 in M e. 

Lemma 6.1 shows that a product region can not exist so that L~ and gL 2 
are disjoint or identical. As this result holds for any choice of g in nt(M), it 
follows that fl(F1) and fz(F2) are disjoint or equal, as claimed. 

Now we consider further the case when fl(F1)=fz(F2). We choose base- 
points and identify nl(F1) and nl(F2) with subgroups of nl(M). The common 
image off1  and f2 is a singular surface K and hi(F1) and nl(Fz) are subgroups 
of nl(K ) of finite index. Hence nl(Ft)~rcl(F2) is also a subgroup of nl(K) of 
finite index. Let F 3 be the corresponding covering of K and let f3: F3--'M be 
the composite of this covering with the immersion of K in M. This is a least 
area map by Theorem 3.4. The hypothesis that f l  and f2 can be homotoped 
apart implies that f3 can be homotoped to maps f ;  and f~' which are disjoint. 
The methods of Theorem 5.1 can now be applied to show that f3 can have no 
self-intersections, so that f3 covers an embedded surface K in M. It follows 
that f~ and f2 both cover the same surface K, which completes the proof of 
Theorem 6.2. 

We now consider the situation where fa and fz cannot be homotoped 
apart. At the same time, we will consider the self-intersections of a single least 
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area  map  f i -  We will show that  least area surfaces intersect as little as possible 
as stated in the introduction.  First we need to discuss how to measure  the 
intersections of  singular surfaces, We will consider the case of a single least 
area map  f l  but  the case of  two maps  is similar. 

Note  that  any least area map  F ~ M  is a composi te  F ~ F ' - - , M  where F ~ F '  
is a covering and F ' ~ M  is an immers ion which is self-transverse except at 
isolated points. It will be convenient  to assume that  f l :  F I ~ M  does not factor 
through a non-trivial  covering of surfaces, i f  f l  is in general position, a natural  
measure  of  its self-intersections is the number  of double curves d in its image, 
or the number  of double curves in the domain  F 1 which will equal 2d as ]'1 is 
two-sided. However  the example  we give in w 8 shows that least area maps do 
not  necessarily have the least possible number  of double curves, so this mea- 
sure is not suitable for our  purposes.  A further problem with this measure  is 
that  it needs care when f l  is locally self-transverse, but  not in general position, 
as f l  could have curves of  triple points. Finally, if f~ is not locally self- 
transverse one cannot  measure  its self-intersections at all. 

The following seems to be the best way to measure  the self-intersections of  
f l .  We consider the lift of F~ into M 1 and count  the number  of componen t s  of 
the pre- image in M 1 of fl(F~) which meet F 1. This number  is denoted D(fl). 
Note  that  if f~ is in general position and if each componen t  of  the pre- image of 
fl(F1) meets F 1 in a single curve, then D ( f  0 is the same as the number  of  
double curves 2d of f~. But, in general, D(fO is less than 2d. This definition 
applies even when f~ factors through some covering of surfaces. 

When we have two least area immersion fi: F I ~ M ,  we define D(fi,f2) to be 
the number  of  components  of  the pre- image in M 1 of f2(F2) which meet  F~. 
This number  is symmetr ic  i.e. D(fl , f2)=D(f2, f l ) ,  because one can interpret  
bo th  numbers  in ~/. Let X 1 2 =  {g~nl(M):  gF2 meets P~}. Clearly X12 is a union 
of double cosets nl(F1)gn~(F2) and D(fl, f2) is the number  of these double 
cosets. Similarly D(fz , fO counts the number  of double cosets nl(Fz)hnl(F1) in 
X21. But the map  g ~ g - 1  defines a natural  bijection between X~2 and X2~ and 
induces a bijection of double cosets, showing that  D(f~,f2 ) =D(f2, fO.  

Theorem 6.3. Let M be a compact, p2-irreducible, Riemannian 3-manifold. Let F i 
be a closed surface, not S 2 or p2, let fi': F~--+M be a two-sided, incompressible 
map, and let fi be a least area map homotopic to f,.', for i = 1, 2. Then 

(i) D(f~, f2) < D(f~', f~), 
(ii) D(f~) < D(f~). 

Proof. We will prove (i) only, as the p roof  of (ii) is similar. As usual, let F~ 
denote  the lift of  f~ to M 1 and let ffl denote  the pre- image in M of F 1. If  (i) is 
false, there must  be a h o m o t o p y  of f l  and f2 which removes the intersection of 
some componen t  of the pre-image of f2(F2) with F~. In ~), we find a translate 
gk~2 of le2 whose intersection with F1 is removed  by this homotopy .  Let  G 
=nl(Fa)ng~l(Y2)g -1, and let L 1 and gL 2 denote  the images in m a of/~1 and 
gF2- The methods  of w 5 produce a product  region X in M G between L~ and 
gL2, and this product  region can be injected into finite covers of M~ and Mg,2. 
This leads to a contradict ion as before. 
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The above result shows that least area surfaces intersect as little as possible, 
but gives us no help in determining the size of the intersection in examples. 
The following result gives some information which is relevant to all examples. 
We continue using the notation established at the start of this section. It is 
most convenient to formulate this result in terms of intersections in ~t rather 
than in Mj. 

Lemma 6.4. (i) I f  n 1 (Fi) c~ gn I (Fj)g 1 = 1, then F i c~ g ~  is empty. 
(ii) I f  7cl(F/)~gg1(f j )g  -1 is a closed infinite surface group then ~ and g~  are 

disjoint or equal. 

Remark. This gives us information about the intersection of two least area 
maps, and about the self-intersections of a single map. 

Proof. (i) Let /1 and /3 denote the closures of the two components o f / Q - F / .  
Our hypothesis implies that the projection ~ t ~ M  i when restricted to gFj is a 

proper map. As F/ is compact, it follows that F/c~g~ is compact. But g~  is a 
plane and so has only one end. Hence one of g ~ m A  or g ~ n / ~  is compact. 

The surfaces F/ and ~ cannot be equal as their stabilizers have trivial 
intersection. As usual, it suffices to consider the case when all intersections are 
transverse so that /~/ is transverse to g~.  As one of g~c~A and g~c~/3 is 

compact  Lemma 4.1 implies that either ~ and g ~  are disjoint or there is a 
product region between them. Lemma 6.1 shows that a product region cannot 
occur and so they are disjoint as required. 

(ii) Let G=~zl(F/)~gTZl(Fj)g -1. This is a closed surface group by assump- 
tion, hence the surfaces L i and gLj in M G are closed surfaces. Now each is a 
least area surface by Theorem 3.5, hence they are disjoint or equal by Lem- 
ma  1.3. Hence/~/and gPi are also disjoint or equal. 

It follows at once from the above result that if fx: F 1 ~ M  is a least area 
map  and if ~l(F1)c~g~l(F1)g -1 is always trivial or a closed surface group then 
f l  covers an embedding. 

The next special case we consider is when G=rCl(F)c~g~l(Fj)g -1 is infinite 
cyclic. In this case each of the surfaces /~ and gLj in M G must be an annulus 
or Moebius band, and can certainly give rise to double curves unlike the 
previous cases. However, we can prove the following result. 

Lemma 6.5. I f  G=nl(Fi)c~gnx(F~)g -1 is infinite cyclic, then either Fi and g~  are 
disjoint or they intersect transversely in a single line whose stabiliser contains G. 

Before proving this result, we will discuss some of its consequences. 
If F i is a torus or Klein bottle then every subgroup of nl(F/) is trivial, 

infinite cyclic or the fundamental group of a closed surface, namely the torus 
or Klein bottle. This observation combined with the two preceding lemmas at 
once gives us the following surprising result. 

Theorem 6.6. Let M be a closed, p2-irreducible, Riemannian 3-manifold. Let  F 1 
be a torus or Klein bottle and let F 2 be a closed surface, not S 2 or p2.  For i 
= l, 2, let fig: Fi-*M be a two-sided, least area, incompressible map which does not 

factor through a covering of surfaces. Then 
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(i) fl  is locally transverse to f2, 
(ii) f~ is locally selJ:transverse. 

Lemma 6.5 also allows us to refine Theorem 6.3 and show that least area 
tori are not only self-transverse but also have the least possible number of 
double curves. The precise results is the following. 

If f l  and f2 are two immersions in general position, we define d(f~,f2 ) to be 
the number of double curves in their intersection and define d(fl)  to be the 
number of double curves in the self-intersection of f~. If the maps are only 
locally transverse we count curves of multiplicity k with multiplicity ( k - l ) .  
Note that this count is to be made in the source F~ off1 and not in M. 

Theorem 6.7. Let M be a closed, p2-irreducible, Riemannian 3-manifold. Let F L 
be a torus or Klein bottle and let F 2 be a closed surface, not S 2 o r  p2. Let 
f /  : Fi--*M be a two-sided, incompressible map in general position, and let fi be a 
least area map homotopic to fi', Jot i = 1, 2. Then 

(i) d(L,L)<=d(f;,fd), 
(ii) d(f~)<d(f;).  

Proof Theorem 6.6 ensures that d(fl)  and d(fa,f2 ) are defined. Now Lem- 
mas 6.4 and 6.5 show that d ( f0  equals D ( f 0  and d(f l , f2)  equals D(fl , f2).  
Theorem 6.3 then proves the required inequalities. 

Now we return to the proof of Lemma 6.5, which we restate for the 
convenience of the reader. 

Lemma 6.5. I f  G=nl(F,.)c~gn~(F~)g t is infinite cyclic, then either ffi and g ~  are 
disjoint or they intersect transversely in a single line whose stabiliser contains G. 

Proof We start by considering the case when all intersections are assumed to 
be transverse. 

As usual we consider the surfaces L i and gLj in M G. Each has a cyclic 
fundamental group and so is isomorphic to an annulus or Moebius band. If Lg 
or gLj is a Moebius band then the intersection is empty, as an open Moebius 
band has only one end and the method of Lemma 6.4(i) applies. If there is an 
inessential circle in Lic~gL~, there will be a product region in M~ between L~ 
and gLj by the proof of Lemma 4.1. If there is more than one circle in gLjc~L~ 
there will be a compact annulus in gLj cut off by two adjacent circles. 
Lemma 4.1 shows that there would then be a product region in Ma between L~ 
and gL~. We conclude that gLjc~L~ consists of a single essential circle if it is 
not empty and the conclusion follows. 

Now we consider the general situation. We will discuss the case of two 
maps, taking i =  1, j = 2. The case when i=j  is proved in the same way. 

Recall that f l  and f2 are transverse except at isolated points and that at 
these points the intersection looks like the intersection of the graph of Re(z") 
with the z-plane. The same remarks apply to the intersection of L~ and gL 2 in 
M G. Suppose that L 1 and gL 2 intersect non-transversely at some point Q. As 
they intersect, each is an annulus. The intersection is a finite graph, with at 
least one vertex, the one at Q, having 2n prongs coming into it, with n_>_2. 
Lemma 1.6 gives us a small perturbation of f l  to a map f~' transverse to f2. 
This will lift to a small perturbation of L~ to an annulus E L transverse to gL 2. 
The picture for the intersection near Q is shown below. 
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Fig. 6.1 

The h o m o t o p y  of  f l  described in Lemma 1.6 was fixed outside a small 
ne ighbourhood of  the points of  non-transverse intersection. It will be con- 
venient here to make our h o m o t o p y  move all of  f l-  Consider the lift of f l  to 
an embedding of  F1 in M~. As F 1 is two-sided in M~, we have two choices of  
an isotopy of F~ in M 1 pushing F~ along the normals  in M 1. This gives us two 
homotopies  of  f l  by projection into M. Let F 1 and F 2 be the two new 
intersections of La with gL 2. Each will be a collection of  disjoint simple closed 
curves as L'a and g L  2 are transverse. Note  that F~ and F 2 are disjoint from each 
other and from F by construction. 

The proof  of  Theorem 5.1 shows that if we make our  per turbat ion of f~ 
small enough, we can treat f ;  as if it is still a least area map. In particular, we 
see that  both F~ and F 2 must  be connected, by the first part  of the p roof  of  this 
lemma. We can now derive a contradict ion by considering Fig. 6.1. Start at the 
point  x of  F~ shown in the figure and run along the a r cX .  One must  even- 
tually return to the point y, as F 1 is connected. We can construct  a new simple 
closed curve by taking this arc together with a short arc joining x to y as in 
the figure. Clearly this new curve does not  meet F 2. But the points x' and y' of  
F 2 are separated by this new curve as every simple closed curve on an annulus 
separates. It follows that F 2 is disconnected. This contradict ion completes the 
proof  of  Lemma 6.5. 

w 7. Extensions 

As noted in the introduction, the assumption that the 3-manifold has no 
boundary  can be replaced with the assumption that  it has a smooth  boundary  
whose mean  curvature vector is zero or  inward pointing. In fact even the 
assumption of smoothness  can be weakened to allow a piecewise smooth  
boundary  as long as it is suitably behaved. The precise condit ions are given in 
[-15] and are: 

M is a compact  subdomain  of  a smooth  tr iangulated manifold M'  such that 
•M is a two dimensional  subcomplex of  M'  consisting of  surfaces {H1, ..., Hz} 
which have the following properties:  
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(1) Each H~ is a C 2 surface in M' whose mean curvature is non-negative 
with respect to the inward normal. 

(2) Each surface Hi is a compact subset of some surfaces H~ in M' where 
H~c~M=H i and 0H~ lies on 0M'. 

We will henceforth take the above to be the meaning of a 3-manifold 
having positive mean curvature on the boundary. 

The assumption that the 3-manifold had no boundary was not used in any 
of the 3-manifold arguments of w 1 through w 6. To extend our results, it is only 
necessary to know that the Schoen-Yau existence result extends to the case of 
a 3-manifold with boundary of the above type. This is proved in [15-]. 

It is also possible to weaken the irreducibility condition on the 3-manifold. 
Let f:  F ~ M  be an incompressible two-sided map into a reducible manifold. 
The Schoen-Yau existence theorem proves the existence of an area minimizing 
map among all maps inducing a conjugate action on the fundamental group of 
F. If we minimize in this sort of class rather than in a homotopy class of maps, 
we can obtain analogous embedding results. For example, the statement of 
Theorem 5.1 in this context would be; 

Theorem 7.1. Let M be a closed Riemannian 3-manifold and let F be a closed 
surface not S 2 or p2. Let f:  F--*M be a map inducing an injection of the 
fundamental group. Assume there exists a two-sided embedding g: F--*M such 
that f . ( n l ( m ) ) = 7 g e ( n l ( M ) ) 7  -1 where 7 is some path in M, and assume that f 
minimizes area among all such maps. Then either 

(i) f is an embedding, or 
(ii) f double covers a one-sided surface embedded in M. 

For the rest of this section, we will consider the question of least area 
surfaces with boundary. For this discussion it will be convenient to assume 
that the 3-manifolds involved are irreducible, but the results can all be extend- 
ed to the reducible case as for closed surfaces. When one considers surfaces 
with boundary, there are two natural ideas of a least area map. In the first case 
which we call the fixed boundary case, one considers a map g: 
(F, OF)--,(M, OM) and the class of all maps which are homotopic to g tel 0F. 
We will restrict our discussion of this case to the situation where g embeds OF 
in 0M. In the second case, which we call the free boundary case, one considers 
the class of all maps of F into M which are properly homotopic to g. The 
following result is the existence theorem in the fixed boundary case. It is due 
to Lemaire [10-]. 

Theorem 7.2. Let f:  (F, OF)~(M, OM) be a proper incompressible map of a 
surface with boundary into a pE-irreducible Riemannian 3-manifold whose bound- 
ary has non-negative mean curvature such that f (OF) is a collection of disjoint 
simple closed curves. Then there exists a least area map g which is homotopic to 
f (by a homotopy f ix ing the image of the boundary) and g can be parameterized 
as an smooth immersion. 

The next existence statement is for the free boundary case. One clearly 
needs to assume a boundary incompressibility condition to avoid having the 
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minimizing surface degenerate. Define a mapping f(F,~?F)-~(M,~M) to be 
boundary incompressible if the natural map ~I(F, c ? F ) ~ I ( M  , ~M) is injective. 

Presumably, the statement we give below can be proved by combining the 
methods of Schoen and Yau [18] with the methods of Meeks and Yau [15], 
but we have not done this. However, it seems worth starting the existence 
result which appears to be needed in order to apply our results. 

Existence Statement 7.3. Let f: (F, O F)~(M,  O M) be a proper map of a surface F 
into a p2-irreducible 3-manifold whose boundary has non-negative mean curva- 
ture. Assume that f is incompressible and boundary incompressible. Then there 
exists a least area map g among all maps which are homotopic to f by a proper 
homotopy, and g can be parameterized as a smooth immersion. 

On the assumption that this statement holds, one can now work through 
the first six sections of this paper and prove all our results in both cases. Of 
course, some minor modifications are needed in the proofs and in the state- 
ments of some results, and we briefly discuss these. 

In w 1, we introduced the idea of a product region and Lemma 1.2 showed 
that such regions cannot exist under certain circumstances. In the fixed bound- 
ary case, no changes are needed but in the free boundary case, we need to 
generalise our definition of product region to cover the case where the region 
meets the boundary of the 3-manifold. In this case, the boundary of the 
product region will consists of the surfaces $1 and S 2 in F~ and F 2 respectively 
together with a subsurface of ~M which is a product region between ~F~ and 
0F 2. Lemma 1.2 needs no changes to its proof. Lemmas 1.3, 1.4, 1.5 and 1.6 
also need essentially no change, but one needs to note that a least area 
immersion can fail to be transverse on the boundary of the surface. 

In w we proved our embedding result for homotopy equivalences. The 
proofs in the fixed and free boundary cases are similar to the closed case with 
relative homology groups used instead of absolute homology groups. Note that 
in the fixed boundary case the phenomenon of double covering a one-sided 
surface is ruled out by the condition that the least area map be an embedding 
on its boundary. Note also that in the free boundary case, one needs to assume 
that the given homotopy equivalence is properly homotopic to an embedding, 
as this is not automatic as it was in the closed case. 

w 3 needs only minor alterations to take account of the preceding remarks, 
and w also goes through essentially unchanged, except that one needs to 
consider arcs in F~caF 2 as well as circles. Using these revised versions of 
Sects. 1-4, the proof  of the main embedding result in w 5 needs only trivial altera- 
tions. 

Finally, all the results in w apply in both the fixed and free boundary 
cases, except for the following points. Lemma 6.4(i) is false as the universal 
cover of a surface with boundary cannot have one end. Also Lemma 6.4(ii) is 
irrelevant. The conclusion of Lemma 6.5 needs to include the new possibility 
that F~ and gFj could intersect in a single arc properly embedded in each. This 
forces some changes to the proof  of the lemma but the ideas are the same. 
(This possibility can only arise in the free boundary case.) Lemma 6.5 was used 
to show that any least area torus or Klein bottle is self-transverse and has the 
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minimal number  of double curves. The crucial property of  these surfaces was 
that any subgroup of their fundamental  groups is trivial, infinite cyclic or  the 
fundamental  group of a closed surface. In the bounded cases, we need to add 
the annulus and Moebius bands to this list of surfaces which are automatical ly 
transverse. 

There is an interesting application of  these results to hierarchies of Haken 
3-manifolds. Let M be a Riemannian, Haken  manifold whose boundary  is 
empty or has non-negative mean curvature. Then any hierarchy for M is 
isotopic to one consisting of  least area surfaces in the fixed boundary  sense. 
This is because a least area surface is automatical ly minimal and so has mean 
curvature zero. Hence cutting M along such a surface preserves the property 
that ~?M has non-negative mean curvature. If  each surface in the hierarchy is 
boundary  incompressible, the least area surfaces can be chosen to be least area 
in their free homotopy  classes. 

w 8. Two Examples 

Our first example is a very simple one of  two embedded least area surfaces 
with non-transverse intersection. Recall that  this is impossible if either surface 
is a torus or Klein bottle, by Theorem 6.6. However,  our construct ion can give 
examples for any surfaces of  higher genus. 

Let F be a closed surface with negative Euler characteristic and some 
metric, and let M denote F x S 1 with the product  metric. It is well known that 
M contains many embedded, incompressible surfaces not isotopic to F, where 
F denotes F • {*} for some point * in S 1. Choose such a surface and let L 
denote a least area surface homotopic  to it. Thus L is embedded and not 
homotop ic  to F. We claim that L must meet some F x {pt} non-transversely. 
As every F x {pt} is a least area surface, this gives the required example. 
Consider the projection of  M onto S 1 and restrict to a map L ~ S  ~. As L 
cannot  equal F x {p t}, this map will have critical points corresponding pre- 
cisely to the points where L meets some F x {pt} non-transversely. But if this 
map had no critical points, it would follow that L would be a bundle over S ~ 
with this map as the bundle projection. Hence, so long as we choose L not  to 
be a torus or  Klein bottle, we will obtain the required points of non-transverse 
intersection. 

In Sect. 6 we saw that a least area incompressible map  from a torus or 
Klein bottle will have the fewest double curves in its homotopy  class [Theo-  
rem 6.7]. For  surfaces of  genus greater than one examples may be pro- 
duced to show that this no longer holds; we must be satisfied with the weaker 
minimality result, Theorem 6.3. Explicitly we consider F to be the double torus 
T 2 ~  T 2 and (M, ( , ) )  to be a certain Riemannian,  Haken  3-manifold with 
mean curvature of  ~?M=0. We find a general position immersion f :  F-~M 
which induces an injection on r~ 1 and has one double curve, d ( f ) =  1. However  
any immersion g of least area in the h o m o t o p y  class of  f must be in general 
position and have two double curves, d(g)= 2. 

The manifold M embeds smoothly (but not isometrically) in R 3. We will 
describe it pictorially in two ways (Diagram 8,1). Begin by setting N equal to a 
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regular neighborhood of j:  F e--~R s and N ' = ne i b .  (j'(F)) where j and j '  are the 
immersions indicated below. (The parameterizations of j(F) and j'(F) are not 
indicated but will soon be constrained.) 

j(F) 
2 double curves 

j'(F) 
1 double curve 

Diagram 8.1 

The underlying smooth manifold M can be obtained by attaching a 2- 
handle to either N or N'  as indicated below. M = N u H = N'w H'. 

N w H  N ' u H '  
Diagram 8.2 

We constrain j and j '  and our identification of N u H  with N'wH'  so that 

the compositions F 9- j , N - i n c , M  and F 9  i' ~N' inc' M are homotopic. 

Call these compositions f and f ' .  Our plan is to construct two metrics ( , )  and 
( , ) '  on M. {, ) will be "large" on H and ( , ) '  will be large on H'. Considering 
these two metrics, we show that any least area g is in general position and that 
the number  of double curves d(g) is 2 for ( , )  and one for ( , ) ' .  Intuitively, we 
imagine that the metric on the 2-handle drives f off H or H'  (resp.) forcing g to 
assume a position similar to j or j '  (respectively). 

The spaces N,N', and M may be replaced by homotopy equivalent 2- 
complexes N,N', and M formed from F by attaching certain (1-complexes) x 
interval along (1-complex) x boundary (interval). These 2-complexes are ho- 
motopy equivalent to the spines of the spaces they replace and even have 
regular neighborhoods homeomorphic  to N,N' ,  and M respectively. The exis- 
tence of the inclusions F c .g ,  F chr ' ,  F c S) make N,N' ,  and M more con- 
venient for us to work with than the actual spines. 

We may set N = F w two annuli, N' = F w one annulus, and M = F u e x I or 
= F w 0  x 1. The two descriptions of M correspond to the identifications M 

= N w H and M = N'  w H ' ;  e is the eyeglasses 1-complex: o--o and 0 represents 
the 1-complex shape like the letter 0. The obvious homotopy equivalences give 
us the following isomorphisms. 
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Lemma 8.1. 

~ 1 ( N ) ~ 1 ( ~ )  ~(~1( F ) * z ) * z  

~ l (N ' )~ -~1 (N ' )~ l (  F) * z 

n,(M) ~ 7z I(M) ~ rCl(F ) , II. 
- -  Free group of rank 2 

An immediate consequence is that the various inclusions induce an in- 
jection of nl(F ). 

Lemma 8.2. Let k: F ~ N  be a map such that the composite F - - * N c M  is 
homotopic to the original map F--*M. Then k is homotopic to the original map 
j: F--+N. 

Proof. Replace N by N and k by/~ making this diagram commute: 

J ~  

We must show/~ is homotopic to the inclusion i: F e N .  
Make /~ transverse to the two center circles ~uf i  of the annuli . g - F .  A 

standard argument (see Chap. 3 [-8] for example) changes /~ by a homotopy to 
eliminate inessential circles from/~-1(~ ~fl). 

It is easily checked that H2(]V; Z ) ~ Z @ Z G Z .  The first generator is i,[-F]. 
The other two are both represented by embedded tori, each consisting of one 
of the annuli attached to F and one annulus embedded in F (with common 
boundaries). The handle H kills an element of infinite order in Hi(N;  Z) so the 
composition NZ~N--,M induces an isomorphism on H2(N; Z). Since incok is 
homotopic to F~---,M, we deduce that k , [F ]  =(1, 0, 0)eH2(N; Z). 

The number of circles of /~-l(e)  and /~ l(fl) (counted according to normal 
orientation) are equal to the second and third components of k,[-F] ~_Hg(N; Z) 
and so must both be zero. Since /~ is an injection on ~1 the circles k-l(c0 are 
freely homotopic and disjointly embedded, thus they are parallel. /~-1(c0 lies in 
an annulus A c F  with 0Ac/~-l(c0. Similarly there is an annulus B c F  with 
/~-l(fl)cB and 0Bc/~-l(fl).  Since e is not freely homotopic to fl (in N) neither 
A c B  nor B o A  thus A and B are disjoint. 

It is well known that any map of a torus into a surface of higher genus 
(actually consider maps into / V - e  wfi) factors up to homotopy through a map 
of a circle. Using this first homotope /~ so that /~-l(c0=A and ]~-l(fl)=B and 
then eliminate the entire inverse image with a final homotopy so that 

Composing /~ with the strong deformation retraction N-c~ u f l ~ F  we have 
homotoped k into F. This map must be homotopic to id e since we know both 
maps become homotopic in M and nl(F)--,~I(M) is an injection. In particular 
k is homotopic to the inclusion i: F c / ~ .  

Note. Similarly, one can also prove that if k': F ~ N '  is a map such that the 
composite F - - , N ' c M  is homotopic to the original map F ~ M ,  then k' is 
homotopic to j ' :  F---,N'. 
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Let /~,  ]V', and M be the covering spaces determined by 7c1(F ). The lift of F 
to each of these spaces is an embedding, denoted simply by F and the 
inclusions F c N, F c_N', and F c M are homotopy equivalences. There are two 
distinct (but isotopic) possibilities for F c M arising from the two descriptions 
of M (see Diagram 8.2). Diagram 8.3 illustrates how the surface F in N,N'  or 
2~r meets the other inverse images of j(F), j'(F), incoj(F) and in(of(F). The 
accuracy of the illustration may be checked by: (1) constructing the covering 
spaces by hand or (2) computing the intersection of the various inclusions of 
nl(F ) with its conjugates. 

The following comments should make this checking easier. If f:  F--,M is an 
incompressible map and if M is a covering of M, then the components of the 
pre@nage in M of f(F) in M correspond bijectively to the double cosets 
nl(M)gnl(F ) in nl(M), and the component corresponding to 7c1(/~ ) gnl(F) has 
fundamental group isomorphic to nl(f4)~gnl(F)g -1. In our situation, the 3- 
manifold's fundamental group is a HNN extension based on nl(F ). A useful 
point here is that in a HNN extension A *c, the subgroup AcagAg -1 lies in a 
conjugate of C unless g lies in A when, of course, A c~gAg -~ =A. 

Suppose M is given some metric and we find that a least area g (in the 
homotopy class of f )  happens to lie entirely in N. Lemma 8.2 says that 
g: F--*N is homotopic to j: F--,N, as maps into N. In order to study the 
double points of g by the techniques of Sect. 6 it suffices to have a description 
of the lift 

A 
and the components of p-l(jF) meeting j(F). This is provided by Diagram 
8.3a. Since all such components meeting j(F) are cylinders, Lemma 6.5 shows 
the intersections of g are transverse, so that the lift ~ of g meets each cylinder 
in an essential circle. Furthermore the disjointness of these four cylinders in 
p-l(j(F)) translates, by an exchange argument, into disjointness of the four 
cylinders of p-l(g(F)) which meet ~(F). The result is that g is a general 
position immersion without triple points with two double curves, d(g)=2. 
Similarly if we supposed that the least area g (g~_f) lay entirely in N' we 
would arrive at the same conclusion except we would find d(g)= 1. 

Observe that if we write M = N  u H ( M - - N ' w  H') the preceding paragraph 
applies equally to least area immersions g: F ~ N u H - I  (g: F ~ N ' w H ' - I ' )  
where l (l') is a closed arc which is a co-core of the 2-handle H (H'). Thus it 
remains to construct a metric ( , )  ( ( , ) ' )  with mean curvature ~?M=0 and so 
that any least area g (g~-f), g: F--*M, will necessarily lie in N w H - l  (N'uH'  
- l ' )  for some co-core l (l'). We construct ( , ) .  The construction of ( , ) '  is 
parallel. 

The 2-handle H has the product structure H diffeo D2 xD1. Let 1/2D2~D 2 
be the disk of radius=l /2 ,  {x, ylx2+y2<l/2}. Any arc x x D  1, for x6l/2D 2 
will be a co-core. We may establish a one parameter family of Riemannian 
metrics ( , ) ,  on M such that: 
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-_ . . . . .  

. . . . .  

\ ,  

~ F 

. . . .  ( _  I " ~ J  

F c~ c y l i n d e r s  = t h e s e  4 c i rc les  F c~ c y l i n d e r s  = t h e s e  2 circles 
Diagram 8.3a Diagram 8.3b 

F meets two disjoint "pairs of pants" in either one or two circles each depending on whether one 
lifts j' or j respectively. 

F 

~ ' ~  or  here  

" " 

Diagram 8.3c  

(1) •M has a product collar. Thus the second fundamental  form and a 
fortiori the m e a n  curvature of  0 M  vanish. 

(2) The metric  remains constant  in a small  ne ighborhood  ofj(F) .  
(3) The metric  on  1/2D 2 x D 1 is r d x  2 + r d y  2 + d z  2 for 0 < r <  ~,-~. 
By the existence theorems [18] and [-15], for each r there is at least one  

least area immers ion  g: Fg- -~M in the h o m o t o p y  class o f f .  By choos ing  r so 
7~? "2 

that ~ - >  area( f )  we obtain the fol lowing chain of  inequalities:  
~ r  2 

area(g(F) c~ 1 /2D 2 x O a) < area(g) __< area ( f )  < area 1 / 2 D  2 x 0 = - -  
4 
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Since project ion 1/2D2 x D t ~ 1/2D2 x 0 is area nonincreas ing  we have area 

('c(g(F)c~l/2OZxD1))<~-~ -. Thus z(g(F)~l/2D2xD 1) is a proper subset of  

1 / 2 D 2 x 0  and s o m e  cocore  1 must  be disjoint from g(F). This completes  the 
verification that our examples  satisfy the desired properties. 
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