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50. INTRODUCTION AND PRELIMINARY RESULTS 

METHODS of shortening a curve in a manifold have been used to establish the existence of 

closed geodesics, and in particular of simple closed geodesics on 2-spheres. For this purpose, 

a curve evolution process should (a) not increase the number of self-intersections of a curve, 

(b) exist for all time or until a curve collapses to a point, (c) shorten curves sufficiently fast 

so that curves which exist for all time converge to a geodesic, and (d) depend continuously 

on the choice of initial curve. Birkhoff originated what is now known as the Birkhoff curve 

shortening process, where midpoints of polygonal approximations to a curve are successive- 

ly connected by geodesic segments [4]. This type of shortening has the advantage that (b), 

(c) and (d) are easy to establish, but the disadvantage that (a) seems difficult to arrange. 

A process of evolving a curve on a surface by its curvature is perhaps the most natural flow. 

Short term existence is easy to establish for this flow, but long term existence involves deep 

questions in PDEs and geometry. This flow has recently been studied with considerable 

success in a series of papers [7,8,9, 11. All four of the desired properties have been shown to 

hold for the flow by curvature of an embedded curve on a Riemannian surface. For 

non-embedded curves in Riemannian surfaces, some open questions remain about the types 

of singularities which may develop in the curvature flow. In particular, it is not known 

whether arcs of double points can be created. 

In this paper we introduce a new curve shortening flow. Like the Birkhoff process, this 

flow involves replacing arcs of a curve with geodesic segments. Unlike the Birkhoff process, 

it picks out its piecewise-geodesic structure purely from the geometry of the image manifold 

rather than from a parametrization of the curve. This flow, which we call the disk Jlow, is 

developed in $1. 

In $2 we use the flow to solve a purely topological problem concerning intersections of 

curves on surfaces. Turaev [17] has posed the problem in the following form: 

Question. Let sO and si be homotopic curves on a surface, each with k double points. Is 

there a homotopy s, from so to si with the property that each curve s, in the homotopy has 

at most k double points? 

The answer is yes, as we show in Theorems 2.1 and 2.2. 

As with the curvature flow, we can use the disk flow to study the evolution of families of 

curves. This is carried out in $3, where we give a new proof of the theorem of Lusternik and 

Schnirelman establishing the existence of three simple closed geodesics on any 2-sphere. In 

tpartially supported by NSF grant DMS9024796 and the Alfred P. Sloan Foundation. 

fPartially supported by NSF grant DMS9003974. 

25 



26 Joel Hass and Peter Scott 

$4 we obtain new results on the existence of simple geodesic arcs on a disk with a convex 

boundary. Finally in $5 we make some concluding observations. We consider only orient- 

able surfaces, though most results extend to the non-orientable case. 

#I. A CURVE SHORTENING FLOW 

We give a simple construction of a curve flow that takes a finite collection of curves on 

a surface and homotops so that: 

1. The number of self-intersection points of each curve is non-increasing. 

2. The number of intersection points between each pair of curves is non-increasing. 

3. Either a curve disappears in a finite time or it eventually lies arbitrarily close to 

a geodesic. 

4. The flow extends continuously over k-parameter families of curves. 

This flow seems to have all the benefits of the curvature flow for geometrical applica- 

tions, but has the advantage of being easy to construct and understand, particularly for 

singular curves. It also is easy to implement algorithmically, and is well suited for computer 

modeling of curve flows. Moreover it generalizes to higher dimensions in interesting ways. 

A precise definition of the flow will be given later, but we first give a rough description. 

Let y be a piecewise-smooth immersed curve on a Riemannian surface F. Cover F with 

convex disks D,, D2, . . D, of radius smaller than the injectivity radius. We choose the disks 

in general position, so that any point on F meets the boundary of at most two disks, the 

boundaries of the disks meet y transversely, and so that disks of half the radius with the 

same centers still cover F. Such a cover will be called well-positioned relative to y. Define 

D, + i cyclically, SO that D” + i = Di, i 2 1. Roughly, the disk flow is defined by homotoping 

each arc of y nD, to the unique geodesic arc with the same endpoints, then repeating for 

each of D,, D3 , . . . 

We will explore the properties and convergence of this flow, and show that the number 

of intersection points is non-increasing. 

Fig. I. Two iterations in the construction of the disk Row. 

We first prove a few combinatorial lemmas. We say that an immersed curve s on 

a surface F, contains an embedded 1-gon if there is an embedded subarc a of S’ with the two 

endpoints a+ and a- of a identified by s, the resulting loop is embedded and bounds a disk 

D on F. We say that an immersed curve s on a surface F, contains an embedded 2-gon if 

there is a pair of disjoint embedded sub-arcs a and b of S’ with s(a’) = s(b+), s(C) =s(b-), 

the loop s(a) us(b) is embedded and bounds a disk D on F. See [l l] for a discussion of the 

existence of such configurations. We say that an embedded I-gon or 2-gon is innermost if it 

does not properly contain either an embedded I-gon or 2-gon. 

LEMMA 1.2. Given a triangle with embedded arcs crossing it, any two of which intersect 

in at most one point and all of which miss one edge, each of the other two edges has an 

innermost triangle adjacent to it. 
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Fig. 2. 

Proof: The proof is by induction on the number of line segments n. It is trivial for n = 1. 

Assume the result for n < k. Start at the vertex opposite the missed edge e. and go along one 

of the two other edges e, until arriving at the first line. This defines a subtriangle, not 

necessarily innermost, which has no lines across its edge which lies in ei. By induction this 

gives an innermost triangle on the opposite edge e2 since the subtriangle has fewer than 

k lines crossing it. Repeat the construction with the edge ez to get a triangle meeting the 

edge e,. General position is not required. 

LEMMA 1.4. Given an innermost 2-gon with embedded arcs crossing it, there is an 

innermost triangle adjacent to each edge of the 2-gon. 

Fig. 3 

Proof: Since the 2-gon is innermost, any two arcs inside it meet in at most one point. 

Consider the triangle formed by moving in from a vertex of the 2-gon along one of the edges 

to the first arc encountered. Combinatorially, this triangle meets the hypothesis of Lemma 

1.2, and so has an innermost triangle on each of its other two edges, and in particular along 

an edge of the 2-gon. 

We call the process of sliding one edge of an innermost triangle across the vertex formed 

by the other two edges a triangle move. We call the process of replacing an arc of a curve by 

a homotopic shortest geodesic arc a straightening of the curve. To simplify the statements of 

the following results we will adopt the convention that a point curve and the empty curve 

are homotopic simple curves, and that each of these is a trivial example of a geodesic. 

LEMMA 1.6. A finite collection of piecewise-smooth, transversely intersecting curves in 

a convex disk can be homotoped (rel boundary) to a collection of geodesics so that the 

number of self-intersection points of each curve and the number of intersection points 

between each pair of curves is non-increasing during the homotopy. 

Proof: We induct on the number of excess double points k in the relative homotopy 

classes of the arcs. 

Suppose first that k = 0, so that each curve is embedded and any two curves which 

intersect meet in one point only. If there is a closed curve, find one not containing any other 

closed curve in its interior. This curve can be homotoped to a point and thus to the empty 
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curve, introducing no new intersections. So we can assume there are no closed curves. Let 

{aif be the collection of arcs, let al be the first arc and let d, be the geodesic segment 

connecting the endpoints of al. Suppose some arc aj meets d, in 2 points, forming a 2-gon 

with a sub-arc of d,. Find a 2-gon T with one side a sub-arc of dl which is inne,most among 

such 2-gons. Then T is innermost among all 2-gons, since no pair of arcs meets twice, and 

each arc ai crosses Tat most once. Applying Lemma 1.4 we can do triangle moves until the 

interior of T meets no arc Ui, and then eliminate T by sliding Uj across d, . Since a triangle 

always exists meeting the Uj edge of T, we need only move uj at each stage. Continuing, we 

eliminate all 2-gons between any arc ai and di , i > 1 and have u 1 n d, = &I,. Then dl and a, 

cobound a 2-gon and proceeding as before, a, and dl can be made to coincide by moving a, 

without introducing new double points. We now repeat with u2 and its corresponding 

geodesic d2. Since d, meets d2 in at most one point, it is never moved as we straighten u2. 

Continuing we can straighten all the arcs without introducing any new double points. 

Suppose now that k > 0, and that the lemma holds for configurations with fewer than 

k intersection points. Then there is a non-embedded curve or two curves which intersect in 

more than one point. It follows that there is an embedded I-gon or an embedded 2-gon 

which is innermost among embedded 1-gons and 2-gons [1 11. An innermost embedded 

1-gon has nothing inside it at all and can be removed, completing the lemma by induction. 

An innermost embedded 2-gon which has some arcs crossing its interior has inside it only 

embedded arcs going from one edge to the other. By Lemma 1.4 an innermost triangle can 

be found. We can do triangle moves across the edges of the 2-gon until no triangles exist in 

the 2-gon, and it can then be removed with the elimination of two double points in the disk 

by sliding one of its boundary arcs across the other. Lemma 1.6 now follows by induction. 

Note that the arcs are moved by a regular homotopy except when a local 1 -gon is shrunk to 

a point and eliminated, as in Fig. 4 and that the resulting straightened arcs intersect 

transversely. 

Fig. 4. 

We now give the definition of the disk flow. Consider a curve yO, not necessarily 

connected or embedded. Assume that no two arcs of Y, n Di have a common boundary point 

and that yi- 1 is not completely contained in Di. We define yr for t E [i - 1, i], i = 1,2, . . to 

be the result of performing the continuous straightening process of Lemma 1.6 in the disk Di 

on yi_, n Di. Although this homotopy may not decrease lengths, the lengths at integral time 

periods are non-increasing. If yi_ 1 is completely contained in Di then the homotopy shrinks 

it to a point, and then the empty curve. 

If y. has transverse self-intersection, small shrinkings of Di will always suffice to ensure 

that no two arcs have a common endpoint, since straightened arcs also intersect transverse- 

ly. If two arcs of yj n Di have a common boundary point, we first shrink Di by a factor of 2, 

where l-ii < 1 < 1, so that there is no common boundary point, and then perform the 

homotopy of Lemma 1.6. Note that no disk ever shrinks to less than half its original radius, 

1 1 
since IT,?=, (l- -.) >-, so that the disks still cover F. This shrinking process is necessary in 

4’ 2 

order to avoid a situation where two arcs have common boundary points, and their 

straightenings coincide along an arc, or meet at one point, without crossing. If y. is 
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embedded, or if we count only transverse intersection points, then we do not need to shrink 

disks. The disk flow defines a regular homotopy of a curve, except for a finite number of 

times when a small loop in the curve disappears, as in Fig. 4. 

The disk flow is not canonical, since the choice of homotopy in Lemma 1.6 is not 

uniquely defined. However it has some useful properties, which we introduce some new 

notation to describe. Define the map A on the set of curves on F to be the map obtained by 

taking a curve s =sO to the curve s, obtained by straightening s successively in each of 

D,,.., D,. We use the topology on the space of curves on a manifold in which an 

s-neighborhood of a curve y consists of all curves y’ such that y and y’ admit parametriz- 

ations which are s-close in the Co-topology. This is the topology induced by the Frechet 

metric on the space of curves. 

THEOREM 1.8. Let y, y’ be transversely self-intersecting curves in F. Let D,, . . , D, be 

a collection of disks covering F, well positioned relative to y u y’. Let y,, yi be their images 

under the disk pow. 

(1) The number of self-intersection points of yl is non-increasing with t, t E [0, 00 ). 

(2) The number of intersection points between y, and y; is non-increasing with t, t E [0, 00 ). 

(3) Either y, disappears in finite time, or a subsequence of the curves {y,} converges to 

a geodesic as t + co . In the second case, if U is any open neighborhood of the set of geodesics 

homotopic to yt then there is a T > 0 such that yt lies in U for t > T. 

(4) If a sequence {yi} converges to a geodesic ym as i--f CO then length(yi) -+ length(y,). 

(5) Length(A(y)) I length(y), with equality if and only ify is a geodesic or a point. 

Proof The first and second assertions are a direct consequence of Lemma 1.6. Suppose 

now that yt persists for t + co so that length(y,) is bounded from below. The sequence of 

curves yi, i = 1,2, . . is then a sequence of rectifiable curves of non-increasing length on 

a compact manifold. It follows from Ascoli’s Theorem that there is a subsequence {yj} 

which converges uniformly to a rectifiable curve 6, with length(S) < limj,,, length(yj). 

Claim 1.9. If a rectifiable curve S is not a geodesic, we can find a subarc 6’ of 6, such that 

either 

a) 6’ is not a geodesic and 6’ n aDi = I#J for all i, or 

b) 6’ consists of a pair of geodesic segments meeting at an angle at a point q lying on the 

boundary of some disk Di. 

Proof of Claim 1.9. If S is not a geodesic it contains subcurves of arbitrarily short length 

which are not geodesic. If none of these miss the boundaries of the disks Di, then the arcs of 

S not meeting the boundaries must be geodesic segments. In this case either S is globally 

a geodesic or (b) holds, proving the claim. 

We now prove assertion (3). Assume first that case (a) holds. Then there is an E > 0 such 

that straightening an arc of S containing 6’ decreases length(S) by at least E. Note that 

straightening in a disk Dj not containing 6’ does not move 6’. Since yj + 6, there is a J such 

that ifj > J and Di contains S’, then replacing Yj nDi by geodesic arcs decreases length(yj) 

by at least s/2. It follows that length(A(yj)) < length(yjks/2. For j sufficiently large, 

length(yjklength(S) < s/2. This implies length(A(yj)) < length(S), a contradiction. So any 

convergent subsequence of {yi} converges to a geodesic. Suppose now that there is 

a subsequence {yk} for which no yk lies within a neighborhood U of the geodesics 

homotopic to y. We could then pass to a convergent subsequence {yk} with the same 
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property, and the limit would not be a geodesic, a contradiction. This establishes assertion 

3 for this case. 

Assume now that case (b) of the claim holds. Straightening 6’ in the disks whose 

boundary contain 4 may now shorten 6 while not shortening approximating arcs. However 

q lies in the interior of a disk Dk, and straightening in Dk uniformly shortens the approxi- 

mating arcs, again leading to a contradiction. We have now established assertion 3. 

Similarly, if a subsequence (rj) converges to a geodesic yl) as j-+ r;c;, and 

length(yZ) < limj,, length(yj), then we could find a subarc 6 of y1 and approximating arcs 

with the same property. The approximating arcs can be taken to either miss the boundaries 

of the disks or to meet a boundary at an angle. In either case assertion (4) of the theorem 

follows as above. Assertion (5) also follows from the same argument, proving Theorem 1.8. 

Note that while a subsequence of (?lli1 converges to a geodesic, the entire sequence may 

possibly oscillate between different geodesics. This possibility is also encountered with other 

curve flows, and it is not known whether it actually occurs. When F has a metric of negative 

or zero curvature, we can show that Y, converges to a unique geodesic. The same methods 

prove that convergence to a single geodesic holds in a generic metric. We say that two 

geodesics are parallel if they cobound a flat annulus. 

THEOREM 1.10. Let F be a negatively curved orpat closed surface. The diskjow applied to 

a curve yO gives a homotopy 11, under which 7, either disappears inhnite time or yt converges to 

a unique geodesic y7 as t + x 

Case 1. F has negative curvature. We can lift y to the cover F, corresponding to y, which 

is topologically a cylinder. We will show that y1 + g where g is the unique simple closed 

geodesic in F homotopic to y,. We call the lift of a curve to F, by the same names as the 

curve. One possible approach to this case is to explicitly estimate how long two curves 

which are equidistant from g and surround y take to converge to g. We observe instead that 

Theorem 1.8 implies that there is a subsequence {rj) which converges to the unique geodesic 

yX homotopic to 7. Once a curve is sufficiently close to yX, under the disk flow, it always 

stays near yl and converges to yZ as t -+ m. 

Case 2. F is flat. Lift to the cover corresponding to [y], which in this case is a flat 

cylinder. Call the smallest distance between two parallel geodesics containing yt the width of 

7,. Since {yj} is converging to a geodesic its width is decreasing to zero. The disk flow on 

[i, i + l] takes yi to a curve yi+, of no larger width, so the entire sequence has width 

converging to zero. Moreover if yi lies between two geodesics yr and yl then applying the 

disk flow to the union of these three curves shows that yI also lies between ‘pi and yT for t > i. 

Note that we can do the straightening process of the disk flow so that Y, is straightened 

before 1/l and 7,. The flow of yI is then unchanged by the addition of the extra two curves. It 

follows that the entire sequence is converging to a unique geodesic. 

We now state a more general result. 

THEOREM 1.11. Let F be a Riemannian 2-mantfold. The disk flow applied to a curve yO 

gives a homotopy yt under which y, either disappears in$nite time or ;I, converges to a unique 

geodesic yr: as t 4 x unless there are an infinite number of distinct, non-parallel geodesics 

with uniformly bounded length in the homotopy class of yO. 

Proof The previous arguments prove convergence in the absence of such a sequence of 

geodesics. 
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Finally we state a result, originally proved by Ballman [2] (see [6] for another proof) 

which is an immediate consequence of Theorem 1.8. 

COROLLARY 1.12. Let F be a closed surface with a Riemannian metric. Every essential 

simple closed curve is isotopic to a simple geodesic. 

$2. DOUBLE POINTS AND HOMOTOPIES OF CURVES 

In this section we apply the disk flow to solve the topological problem of Turaev 

mentioned in the introduction. By a curve in a surface we mean an immersed l-dimensional 

submanifold, and we identify two curves with the same image, so that we are not concerned 

with curve orientations. In counting double points it is required that the curve s, be 

self-transverse, though not necessarily in general position. This property is satisfied by 

curves in a generic homotopy. A k-tuple point is then counted with multiplicity, counting as 

k(k - 1)/2 double points. The question is answered affirmatively through the following two 

results. 

THEOREM 2.1. Let so and s1 be homotopic curves in general position on a surface, each 

minimizing the number of double points in their common homotopy class. Then there is 

a homotopy s, from so to s, such that s, is self-transverse for all t and the number of double 

points of s, is constant. 

THEOREM 2.2. Let so be a curve in general position on a surface which does not minimize 

the number of double points in its homotopy class. Then there is a homotopy s, from so to 

a curve s1 which has minimal self-intersection such that the number ofdouble points of the curve 

s, is non-increasing with t. s, is a regular homotopy except for ajnite number of times when 

a small loop in the curve shrinks to a point. 

COROLLARY 2.3. Let so and s, be homotopic curves on a surface, each with k double points. 

There is a homotopy s,,from so to s, with the property that each curve s, has at most k double 

points. 

Proof of Corollary 2.3. Applying Theorem 2.2 to so we can homotop it to a curve 

s& which has minimal self-intersection without increasing the number of double points. 

Similarly we can homotop s1 to a curve s; which has minimal self-intersection without 

increasing the number of double points. Theorem 2.1 implies that sb and s; can be 

homotoped to one another without increasing the number of double points. Combining the 

three homotopies proves the corollary. 

Example 2.4. The corresponding result for non-connected curves is false, as illustrated 

by the following pair of homotopic two component curves. 

Fig. 5 

TOP 33:1-C 
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The proof of Theorems 2.1 and 2.2 will show however that the obstruction to generaliz- 

ing the result to non-connected curves is completely illustrated in this example. If no pair of 

components are powers of parallel curves then the corresponding result still holds. 

To simplify the notation, we let d(f) denote the number of self-intersections of a self- 

transverse map .f: S’ + F and let d(f, g) denote the number of intersections of two 

transverse mapsf: S’ + F and g: S1 -+ F. For CI and fi free homotopy classes of curves on F, 

let d(a) = inf{d(f):fea} and let d(cr, fi) = inf{d(.L g):.fea, gE/3}. 

The following lemma handles an important special case. 

LEMMA 2.6. If u curve a0 contains an embedded 1-gon or 2-gon then a0 can be homotoped 

to a curve a, with d(a,) < d(a,) by a homotopy a, with d(a,) non-increasing. 

Proof If there exists an embedded 1-gon or 2-gon, we can find an innermost embedded 

I-gon or 2-gon. If there is an innermost embedded 1-gon with nothing crossing it, then it can 

be homotoped away and we are done. If an arc does cross an innermost embedded 1-gon, 

then this arc must be embedded, and there is an embedded 2-gon inside the 1-gon, 

contradicting the innermost hypothesis. So we can assume there are no innermost embed- 

ded I-gons. Pick an innermost embedded 2-gon. Using Lemma 1.4, we can do a series of 

triangle moves to homotop the curve so that nothing crosses the 2-gon. The 2-gon can then 

be homotoped away to give a new curve a, with d(u) reduced by two. 

Proof of Theorem 2.1. In what follows we fix a constant curvature metric on F. 

Case 1. so is null homotopic. Then s,, is embedded and is isotopic to the empty curve, as 

is any other embedded null-homotopic curve. 

Case 2. s0 represents u primitive element CL of n, (F). Let s2 be a geodesic in the chosen 

metric on F. It is well known that s2 has minimal self-intersection, so that d(s,) = d(ct). In 

fact, it is shown in [6] that a length minimizing primitive curve in any metric minimizes 

self-intersection. The disk flow applied to sO takes it to s2 without ever introducing a new 

double point, by Theorem 1.10. 

Case 3. sO represents a non-primitive element a: of xl(F). Suppose that s0 represents the 

homotopy class cc = fl” with b primitive. We can apply the argument of case 1 to construct 

a homotopy s, to a geodesic s, homotopic to so, buts, in this case factors through a cover 

of a curve rl, and no longer minimizes its self-intersection. r, is a primitive geodesic 

however, and does minimize its self-intersection. Also, s, minimizes self-intersection for 

0 I t < co and s, --f s, smoothly as t + 03. For t close to CC, s, is the composition of a map 

p: S’ + A of the circle into the annulus of degree k and a map q: A + F of the annulus into 

F, with image a thin regular neighborhood of r. Thus d(cr) is greater or equal to d(p) + kd(r). 

Lemma 1.9 of [l l] establishes that d(p) is minimized by a curve p. with (k - 1) double 

points, with p. unique up to ambient isotopy. Thus d(a) = k ~ 1 + kd(r). In general there 

can be many curves realizing this self-intersection, not ambient isotopic to one another in F. 

We will show that any pair of such curves are related by a regular homotopy through curves 

of minimal self-intersection, completing the proof of Theorem 2.1. In order to do this we 

establish in Lemma 2.7 a refinement of Lemma 1.9 of [l 11. Lemma 2.7 together with the 

above argument completes the proof of Theorem 2.1. 

Let A be the annulus S’ x I with a flat product metric, so that each S’ x { pt } is 

a geodesic. Say that a smooth curve is &-horizontal if the projection of its unit tangent vector 
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to the I-factor of A has norm less than E at each point on the curve. A curve is horizontal if it 

is O-horizontal in the above sense. s-vertical and vertical are similarly defined. 

LEMMA 2.7. Let E < 1 be a small positive constant and let p, p’ be general position 

immersions of degree k of S’ to the annulus A = S’ x I with (k - 1) double points. Suppose that 

p and p’ are E-horizontal. Then there is a regular homotopy from p to p’ through e-horizontal 

loops each of which has (k - 1) double points. 

Proof In Lemma 1.9 of [l l] it is shown that the self-intersection is minimal and that the 

configuration of the curve is unique up to isotopy in A. An E-horizontal curve is transverse 

to each vertical fiber { pt) x I of S’ x I, since E < 1. Choose a point q in S’ so that the 

vertical fiber through q does not contain a double point of p. Let R denote the rectangle 

obtained by cutting A open along q x I. As in Lemma 1.6, we can homotop p rel boundary 

in R to p1 so that each arc of p1 is a geodesic, without introducing new double points. 

Triangle moves can be carried out by sliding any of the three boundary edges of a triangle 

across the other two edges. When the three edges are each s-horizontal, sliding the longest 

edge across the other two can be done keeping it s-horizontal. Thus the curve remains 

s-horizontal at all times. Lemma 1.9 of [l l] implies that a curve intersecting R in geodesic 

segments can be divided into two connected subarcs il and CL, each of which projects 

injectively into the Z-factor of S’ x I, with 1 strictly increasing and p strictly decreasing. See 

Fig. 6 for an illustration of the k = 4 case. 1 and ~1 can be straightened to geodesic arcs with 

the same endpoints as in Lemma 1.6, without introducing any new double points and 

maintaining the s-horizontal property. Similarly p’ can be regularly homotoped to pi, 

which can be divided into two subarcs 2’ and ,u’ with the same property. By composing 

p1 and pi with a contraction along the I-factor and an appropriate map of the S’-factor we 

can regularly homotop p, to pi so that at each stage each loop is the union of two simple, 

s-horizontal geodesic arcs with injective projection to I, and each loop always has exactly 

(k - 1) double points. This proves Lemma 2.7. 

Fig. 6. 

LEMMA 2.9. Let E < 1 be a positive constant and let p be a general position immersion of 

degree k of S’ to the annulus A = S’ x I. Suppose that p is e-horizontal. Then there is a regular 

homotopy from p to an immersion p1 with exactly (k - 1) double points such that pI is 

e-horizontal and the number of double points is non-increasing during the homotopy. 

Proof If p has (k - 1) double points, this is a consequence of Lemma 2.7. Otherwise, 

Lemma 1.9 of [ 1 l] implies that p contains an embedded 1-gon or 2-gon. As p is transverse to 

the l-fibers of S’ x I there cannot be an embedded I-gon. Embedded 2-gons can be removed 

as in Lemma 1.4, maintaining the E-horizontal property. 

Proof of Theorem 2.2. Let so be a curve in general position on a surface which does not 

minimize the number of double points in its homotopy class and let si be a geodesic 
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homotopic to se if s0 is essential, or an embedded circle bounding a small disk if so is 

null-homotopic. We will find a homotopy s, from so to sr such that the number of double 

points of the curve s, is non-increasing with t. Note that sr has minimal self-intersection if it 

is primitive. If F is a torus put a flat metric on it, and if genus (F) > 1 fix a hyperbolic metric 

on F. 

Case 1. so is null homotopic. If F is a 2-sphere and so is not embedded, the result follows 

from [l 11, which shows that there exists an embedded I-gon or 2-gon on F. Otherwise, put 

a constant curvature metric on F and apply the disk flow to so. This gives a homotopy of 

s, and Theorem 1.8 implies that s, disappears after a finite time, since there is no geodesic 

homotopic to so. Thus si lies in a disk Dj for i large enough. We can then apply the argument 

of [l l] again to establish the existence of an embedded 1-gon or 2-gon. 

Case 2. so represents a primitive element z ofn, (F). The disk flow takes s,, to a geodesic 

s2, which has minimal self-intersection, without introducing new double points along the 

way. For the genus 1 case, s, is parallel to s2. In the higher genus case they coincide, since 

geodesics are unique in a negatively curved surface. 

Case 3. so represents a non-primitive element CI of z, (F). Suppose that so represents the 

homotopy class c( = b” with /II primitive. We apply the disk flow to construct a homotopy 

s, to a geodesic s, homotopic to so, where s, in this case factors through a cover of a curve 

rl, and no longer minimizes its self-intersection. rl is a primitive geodesic, and does 

minimize its self-intersection. But s, introduces no new points of self-intersection for 

0 I t < cc and s, + s,. smoothly as t -+ x. Thus for t close to cc, s, is the composition of 

a map p: S’ + A of the circle into the annulus of degree k and a map q: A + F of the 

annulus into F, with image a thin regular neighborhood of r,, and p(S’ ) is E-horizontal in 

A for some small E. Thus d(cx) is greater or equal to d(p) + kd(r, ). Lemma 1.9 of [I I] 

establishes that d(p) is minimized by a curve pO with (k - 1) double points, with p. unique 

up to ambient isotopy and if p has more than (k - I) double points then there is an 

embedded 1 -gon or 2-gon on the annulus. Since p(S’ ) is s-horizontal, there is no 1 -gon and 

a 2-gon can be eliminated by a homotopy which keeps p E-horizontal and decreases the 

number ofdouble points as in Lemma 2.9. Since d(r,) is minimal already, the resulting curve 

minimizes the number of double points in its homotopy class. This concludes the proof of 

Theorem 2.2. 

$3. FLOWING FAMILIES OF CURVES 

We now consider a version of the flow defined in $1 which will apply to families of curves 

on a surface, parametrized by some manifold M. We can extend the disk flow to a family of 

curves parametrized by the unit interval by applying separately to each one the disk flow as 

defined in $1. It is not now clear that the number of intersection points between two distinct 

curves yt and y; is non-increasing with t, as the straightening process of Lemma 1.6 only 

applies to finitely many curves. However the number of intersection points between any two 

curves is non-increasing at integral values oft. Moreover embedded curves stay embedded 

for all t > 0. A new problem arises in case a curve in the family is tangent to the boundary of 

a disk Di. We then need to till in a ‘gap’ in order to maintain a continuous family of curves. 

By a piecewise-smooth k-parameter family of curves in M we mean a piecewise-smooth 

map from N k x S’ -+ M where N is a compact k-dimensional manifold and the map is 

piecewise smooth on each curve 7.: {n) x S’ -+ M, n E N. 
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LEMMA 3.1. Given a piecewise-smooth k-parameterfamily of curves, the disks (Di} can be 

perturbed slightly so that no curve has more than k interior tangency points to the boundary of 

any disk. 

Proof This lemma can be proved using non-trivial results from the theory of singular- 

ities of maps. We use instead an elegant approach due to White [lS]. We first consider the 

case where the family is smooth. 

We formulate the problem in the following form: Given a smooth k-parameter family of 

curves in the plane and a function h: R2 + R, h can be perturbed slightly so that no curve 

y has more than k points of tangency to h- ‘(0). The lemma follows by letting h be 

a perturbation of the radial function on each disk in turn. 

Let X be the Banach space of C’v” maps from R2 to R with the C”*“’ topology, where 

1’ > 1, M’ > a, I+ LX > 2. Let F: Rk x S’ + R2 be a fixed k-parameter family of simple curves. 

Let Z denote the subset of [S’lk+ ’ consisting of k + 1 distinct points on S’. Let Y be the 

subset of X x Rk x Z consisting of points (h, tl, t2 . tk, dl, O2 . . . ok+ 1) such that 0 is 

a regular value of h, hF(t,, t2. . . tk,gi) = 0 and a(hf)/&?[t,, t2. . . tk, gi] = 0, 

i= 1,2,. . , k + 1. Thus a point is in Y if there are k + 1 distinct points on the circle whose 

image under F is tangent to the curve h-‘(O) in R2. Y has codimension 2k + 2 in 

X x Rk x [Silk+‘, and White shows that this implies that its projection to X is closed and 

nowhere dense. Thus a small perturbation of any map in X will make it miss the projection 

of Y, implying at most k tangent points of h- ’ (0) on any circle and proving Lemma 3.1 for 

the smooth case. 

For the piecewise-smooth case, we allow each curve y,, to flow for a short time under the 

heat flow to a slightly shorter smooth curve. Short time existence of the heat flow is given by 

standard theory of parabolic equations. We emphasize here that long term existence of this 

flow is not standard and requires the extensive arguments of [9, 7, 81. Since N is compact 

a short-term length decreasing flow exists for the whole family. The resulting family of 

curves is smooth, and we can then apply the previous step, concluding Lemma 3.1. 

In general the problem of finding a continuous length decreasing deformation of 

a family of curves which preserves embeddedness is very difficult. However for some special 

cases it is easy. We say that an arc c( in a disk is a pseudo-graph if there is a foliation of the 

convex hull of u by disjoint geodesic segments, each of which meets r at most once. Note 

that pseudo-graphs are automatically embedded. Given a curve 70: [0, l] -+ D, let 7, denote 

the curve obtained from z. by replacing 7 [0, t] by the geodesic from r(0) to z(t) and call 7, an 

initial straightening of r. More generally, let 7’ be a curve obtained from 7 by replacing 

r(tl, t2) by the geodesic segment connecting 7(tl ) and 7(r2), and call 7’ a straightening of 7. 

Fig. 7. A family of initial straighten&s interpolating between T and o 

LEMMA 3.3. A pseudo-graph 7 remains a pseudo-graph after a straightening. 

Proof: Let L be any geodesic segment in the foliation which makes 7 a pseudo-graph, so 

that L intersects 7 at most once. A straightening of 7 will also intersect L at most once. Since 
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this holds for all L, the straightened curve is embedded, and is a pseudo-graph with respect 

to the same foliation, 

LEMMA 3.4. Let D denote a convex disk, let a: [O, l] + D be a proper geodesic in D and let 

C = (pseudo-graphs t in D with & = &s}. There is a continuous length decreasing deforma- 

tion retraction of I: to 6. 

Proof Perform initial straightening and apply Lemma 3.3. 

LEMMA 3.5. A piecewise geodesic curve in a convex disk with vertices on 8D is a pseudo- 

graph. 

Proof Such curves can be drawn in the unit disk in R2 to originate at (- 1,O) and have 

x-coordinate always increasing. They are pseudographs in the unit disk, with respect to the 

foliation consisting of geodesic segments connecting (x, - y) to (x, y), irrespective of the 

convex metric. 

Example 3.6. The seven possible configurations of such a curve with up to three interior 

tangencies are shown in Fig. 8, up to homeomorphism of the disk. Each is drawn so as to be 

a pseudo-graph with respect to the obvious vertical foliation of the disk. If the curve 

intersects the disk in more than one arc, then combinations of these may occur. However 

their convex hulls are disjoint so it suffices to consider the connected case. 

LEMMA 3.8. A generic k-parameter $amily of curves on a Riemannian 2-sphere can be 

straightened continuously. The straightened.family is homotopic to the originalfamily. 

Proof Consider first a l-parameter family gs = gs,o of embedded curves sweeping out 

the 2-sphere, where SE[O, 11. Cover the 2-sphere with finitely many disks D,, . , D, as 

before. Flow the family gs,O to get a new family gs, 1 by the following process: 

In the disk D 1 replace each arc of intersection of g,, o n D, by the corresponding geodesic 

arc. Replace any closed curve gs,O lying completely in D, with the empty set. If a gap 

develops due to a tangency of some curve gs,.O with CYD,, fill it in with piecewise geodesic 

arcs to form a new continuous family, with maximal length no larger than before. 

Reparametrize the new family by the unit interval, replacing a curve with an interior 

tangency with a closed interval of curves which fill the gap. This defines a mapf, : I-+ I with 

fr(sr) = sO, where s1 is the index of any curve which originated with l/,sO. Repeat for 

Dz, D1,. . . A sequence of parameters S = (so, sr, sL, . .) and maps fi: I -+ I with 

Fig. 8. The possible configurations of a connected arc with one, two and three internal tangencies, up to 

homeomorphism of the disk 
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Fig. 9. Two examples of straightened l-parameter families of curves 

Fig. 10. A typical 2-parameter family of curves near a point where a double tangency occurs, before and after 

straightening. 

I = si- i determines the evolution of any given curve at integral times. The parameter 

space 60, sl, ~2,. . .) with the inverse limit topology is homeomorphic to the unit interval. 

Note that in this topology the map A, defined in section one, gives a continuous map from 

I x S’ to itself, decreasing the length of each non-geodesic curve. 

In a two-parameter family we may have isolated parameter values corresponding to 

a curve which is tangent to the boundary of some disk Di at two points. We will describe 

a straightening process which extends over these values. In the complement of these points 

the straightening process is defined just as before. Expanding each curve having a single 

point of internal tangency to an interval of curves by initial straightening, and straightening 

any other curve, the straightening process becomes defined except on the values in the 

parameter space where there are two internal tangencies in some disk Di. A neighborhood 

of such a point is depicted in Fig. 10, where the point has been replaced by a 2-cell. The 

straightening process is defined continuously on the boundary of a 2-cell by the l-parameter 

case. The straightened curves on the boundary of this 2-cell are each pseudo-graphs with 

common boundary, so Lemma 3.4 states that the straightening process extends continuous- 

ly over the missing 2-cell and that each resulting curve has length no greater than the curve 

that it flowed from. 

The parameter space is replaced by a new parameter space in which a point is replaced 

by a 2-cell. In the limit the parametrizing space is the inverse limit. Topologically it is 

homeomorphic to the original parametrizing space [S]. In practice it suffices to consider the 

evolution of a family of curves parametrized by a manifold for a finite amount of time, and it 

is clear that the topology of the parameter space is unchanged when a point is replaced by 

a disk finitely many times. 

For a 3-parameter family the argument is similar. The straightening process is defined 

and continuous for curves with 2 or fewer tangencies. At a triple tangency various double 

tangencies converge. It is necessary to extend straightened arcs over a 3-cell. On the 
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boundary of this cell the family consists of pseudo-graphs with a common pair of endpoints. 

Lemma 3.4 says that these can be canonically deformed to the corresponding geodesic 

without increasing length. The case of a k-parameter family also follows similarly. Finally 

we note that since Diff(D’, rel?) is contractible, the straightened family is homotopic to the 

original family, concluding the proof of Lemma 3.8. 

We now indicate how to use the disk flow to establish the existence of three simple 

closed geodesics on a 2-sphere endowed with an arbitrary Riemannian metric, giving a new 

proof of the famous theorem of Lusternik and Schnirelman [lS]. Previous proofs of this 

result have constructed length or energy decreasing deformations for families of embedded 

curves. See [14] for a discussion of this problem, and [2, 9, 131 for related results. We 

describe a process of replacing a generic continuous family of embedded curves on 

a 2-sphere with a new family such that any curve in the final family is shorter than the 

corresponding initial curve. During the deformation from the first family to the second, 

lengths of some curves may increase, but each curve in the first family is shorter than the 

curve in the second family that it deforms to. 

THEOREM 3.11. [15]. A Riemannian 2-sphere contains three simple closed geodesics. 

Proqf First we give an easy construction of the existence of one simple closed geodesic. 

Consider a family of embedded curves, parametrized by I = [O, l] and starting and ending 

with a point, which together define a degree one map of the 2-sphere. Pick 6,, > 0 so that 

any embedded curve of length at most 6, lies in one of the disks iDi}. Then if all curves in 

the family have length less than rS, we can extend the map of the sphere to a continuous map 

of the ball, a contradiction to the assumption that the family represents a degree one map of 

the 2-sphere. So the length of a maximal length curve in such a family can never be less than 

6,. Apply the disk flow to the family described above. We can shrink the disk Di slightly if 

necessary, to ensure that {aDi) is tangent to any curve in the family in at most one point, 

and is tangent to only finitely many curves in the family. The set of parameter values for 

curves that flow to a point and disappear is open, since any such curve eventually lies inside 

a single disk D,, and thus so does any nearby curve. Let S = (s,,, sl, s2 . .) be the smallest 

parameter value in the lexicographic ordering for which ys does not disappear. Then ys has 

a subsequence converging to a closed geodesic. 

To establish the existence of three distinct simple closed geodesics we follow the 

arguments of [ 14, Appendix A 11. The space of unparametrized embedded piecewise-smooth 

curves on S2, with all point curves identified, is homotopy equivalent to RP3. We denote it 

by C, and by Ck the curves in C of length at most k. The Z,-homology of C is generated by 

one cycle in each dimension up to dimension three. The zero-dimension homology corres- 

ponds to point curves. Let hj be the non-trivial Z2-homology class in the jth homology 

group of C, j = 1,2, 3. Fix a Riemannian metric on S* and let z be a j-cycle with [z] = hj. 

Define the length of a cycle z to be the maximum length of a point in C which is in the image 

of Z. Define k(hj) = inf{Iength(z): [z] = hj). 

Let Uj c X be an open neighborhood of the set of simple closed geodesics of length 

k(h,), with the Co-topology as in $1. If there are only finitely many simple closed geodesics 

then we can take each component of Uj to be contractible. We will apply the map A defined 

in $1 to the curves in C. Note that A is not continuous on E near curves which have internal 

tangencies to a disk Di. To deal with this problem, we perturb the disks Di slightly so that no 

simple closed geodesic is tangent to the boundary of a disk Di. This is easily arranged if 

there are less than three simple closed geodesics, and otherwise we are done. Curves which 

are close to the simple closed geodesics have images under A which remain close, and thus 



SHORTENING CURVES ON SURFACES 39 

there is a smaller neighborhood Uj, of the set of closed geodesics of length k(hj) with 

A(Uj’) c Uj. 

The following lemma is a key step in the proof of the Theorem 3.11. 

LEMMA 3.12. If there are less than three distinct simple closed geodesics on S2 then there is 

an E > 0 and a cycle Zj representing hj such that every curve in zj either lies in Uj or has length 

less than k(hj) - C. 

Proof: Fix a homology class hj. We first show that there is an E > 0 such that 
A(x&h,‘+ “) C xk’h,‘- (: u Uj. If not, we can find a sequence of curves s, such that 

length(s,) < k(hj) + l/m, length(A(s,)) > k(hj) - l/m and S, is not in LJj.7 m = 1,2, 3,. . . . 

Since the curves s, are of uniformly bounded length, we can assume, after passing to 

a subsequence, that they converge to a curve s. We will show that 

length(s) = length(As) = k(hj) (this is not immediate, since A is not continuous on C). First, 

the arguments of Theorem 1.8 show that length(As) = length(s), as otherwise A uniformly 

decreases the length of the approximating curves s,. By assertion 5) of Theorem 1.8, s is 

a geodesic or a point. We need to show that length(s) = lim,,, length@,). 

Since s, 4 s and s is a geodesic, if length(s) < lim,,, length(s,) then there is an arc 

tl c s and a sequence of arcs a, c s, converging to a with length(a) < lim,,, length(a,) 

and with each a,,, contained in int(&) for some disk Dk. Then 

length(A(s,)) < length(s,) - 6 for some fixed 6 independent of m, a contradiction. So 

s, c Uj. for large m, a contradiction. We conclude that A(ZkCh~)+ “) c A(Ckfhl’ ~ ‘:) u Uj for 

sufficiently small E. 

To prove Lemma 3.12, take a cycle z representing hj with every curve in z contained in 

Ck(h~)+ ‘. Then A(z) c Ck(‘j)- (: u Uj, proving the lemma. 

The existence of at least three distinct simple closed geodesics now follows from more or 

less standard arguments concerning “subordinated homology classes”, going back to 

Lusternik and Schnirelman, which we briefly present. X is homotopy equivalent to RP3. 

The l-parameter family we described above is a cycle hl generating H,(Z). Take a 2- 

parameter family z2: RP2 + C representing a generator h2 of H,(X; 2,). Such a cycle can be 

constructed on a round sphere by taking all great circles perpendicular to the equator, 

together with all round curves parallel to one of these circles. Note that an orientation 

reversing closed curve on this RP2 represents a l-parameter family of curves in h,. For 

a non-round sphere, a diffeomorphism to the round sphere gives corresponding families. 

Flow the 2-parameter family of curves in the cycle z2. There must be some curve in z2 at 

each time which has length 2 k(h,). Theorem 1.8 implies that a subsequence of these curves 

will converge to a closed geodesic of length 2 k(h,). If k(h,) > k(h,) then we have obtained 

two distinct geodesics. If k(h,) = k(h,) and there is only one closed geodesic obtained from 

flowing both cycles, we will deduce a contradiction. Pick z2 so that every curve in z2 is either 

in U, (which coincides with U,) or has length less than k(h,) - E, for some fixed E. Let 

W, = ~2 ‘(U1 ), so that WI is an open set in RP2. Shrinking U, slightly, we can arrange that 

W, is the interior of a codimension-zero submanifold of RP’. WI then intersects any 

orientation reversing closed curve in RP2, since otherwise there is a representative of 

hI consisting of curves which are all shorter than k(h,). In that case W, contains an 

embedded curve p representing a generator of the fundamental group of RP’. z2(B) is then 

a representative of h, , but is completely contained in U 1, and since all curves in U1 he in 

a neighborhood of a single simple closed geodesic on S2 and are homotopic to a generator 

of the fundamental group of this neighborhood, z2(/j) can be homotoped to a constant map 
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in U,, a contradiction. The same argument further implies that there must be infinitely 

many closed geodesics of the same length if k(h,) = k(h,). 

A similar argument applied to h3 gives a third closed geodesic if k(h,) = k(h,), but we 

need an additional observation. 

Claim 3.13. Changing the domain of z2 from RP2 to an arbitrary 2-manifold F2 does 

not change k(h,). so that li(h,) = inf [max [length(z): z: F2 + X, F2 is any surface, and 

Czl = h21. 

Proclf: Suppose that there is a map z: F + C where F is a surface, [z] = h2 and 

length(z) < k(h,). Let k’(h,) = infjmax{length(s): SEZ, z: F2 + C. F is any surface, and 

[z] = h2). Applying Lemma 3.12 we can find a map z’: F2 -+ C with [z’] = h2 and with 

each curve in the image of z’ either lying in Ui or having length < k’(h,) - c. Let 

Wi = z’~ ‘(Cl,). Since Ui is contractible. if W, is not simply connected then F can be 

surgered in W, to produce a new surface F’ and map z”: F’+ C with [z”] = h2 and with 

W; = zflm ‘(U,) consisting entirely of disks. Now [z”] = h2 so F’ contains a loop x with 

z”(r) representing kl. If z”(F’) is mapped into RP3 by using the homotopy equivalence of 

X with RP3. then CI is obtained by taking the intersection pairing F’- F’. Equivalently. r can 

be obtained by taking a representative in F’ of the homology class PD(PD(m)u PD(a)), 
where PD indicates the Poincare dual in H*(RP”; Z,). Intersection theory implies that 

c( must intersect W;. But any curve can be homotoped off a collection of disks, so we have 

a contradiction, proving the claim. 

We now find a third simple closed geodesic. If k(h,) > k(h,) then we obtain a third 

closed simple geodesic of length greater than k(h,) by flowing a cycle z3 and taking 

a convergent sequence of curves with length 2 k(h,). If k(h,) = Ii then we can consider 

the cycle z3, the image of an RP3 in Z: corresponding to all the round circles in the standard 

S1. By Lemma 3.12 we can arrange that all curves in z3 either have length less than k(h,) - i: 

or have image under A which lies in U2, a neighborhood of the simple closed geodesic of 

length k(h,). Take the set W2 to be the interior of a codimension-zero submanifold of RP3 
mapping to U2. Every non-trivial 2-cycle embedded in RP3 represents h2, and so must meet 

W2 by Claim 3.13. It follows that W2 contains an embedded loop representing hi. again 

giving a contradiction since a loop of curves lying in Uz all lie close to a single curve and 

thus can not be non-trivial homologically. 

$4. FLOWING ARCS 

The disk flow easily adapts to the setting of properly immersed arcs, allowing the flow of 

such an arc to a geodesic arc. In this setting we get new results on the existence of geodesics, 

since the analysis involved in the existence of the curvature flow has not been extended to 

the relative case. 

We can prove for example a relative version of the Lusternikkschnirelman theorem. The 

arguments are very similar to the ones in Section 4, so we give them more briefly. 

We define the process of flowing an arc in exactly the same manner as flowing a curve, 

except near the endpoints of the arcs. There we can define various types of flow. One choice, 

corresponding to free boundary conditions, is illustrated in Fig. 11, where we depict a disk 

Di meeting c?F along part of its boundary. On an arc in Di not meeting dF the flow is defined 

as before. If the arc meets dF in one point, then the flow replaces it by the unique geodesic 

arc with the same endpoint aDi - dF and with the other endpoint meeting t3F perpendicu- 

larly. If the arc has both endpoints on i?F then it disappears, as in Fig. 1 I(c). Two types of 
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Fig. 11 (a) 

Fig. 1 I (c). 

Fig. I I (b). 

Fig. 11 (d). 

gaps can occur for families of arcs under this flow, but as before the gaps can be filled in by 

arcs which are no longer than the ones which give rise to them. The first type of gap occurs 

as before when an arc is tangent to aDi, as shown in Fig. 11(b). The second kind of gap 

occurs when an arc has one endpoint on aDi n aF, as in Fig. 11(d). 

THEOREM 4.2. A Riemannian 2-disk with convex boundary contains at least two distinct 
simple geodesic arcs with endpoints perpendicular to the boundary. 

Proof The proof is identical to that of Theorem 3.11, except that in this case the space 

we work with is the space of simple arcs in a disk together with trivial one point arcs, with 

all the trivial arcs identified to a point. This space is homotopy equivalent to RP* and so has 

only two Z,-homology classes instead of three, leading to only two normal geodesic arcs. 

$5. CONCLUDING REMARKS 

We present here some general remarks and questions concerning various flows on 

surfaces. 

Remark 5.1. No singularities develop for the curvature Jlow of a curve y which lifts to an 
embedding in some cover of F. 

Proof Lift y to Fy where it lifts to a generator of the fundamental group. This surface is 

geodesically convex, so the lift of y exists for all time under the curvature flow and flows to 

a geodesic [9]. Its projection to F gives the curvature flow on F. 

Remark 5.2. Curvature flow for a curve that lifts to a simple curve converges to a unique 
geodesic on a surface on non-positive curvature. 

The proof is similar to that for the disk flow given in $1. 
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Remark 5.3. The smooth curvaturepow can be used instead of the disk Jlow to make most 

of the arguments of $2. 

The smooth curvature flow is more canonical than the disk flow, and can be run 

simultaneously for all curves. However one needs to restrict to curves that do not develop 

singularities, so that their curvature flow exists for all times, and even for this class one 

needs to make arguments more complicated than those used in studying the evolution of 

embedded curves. Grayson’s results [9], together with recent results of Angenent [l], 

provide the needed techniques for d(s) minimal. When d(s) is not minimal, additional 

arguments seem necessary. 

Question 5.4. Does the disk flow converge to the curvature pow as the disks are taken 

smaller? 

From the nature of the heat equation one would expect this to occur if time is decreased 

as the square of the disk radius. For certain special cases it can be shown that convergence 

does occur. Note that it suffices to check convergence for piecewise geodesic curves. The 

disk flow is ideally suited to implementation on a computer, so this question is interesting to 

determine whether the curvature flow can be approximated through this method. Also note 

that this could lead to a new proof of Grayson’s result [9]. It seems likely that the Birkhoff 

flow does not converge to the curvature flow, but rather to some type of energy flow. 

Remark 5.5. Higher dimensions. The disk flow generalizes to higher dimensions in two 

key cases. The first is for curves in an n-dimensional manifold. For a finite number of curves, 

the construction of a disk flow is almost identical, with segments of curves being 

straightened in a k-ball instead of a 2-disk. Of course the intersection properties do not 

persist in higher dimensions, but it is still true that curves can be flowed to points or to 

geodesics. Long term existence for the curvature flow is unknown in dimensions larger than 

two. The Birkhoff process also extends to higher dimensions. The advantage of the disk flow 

in higher dimensions is that it is more natural from the point of view of computer 

implementation. 

The other generalization is to two-dimensional minimal surfaces in 3-manifolds. Under 

a suitable hypothesis about the incompressibility of a surface, it can be shown that it flows 

by a local minimizing process to an embedded minimal surface. For example, an embedded 

surface isotopic to a totally geodesic surface will flow to that totally geodesic surface under 

a disk flow process which replaces the intersection of the surface with a ball by least area 

disks. This flow is described in [12], but in that setting convergence of the flow for 

a particular initial choice of surface was not clear. In [12] this is overcome by flowing 

a minimizing sequence of surfaces. In the setting just described, this is unnecessary. 

Remark 5.6. Flows without metrics. It is not actually necessary to have a metric on 

a manifold to define the disk flow on curves. It suffices to have a cover of a manifold by disks 

with unique geodesics defined for each pair of boundary points. This occurs for example if 

M is an affine manifold. One then cannot hope in general to get convergence to a geodesic, 

since there are examples of homotopy classes of curves in affine manifolds which do not 

contain geodesic representatives. 

Acknowledgements-Results similar to those of Theorem 2.1 have been independently obtained by Marc Shepard 

in his Ph.D. thesis [16]. 
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