1. Do the following sequences \(\{a_n\} \) converge or diverge as \(n \to \infty \)? If a sequence converges, find its limit. Justify your answers.

(a) \(a_n = \frac{2n^2 + 3n^3}{2n^3 + 3n^2} \);
(b) \(a_n = \cos(n\pi) \);
(c) \(a_n = \frac{\sin(n^2)}{n^2} \).

2. Do the following series converge or diverge? State clearly which test you use.

(a) \(\sum_{n=1}^{\infty} \frac{n + 4}{6n - 17} \)

(b) \(\sum_{n=2}^{\infty} \sqrt{\frac{n}{n^4 + 7}} \)

(c) \(\sum_{n=1}^{\infty} \frac{(-5)^{n+1}}{(2n)!} \)

(d) \(\sum_{n=3}^{\infty} \frac{\ln n}{n} \)

(e) \(\frac{1}{1^4} + \frac{1}{2^4} - \frac{1}{3^4} + \frac{1}{4^4} + \frac{1}{5^4} - \frac{1}{6^4} + \frac{1}{7^4} - \frac{1}{9^4} + \cdots \)

(f) \(\sum_{n=1}^{\infty} [e^n - e^{n+1}] \)

3. Determine the interval of convergence (including the endpoints) for the following power series. State explicitly for what values of \(x \) the series converges absolutely, converges conditionally, and diverges. Specify the radius of convergence \(R \) and the center of the interval of convergence \(a \).

\[\sum_{n=1}^{\infty} \frac{(-1)^n 2^n}{n} (x - 1)^n. \]

4. Write the Taylor polynomial \(P_2(x) \) at \(x = 0 \) of order 2 for the function \(f(x) = \ln(1 + x) \).
Use Taylor’s theorem with remainder to give a numerical estimate of the maximum error in approximating \(\ln(1.1) \) by \(P_2(0.1) \).

5. (a) Find the value(s) of \(c \) for which the vectors
\[
\vec{u} = c\vec{i} + \vec{j} + c\vec{k}, \quad \vec{v} = 2\vec{i} - 3\vec{j} + c\vec{k}.
\]
are orthogonal.
(b) Find the value(s) of \(c \) for which the vectors
\[
\vec{u} = c\vec{i} + \vec{j} + c\vec{k}, \quad \vec{v} = 2\vec{i} - 3\vec{j} + c\vec{k}, \quad \vec{w} = \vec{i} + 6\vec{k}.
\]
lie in the same plane.

6. Find a parametric equation for the line in which the planes
\[
3x - 6y - 4z = 15 \quad \text{and} \quad 6x + y - 2z = 5
\]
intersect.

7. Suppose that
\[
f(x, y) = e^x \cos \pi y
\]
and
\[
x = u^2 - v^2, \quad y = u^2 + v^2.
\]
Using the chain rule, compute the values of
\[
\frac{\partial f}{\partial u}, \quad \frac{\partial f}{\partial v}
\]
at the point \((u, v) = (1, 1)\).

8. Let
\[
f(x, y, z) = \ln \left(x^2 + y^2 - 1\right) + y + 6z.
\]
In what direction \(\vec{u} \) is \(f(x, y, z) \) increasing most rapidly at the point \((1, 1, 0)\)? Give your answer as a unit vector \(\vec{u} \). What is the directional derivative of \(f \) in the direction \(\vec{u} \)?

9. Find the equation of the tangent plane to the surface
\[
xyz = 2
\]
at the point $(1, 1, 2)$.

10. Find all critical points of the function

$$f(x, y) = x^4 - 8x^2 + 3y^2 - 6y.$$

and classify them as maximums, minimums, or saddle-point.

11. Let

$$D = \{(x, y) : x^2 + y^2 \leq 1\}$$

be the unit disc and

$$f(x, y) = x^2 - 2x + y^2 + 2y + 1.$$

Find the global maximum and minimum of

$$f : D \to \mathbb{R}$$

At what points (x, y) in D does f attain its maximum and minimum?

12. Suppose that the material for the top and bottom of a rectangular box costs a dollars per square meter and the material for the four sides costs b dollars per square meter. Use the method of Lagrange multipliers to find the dimensions of a box of volume V cubic meters that minimizes the cost of the materials used to construct it. What is the minimal cost?