Math 118: PDE

HW 3 Solutions

1.3.3

• By the law of conservation of energy, we have

\[
\text{rate of change of thermal energy} = \text{heat flux in} - \text{heat flux out}. \quad (1)
\]

• Let \(u(x, t) \) denote the temperature of the rod at position \(x \) and time \(t \). The thermal energy density \(e(x, t) \) per volume is given by \(c \rho u(x, t) \), where \(c \) is the specific heat capacity of the rod, and \(\rho \) the density.

• The heat flux \(q(x, t) \) per cross sectional area is proportional to the negative gradient of temperature, i.e. \(q(x, t) = -ku_x \) for some \(k > 0 \).

• The additional heat loss to the outside through the lateral sides of the rod is given by \(h(x, t)Pdx \) where \(h(x, t) = \mu[u(x, t) - T_0] \) for some \(\mu > 0 \), where \(T_0 \) is the ambient temperature, based on Newton’s law of cooling.

• By (1), we have

\[
\frac{d}{dt}\int_a^b e(x, t)A \, dx = \left[q(a, t)A - q(b, t)A\right] - \int_a^b h(x, t)P \, dx, \quad (2)
\]

which can be simplified to

\[
\int_a^b c \rho u_t \, dx - Akx + \mu P[u - T_0] \, dx = 0. \quad (3)
\]

• Since \(a, b \) are arbitrary, it follows that

\[
u_t = \frac{k}{c \rho}u_{xx} - \frac{\mu P}{c \rho A}[u - T_0]. \quad (4)
\]

1.3.5

• By the conservation of mass, we have

\[
\text{the rate of change in the fluid mass} = \text{change in flux based on diffusion (i.e., flow in - flow out)} + \text{change in flux based on advection (i.e., move in - move out)}. \quad (5)
\]
• Let $u(x, t)$ denote the mass of fluid particles at position x and time t. Then (5) gives
\[
\frac{d}{dt} \int_a^b u(x, t) \, dx = -\int_a^b q_x(x, t) \, dx - \int_a^b V u_x(x, t) \, dx,
\] (6)

• Since $q = -k u_t$ and a, b are chosen arbitrarily, we have
\[
u_t = k u_{xx} - V u_x.
\] (7)

2.2.6

• (a) Substitute the following derivative to the PDE
\[
u_t = \alpha f'(t - \beta)
\]
\[
u_{tt} = \alpha f''(t - \beta)
\]
\[
u_r = \alpha' f(t - \beta) - \alpha \beta f'(t - \beta)
\]
\[
u_{rr} = \alpha'' f(t - \beta) - 2 \alpha' \beta f'(t - \beta) - \alpha \beta'' f'(t - \beta) + \alpha(\beta')^2 f''(t - \beta)
\]
we get
\[
c^2(\alpha'' + \frac{n-1}{r} \alpha') f - c^2(2 \alpha' \beta' + \alpha \beta'' + \frac{n-1}{r} \alpha \beta') f' + (c^2 \alpha (\beta')^2 - \alpha) f'' = 0
\] (8)

• (b) Setting the coefficients of f'', f', and f equal to zero, we obtain
\[
c^2(\alpha'' + \frac{n-1}{r} \alpha') = 0
\] (9)
\[
c^2(2 \alpha' \beta' + \alpha \beta'' + \frac{n-1}{r} \alpha \beta') = 0
\] (10)
\[
c^2 \alpha (\beta')^2 - \alpha = 0
\] (11)

• (c) Suppose that $\alpha \neq 0$ and $c \neq 0$, then (11) gives $\beta' = \pm 1/c$ and thus $\beta'' = 0$. Plug these results to (20), we obtain
\[
2 \alpha' + \frac{n-1}{r} \alpha = 0
\] (12)

• The equation (9) gives
\[
\alpha'' + \frac{n-1}{r} \alpha' = 0.
\] (13)

Solving this ODE, we obtain
\[
\alpha' = r^{1-n}, \quad \alpha = \frac{1}{2-n} r^{2-n}
\]
Plugging them into (12), we get
\[r^{1-n} \left(2 + \frac{n-1}{2-n} \right) = 0. \] (14)

It follows that \(n = 1 \) or \(n = 3 \).

• (d) If \(n = 1 \), \(\alpha(r) = r^0 = 1 \) is a constant.

2.3.1
- Maximum Principle tells that the max or min of \(u(x, t) \) occurs on the boundaries, i.e., \(t = 0, T, x = 0, 1 \).

<table>
<thead>
<tr>
<th>(t = 0)</th>
<th>(u(x, 0) = 1 - x^2)</th>
<th>max</th>
<th>(u(x, 0)) at (x = 0)</th>
<th>min</th>
<th>(u(x, 0)) at (x = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 0)</td>
<td>(u(0, t) = 1 - 2kt)</td>
<td>max</td>
<td>(u(0, t)) at (t = 0)</td>
<td>min</td>
<td>(u(0, t)) at (t = T)</td>
</tr>
<tr>
<td>(x = 1)</td>
<td>(u(1, t) = -2kt)</td>
<td>min</td>
<td>(u(1, t)) at (t = 0)</td>
<td>max</td>
<td>(u(1, t)) at (t = T)</td>
</tr>
</tbody>
</table>

• Thus, the global max of \(u(x, t) \) is 1 at \((0, 0)\), and the global min is \(-2kT \) at \((1, T)\).

2.4.6
- Let \(I = \int_0^\infty e^{-x^2} \, dx \), then
\[
I^2 = \int_0^\infty e^{-x^2} \, dx \int_0^\infty e^{-y^2} \, dy
= \int_0^\infty \int_0^\infty e^{-x^2} e^{-y^2} \, dx \, dy
= \int_0^{\pi/4} \int_0^\infty e^{-r^2} \, r \, dr \, d\theta
= \pi/4.
\]

Thus, \(I = \sqrt{\pi}/2 \).

2.4.7
- \(\int_{-\infty}^\infty e^{-p^2} \, dp = 2I = \sqrt{\pi} \).
- Let \(p = x/\sqrt{4kt} \), then \(dp = dx/\sqrt{4kt} \), and
\[
\int_{-\infty}^\infty S(x, t) \, dx = \int_{-\infty}^\infty \frac{e^{-p^2}}{\sqrt{\pi}} \, dp = 1.
\]
2.4.9

- Differentiating both sides of the diffusion equation thrice with respect to x, we have
 \[(u_{xxx})_t = k(u_{xxx})_{xx},\]
 due to the continuity of partial derivatives.

- Differentiating \(u(x,0) = x^2\) thrice with respect to x, we have the initial condition
 \[u_{xxx}(x,0) = 0.\]

- By the uniqueness of solutions, \(u_{xxx} = 0\) is the solution of the IVP \((15)\) and \((16)\).

- Integrating the result thrice,
 \[u(x,t) = A(t)x^2 + B(t)x + C(t).\]

- The initial condition \(u(x,0) = x^2\) implies
 \[A(0) = 1, \quad B(0) = C(0) = 0.\]

- Differentiating \((17)\) with respect to t,
 \[u_t = A'x^2 + B'x + C'.\]

- Differentiating \((17)\) with respect to x twice,
 \[u_{xx} = 2A.\]

- Plugging \((18)\) and \((19)\) into the original diffusion equation, we obtain
 \[A'(t) = B'(t) = 0, \quad C'(t) = 2kA(t).\]

- It follows that \(A = 1, \quad B = 0, \quad C = 2k,\) and the solution of the original problem is
 \[u(x,t) = x^2 + 2kt.\]