
Solutions to Sample Midterm 2
Math 121, Fall 2004

1. Use Fourier series to find the solution u(x, y) of the following boundary
value problem for Laplace’s equation in the semi-infinite strip 0 < x < 1,
y > 0:

∂2u

∂x2
+

∂2u

∂y2
= 0,

u(0, y) = u(1, y) = 0,

u(x, 0) = 1,

u(x, y) → 0 as y →∞.

Solution.

• The separated solutions of Laplace’s equation that satisfy the boundary
conditions at x = 0, 1 and as y → ∞ are sin(nπx)e−nπy, where n is a
positive integer. We therefore look for a solution of the form

u(x, y) =
∞∑

n=1

bn sin(nπx)e−nπy.

Imposing the boundary condition at y = 0, we obtain

∞∑
n=1

bn sin(nπx) = 1,

so

bn = 2

∫ 1

0

sin(nπx) dx

= 2

[
− cos(nπx)

nπ

]1

0

= 2

[
(−1)n+1

nπ
+

1

nπ

]1

0

=
{

4/(nπ) for n odd,
0 for n even.



The solution is therefore

u(x, y) =
4

π

{
sin(πx)e−πy +

1

3
sin(3πx)e−3πy +

1

5
sin(5πx)e−5πy + . . .

}
.



2. Use Fourier series to find the solution u(x, t) of the following initial-
boundary value problem for the wave equation in 0 < x < 1 and t > 0:

∂2u

∂t2
− ∂2u

∂x2
= 0,

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0,

u(x, 0) = 0,

∂u

∂t
(x, 0) = x.

Solution.

• The separated solutions of the wave equation that are zero at t = 0 and
satisfy the boundary conditions at x = 0, 1 are t and cos(nπx) sin(nπt),
where n = 1, 2, . . .. We therefore look for a solution of the form

u(x, t) =
1

2
a0t +

∞∑
n=1

an cos(nπx) sin(nπt).

Differentiating this series with respect to t, we find that

∂u

∂t
(x, t) =

1

2
a0 +

∞∑
n=1

nπan cos(nπx) cos(nπt).

Imposing the initial condition for ∂u/∂t at t = 0, we get the Fourier
cosine expansion:

1

2
a0 +

∞∑
n=1

nπan cos(nπx) = x.

Hence, for n ≥ 1 we have

nπan = 2

∫ 1

0

x cos(nπx) dx

= 2

[
x sin(nπx)

nπ
+

cos(nπx)

(nπ)2

]1

0

= 2

[
(−1)n

(nπ)2
− 1

(nπ)2

]1

0

=

{
−4/(nπ)2 for n odd,
0 for n even,



and

an =

{
−4/(nπ)3 for n odd,
0 for n even.

For n = 0, we get

a0 = 2

∫ 1

0

x dx

= 2

[
1

2
x2

]1

0

= 1.

Hence, the solution is

u(x, t) =
1

2
t− 4

π3

{
cos(πx) +

1

33
cos(3πx) +

1

53
cos(5πx) + . . .

}
.



3. Use Fourier transforms to solve the following initial value problem for
u(x, t) in −∞ < x < ∞, t > 0:

∂u

∂t
= −∂4u

∂x4
,

u(x, 0) = f(x).

Write the solution for u(x, t) as a convolution, but do not compute any inverse
transforms explicitly. How smooth is the solution for t > 0?

Solution.

• Let

û(k, t) =
1

2π

∫ ∞

−∞
u(x, t)e−ikx dx

be the Fourier transform of u with respect to x. Then, taking the
Fourier transform of the initial value problem, we get

∂û

∂t
= −(−ik)4û,

û(k, 0) = f̂(k),

where f̂ is the Fourier transform of f . It follows that

∂û

∂t
= −k4û,

û(k, 0) = f̂(k),

which has the solution

û(k, t) = f̂(k)e−k4t.

According to the convolution theorem, if f , g have Fourier transforms
f̂ , ĝ respectively then f̂ · ĝ is the Fourier transform of 1

2π
f ∗g. It follows

that

u(x, t) =

∫ ∞

−∞
G(x− y, t)f(y) dy

where

Ĝ(k, t) =
1

2π
e−k4t.

The solution is smooth (infinitely differentiable with respect to x) for
t > 0 since its Fourier transform decays exponentially quickly as k →∞
(assuming, for example, that f̂(k) is a bounded function of k).



4. (a) Give the formulas for the Fourier transform f̂(k) of a function f(x)
and the inverse Fourier transform.

(b) Compute the Fourier transform of e−|x|.

(c) State Parseval’s theorem, and use it to evaluate∫ ∞

0

1

(1 + k2)2
dk.

Solution.

• (a) A function f(x) and its Fourier transform f̂(k) are related by

f̂(k) =
1

2π

∫ ∞

−∞
f(x)e−ikx dx,

f(x) =

∫ ∞

−∞
f̂(k)eikx dk,

• (b) If f(x) = e−|x|, then using

|x| =
{

x for x ≥ 0,
−x for x ≤ 0,

and changing x → −x in the integral for −∞ < x < 0, we find that

f̂(k) =
1

2π

∫ ∞

−∞
e−|x|e−ikx dx,

=
1

2π

{∫ 0

−∞
e(1−ik)x dx +

∫ ∞

0

e−(1+ik)x dx

}
=

1

2π

∫ ∞

0

{
e−(1−ik)x + e−(1+ik)x

}
dx

= − 1

2π

[
e−(1−ik)x

1− ik
+

e−(1+ik)x

1 + ik

]∞
0

=
1

2π

[
1

1− ik
+

1

1 + ik

]∞
0

=
1

π

1

1 + k2
.



• (c) Parseval’s theorem states that∫ ∞

−∞

∣∣∣f̂(k)
∣∣∣2 dk =

1

2π

∫ ∞

−∞
|f(x)|2 dx.

For f(x) = e−|x|, we compute that∫ ∞

−∞
|f(x)|2 dx = 2

∫ ∞

0

e−2x dx

= −
[
e−2x

]∞
0

= 1.

It follows from Parsevals theorem and (b) that

2

π2

∫ ∞

0

1

(1 + k2)2
dk =

1

2π
· 1,

so ∫ ∞

0

1

(1 + k2)2
dk =

π

4
.

• Remark. The integral in (c) can also be evaluated directly by use of
the substitution k = tan θ, which gives∫ ∞

0

1

(1 + k2)2
dk =

∫ π/2

0

1

(1 + tan2 θ)2
sec2 θ dθ

=

∫ π/2

0

1

sec4 θ
sec2 θ dθ

=

∫ π/2

0

1

sec2 θ
dθ

=

∫ π/2

0

cos2 θ dθ

=
π

2
· 1

2

=
π

4
,

which verifies Parseval’s theorem explicitly in this case.



5. Use Laplace transforms to solve the following initial value problem:

y′′ + 2y′ + 2y = 1,

y(t) = 0, y′(0) = 1.

Solution.

• Let Y (p) be the Laplace transform of y(t). Then, taking the Laplace
transform of the ODE and using the initial conditions, we get that

p2Y − 1 + 2pY + 2Y =
1

p
.

Solving for Y , we get

Y (p) =
1

p2 + 2p + 2
+

1

p(p2 + 2p + 2)
.

We have p2 + 2p + 2 = (p + 1)2 + 1, so (from L13 of the table)

L−1

[
1

p2 + 2p + 2

]
= e−t sin t.

Also

1

p(p2 + 2p + 2)
=

1

2

[
1

p
− p + 2

p2 + 2p + 2

]
=

1

2

[
1

p
− p + 1

(p + 1)2 + 1
− 1

(p + 1)2 + 1

]
.

So (from L1, L13, L14) we have

L−1

[
1

p(p2 + 2p + 2)

]
=

1

2

[
1− e−t cos t− e−t sin t

]
Hence, combining these inverse transforms, we get

y(t) =
1

2

[
1− e−t cos t + e−t sin t

]
.



6. (a) Say what jump conditions the solution of y(t) of the following initial
value problem satisfies at t = 0, and find the solution directly (do not use
Laplace transforms):

y′′ − 4y = δ(t),

y(t) = 0 for t < 0.

(b) Write the solution of the following initial value problem, where f(t) is an
arbitrary function, as a convolution (you don’t need to derive your answer):

y′′ − 4y = f(t),

y(0) = y′(0) = 0.

Solution.

• (a) The derivative of y has a jump discontinuity of size one at t = 0.
The solution is therefore

y(t) =

{
y+(t) for t ≥ 0,
0 for t < 0,

where

y′′+ − 4y+ = 0 for t > 0,

y+(0) = 0, y′+(0) = 1.

The general solution of the ODE is y+(t) = a cosh 2t + b sinh 2t, and
the initial conditions imply that a = 0 and b = 1/2. Hence,

y(t) =
1

2
sinh 2t for t ≥ 0.

• (b) The solution is

y(t) =
1

2

∫ t

0

sinh 2(t− s)f(s) ds.


