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Chapter 1

The Real Numbers

In this chapter, we review some properties of the real numbers R and its subsets.
We don’t give proofs for most of the results stated here.

1.1. Completeness of R

Intuitively, unlike the rational numbers Q, the real numbers R form a continuum
with no ‘gaps.’ There are two main ways to state this completeness, one in terms
of the existence of suprema and the other in terms of the convergence of Cauchy
sequences.

1.1.1. Suprema and infima.

Definition 1.1. Let A ⊂ R be a set of real numbers. A real number M ∈ R is an
upper bound of A if x ≤ M for every x ∈ A, and m ∈ R is a lower bound of A
if x ≥ m for every x ∈ A. A set is bounded from above if it has an upper bound,
bounded from below if it has a lower bound, and bounded if it has both an upper
and a lower bound

An equivalent condition for A to be bounded is that there exists R ∈ R such
that |x| ≤ R for every x ∈ A.

Example 1.2. The set of natural numbers

N = {1, 2, 3, 4, . . . }

is bounded from below by any m ∈ R with m ≤ 1. It is not bounded from above,
so N is unbounded.

Definition 1.3. Suppose that A ⊂ R is a set of real numbers. If M ∈ R is an
upper bound of A such that M ≤ M ′ for every upper bound M ′ of A, then M is
called the supremum or least upper bound of A, denoted

M = supA.
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2 1. The Real Numbers

If m ∈ R is a lower bound of A such that m ≥ m′ for every lower bound m′ of A,
then m is called the infimum or greatest lower bound of A, denoted

m = inf A.

The supremum or infimum of a set may or may not belong to the set. If
supA ∈ A does belong to A, then we also denote it by maxA and refer to it as the
maximum of A; if inf A ∈ A then we also denote it by minA and refer to it as the
minimum of A.

Example 1.4. Every finite set of real numbers

A = {x1, x2, . . . , xn}

is bounded. Its supremum is the greatest element,

supA = max{x1, x2, . . . , xn},

and its infimum is the smallest element,

inf A = min{x1, x2, . . . , xn}.

Both the supremum and infimum of a finite set belong to the set.

Example 1.5. Let

A =

{
1

n
: n ∈ N

}
be the set of reciprocals of the natural numbers. Then supA = 1, which belongs to
A, and inf A = 0, which does not belong to A.

Example 1.6. For A = (0, 1), we have

sup(0, 1) = 1, inf(0, 1) = 0.

In this case, neither supA nor inf A belongs to A. The closed interval B = [0, 1],
and the half-open interval C = (0, 1] have the same supremum and infimum as A.
Both supB and inf B belong to B, while only supC belongs to C.

The completeness of R may be expressed in terms of the existence of suprema.

Theorem 1.7. Every nonempty set of real numbers that is bounded from above
has a supremum.

Since inf A = − sup(−A), it follows immediately that every nonempty set of
real numbers that is bounded from below has an infimum.

Example 1.8. The supremum of the set of real numbers

A =
{
x ∈ R : x <

√
2
}

is supA =
√
2. By contrast, since

√
2 is irrational, the set of rational numbers

B =
{
x ∈ Q : x <

√
2
}

has no supremum in Q. (If M ∈ Q is an upper bound of B, then there exists

M ′ ∈ Q with
√
2 < M ′ < M , so M is not a least upper bound.)
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1.1.2. Cauchy sequences. We assume familiarity with the convergence of real
sequences, but we recall the definition of Cauchy sequences and their relation with
the completeness of R.

Definition 1.9. A sequence (xn) of real numbers is a Cauchy sequence if for every
ϵ > 0 there exists N ∈ N such that

|xm − xn| < ϵ for all m,n > N.

Every convergent sequence is Cauchy. Conversely, it follows from Theorem 1.7
that every Cauchy sequence of real numbers has a limit.

Theorem 1.10. A sequence of real numbers converges if and only if it is a Cauchy
sequence.

The fact that real Cauchy sequences have a limit is an equivalent way to formu-
late the completeness of R. By contrast, the rational numbers Q are not complete.

Example 1.11. Let (xn) be a sequence of rational numbers such that xn →
√
2

as n→ ∞. Then (xn) is Cauchy in Q but (xn) does not have a limit in Q.

1.2. Open sets

Open sets are among the most important subsets of R. A collection of open sets is
called a topology, and any property (such as compactness or continuity) that can
be defined entirely in terms of open sets is called a topological property.

Definition 1.12. A set G ⊂ R is open in R if for every x ∈ G there exists a δ > 0
such that G ⊃ (x− δ, x+ δ).

Another way to state this definition is in terms of interior points.

Definition 1.13. Let A ⊂ R be a subset of R. A point x ∈ A is an interior point
of A a if there is a δ > 0 such that A ⊃ (x− δ, x+ δ). A point x ∈ R is a boundary
point of A if every interval (x− δ, x+ δ) contains points in A and points not in A.

Thus, a set is open if and only if every point in the set is an interior point.

Example 1.14. The open interval I = (0, 1) is open. If x ∈ I then I contains an
open interval about x,

I ⊃
(
x

2
,
1 + x

2

)
, x ∈

(
x

2
,
1 + x

2

)
,

and, for example, I ⊃ (x− δ, x+ δ) if

δ = min

(
x

2
,
1− x

2

)
> 0.

Similarly, every finite or infinite open interval (a, b), (−∞, b), (a,∞) is open.

An arbitrary union of open sets is open; one can prove that every open set in
R is a countable union of disjoint open intervals. A finite intersection of open sets
is open, but an intersection of infinitely many open sets needn’t be open.



4 1. The Real Numbers

Example 1.15. The interval

In =

(
− 1

n
,
1

n

)
is open for every n ∈ N, but

∞∩
n=1

In = {0}

is not open.

Instead of using intervals to define open sets, we can use neighborhoods, and it
is frequently simpler to refer to neighborhoods instead of open intervals of radius
δ > 0.

Definition 1.16. A set U ⊂ R is a neighborhood of a point x ∈ R if

U ⊃ (x− δ, x+ δ)

for some δ > 0. The open interval (x− δ, x+ δ) is called a δ-neighborhood of x.

A neighborhood of x needn’t be an open interval about x, it just has to contain
one. Sometimes a neighborhood is also required to be an open set, but we don’t do
this and will specify that a neighborhood is open when it is needed.

Example 1.17. If a < x < b then the closed interval [a, b] is a neighborhood of
x, since it contains the interval (x − δ, x + δ) for sufficiently small δ > 0. On the
other hand, [a, b] is not a neighborhood of the endpoints a, b since no open interval
about a or b is contained in [a, b].

We can restate Definition 1.12 in terms of neighborhoods as follows.

Definition 1.18. A set G ⊂ R is open if every x ∈ G has a neighborhood U such
that G ⊃ U .

We define relatively open sets by restricting open sets in R to a subset.

Definition 1.19. If A ⊂ R then B ⊂ A is relatively open in A, or open in A, if
B = A ∩ U where U is open in R.

Example 1.20. Let A = [0, 1]. Then the half-open intervals (a, 1] and [0, b) are
open in A for every 0 ≤ a < 1 and 0 < b ≤ 1, since

(a, 1] = [0, 1] ∩ (a, 2), [0, b) = [0, 1] ∩ (−1, b)

and (a, 2), (−1, b) are open in R. By contrast, neither (a, 1] nor [0, b) is open in R.

The neighborhood definition of open sets generalizes to relatively open sets.

Definition 1.21. If A ⊂ R then a relative neighborhood of x ∈ A is a set C = A∩V
where V is a neighborhood of x in R.

As for open sets in R, a set is relatively open if and only if it contains a relative
neighborhood of every point. Since we use this fact at one point later on, we give
a proof.

Proposition 1.22. A set B ⊂ A is relatively open in A if and only if every x ∈ B
has a relative neighborhood C such that B ⊃ C.
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Proof. Assume that B = A∩U is open in A, where U is open in R. If x ∈ B, then
x ∈ U . Since U is open, there is a neighborhood V of x in R such that U ⊃ V .
Then C = A ∩ V is a relative neighborhood of x with B ⊃ C. (Alternatively, we
could observe that B itself is a relative neighborhood of every x ∈ B.)

Conversely, assume that every point x ∈ B has a relative neighborhood Cx =
A ∩ Vx such that Cx ⊂ B. Then, since Vx is a neighborhood of x in R, there is an
open neighborhood Ux ⊂ Vx of x, for example a δ-neighborhood. We claim that
that B = A ∩ U where

U =
∪
x∈B

Ux.

To prove this claim, we show that B ⊂ A ∩ U and B ⊃ A ∩ U . First, B ⊂ A ∩ U
since x ∈ A∩Ux ⊂ A∩U for every x ∈ B. Second, A∩Ux ⊂ A∩ Vx ⊂ B for every
x ∈ B. Taking the union over x ∈ B, we get that A ∩ U ⊂ B. Finally, U is open
since it’s a union of open sets, so B = A ∩ U is relatively open in A. �

1.3. Closed sets

Closed sets are complements of open sets.

Definition 1.23. A set F ⊂ R is closed if F c = {x ∈ R : x /∈ F} is open.

Closed sets can also be characterized in terms of sequences.

Definition 1.24. A set F ⊂ R is sequentially closed if the limit of every convergent
sequence in F belongs to F .

A subset of R is closed if and only if it is sequentially closed, so we can use
either definition, and we don’t distinguish between closed and sequentially closed
sets.

Example 1.25. The closed interval [0, 1] is closed. To verify this from Defini-
tion 1.23, note that

[0, 1]c = (−∞, 0) ∪ (1,∞)

is open. To verify this from Definition 1.24, note that if (xn) is a convergent
sequence in [0, 1], then 0 ≤ xn ≤ 1 for all n ∈ N. Since limits preserve (non-strict)
inequalities, we have

0 ≤ lim
n→∞

xn ≤ 1,

meaning that the limit belongs to [0, 1]. Similarly, every finite or infinite closed
interval [a, b], (−∞, b], [a,∞) is closed.

An arbitrary intersection of closed sets is closed and a finite union of closed
sets is closed. A union of infinitely many closed sets needn’t be closed.

Example 1.26. If In is the closed interval

In =

[
1

n
, 1− 1

n

]
,

then the union of the In is an open interval
∞∪

n=1

In = (0, 1).
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The only sets that are both open and closed are the real numbers R and the
empty set ∅. In general, sets are neither open nor closed.

Example 1.27. The half-open interval I = (0, 1] is neither open nor closed. It’s
not open since I doesn’t contain any neighborhood of the point 1 ∈ I. It’s not
closed since (1/n) is a convergent sequence in I whose limit 0 doesn’t belong to I.

1.4. Accumulation points and isolated points

An accumulation point of a set A is a point in R that has points in A arbitrarily
close to it.

Definition 1.28. A point x ∈ R is an accumulation point of A ⊂ R if for every
δ > 0 the interval (x− δ, x+ δ) contains a point in A that is different from x.

Accumulation points are also called limit points or cluster points. By taking
smaller and smaller intervals about x, we see that if x is an accumulation point of
A then every neighborhood of x contains infinitely many points in A. This leads to
an equivalent sequential definition.

Definition 1.29. A point x ∈ R is an accumulation point of A ⊂ R if there is a
sequence (xn) in A with xn ̸= x for every n ∈ N such that xn → x as n→ ∞.

An accumulation point of a set may or may not belong to the set (a set is
closed if and only if all its accumulation points belong to the set), and a point that
belongs to the set may or may not be an accumulation point.

Example 1.30. The set N of natural numbers has no accumulation points.

Example 1.31. If

A =

{
1

n
: n ∈ N

}
then 0 is an accumulation point of A since every open interval about 0 contains
1/n for sufficiently large n. Alternatively, the sequence (1/n) in A converges to 0
as n→ ∞. In this case, the accumulation point 0 does not belong to A. Moreover,
0 is the only accumulation point of A; in particular, none of the points in A are
accumulation points of A.

Example 1.32. The set of accumulation points of a bounded, open interval I =
(a, b) is the closed interval [a, b]. Every point in I is an accumulation point of I.
In addition, the endpoints a, b are accumulation points of I that do not belong to
I. The set of accumulation points of the closed interval [a, b] is again the closed
interval [a, b].

Example 1.33. Let a < c < b and suppose that

A = (a, c) ∪ (c, b)

is an open interval punctured at c. Then the set of accumulation points of A is the
closed interval [a, b]. The points a, b, c are accumulation points of A that do not
belong to A.

An isolated point of a set is a point in the set that does not have other points
in the set arbitrarily close to it.
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Definition 1.34. Let A ⊂ R. A point x ∈ A is an isolated point of A if there exists
δ > 0 such that x is the only point belonging to A in the interval (x− δ, x+ δ).

Unlike accumulation points, isolated points are required to belong to the set.
Every point x ∈ A is either an accumulation point of A (if every neighborhood
contains other points in A) or an isolated point of A (if some neighborhood contains
no other points in A).

Example 1.35. If

A =

{
1

n
: n ∈ N

}
then every point 1/n ∈ A is an isolated point of A since the interval (1/n−δ, 1/n+δ)
does not contain any points 1/m with m ∈ N and m ̸= n when δ > 0 is sufficiently
small.

Example 1.36. An interval has no isolated points (excluding the trivial case of
closed intervals of zero length that consist of a single point [a, a] = {a}).

1.5. Compact sets

Compactness is not as obvious a property of sets as being open, but it plays a central
role in analysis. One motivation for the property is obtained by turning around
the Bolzano-Weierstrass and Heine-Borel theorems and taking their conclusions as
a definition.

We will give two equivalent definitions of compactness, one based on sequences
(every sequence has a convergent subsequence) and the other based on open covers
(every open cover has a finite subcover). A subset of R is compact if and only if it
is closed and bounded, in which case it has both of these properties. For example,
every closed, bounded interval [a, b] is compact. There are also other, more exotic,
examples of compact sets, such as the Cantor set.

1.5.1. Sequential compactness. Intuitively, a compact set confines every in-
finite sequence of points in the set so much that the sequence must accumulate at
some point of the set. This implies that a subsequence converges to the accumula-
tion point and leads to the following definition.

Definition 1.37. A set K ⊂ R is sequentially compact if every sequence in K has
a convergent subsequence whose limit belongs to K.

Note that we require that the subsequence converges to a point in K, not to a
point outside K.

Example 1.38. The open interval I = (0, 1) is not sequentially compact. The
sequence (1/n) in I converges to 0, so every subsequence also converges to 0 /∈ I.
Therefore, (1/n) has no convergent subsequence whose limit belongs to I.

Example 1.39. The set N is closed, but it is not sequentially compact since the
sequence (n) in N has no convergent subsequence. (Every subsequence diverges to
infinity.)
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As these examples illustrate, a sequentially compact set must be closed and
bounded. Conversely, the Bolzano-Weierstrass theorem implies that that every
closed, bounded subset of R is sequentially compact.

Theorem 1.40. A set K ⊂ R is sequentially compact if and only if it is closed and
bounded.

Proof. First, assume that K is sequentially compact. Let (xn) be any sequence in
K that converges to x ∈ R. Then every subsequence of K also converges to x, so
the compactness of K implies that x ∈ K, meaning that K is closed.

Suppose for contradiction that K is unbounded. Then there is a sequence (xn)
in K such that |xn| → ∞ as n → ∞. Every subsequence of (xn) is unbounded
and therefore diverges, so (xn) has no convergent subsequence. This contradicts
the assumption that K is sequentially compact, so K is bounded.

Conversely, assume that K is closed and bounded. Let (xn) be a sequence in K.
Then (xn) is bounded since K is bounded, and the Bolzano-Weierstrass theorem
implies that (xn) has a convergent subsequence. Since K is closed the limit of this
subsequence belongs to K, so K is sequentially compact. �

For later use, we explicitly state and prove one other property of compact sets.

Proposition 1.41. If K ⊂ R is sequentially compact, then K has a maximum and
minimum.

Proof. Since K is sequentially compact it is bounded and, by the completeness of
R, it has a (finite) supremum M = supK. From the definition of the supremum,
for every n ∈ N there exists xn ∈ K such that

M − 1

n
< xn ≤M.

It follows (from the ‘sandwich’ theorem) that xn → M as n → ∞. Since K is
closed, M ∈ K, which proves that K has a maximum. A similar argument shows
that m = infK belongs to K, so K has a minimum. �

1.5.2. Compactness. Next, we give a topological definition of compactness in
terms of open sets. If A is a subset of R, an open cover of A is a collection of open
sets

{Gi ⊂ R : i ∈ I}
whose union contains A, ∪

i∈I
Gi ⊃ A.

A finite subcover of this open cover is a finite collection of sets in the cover

{Gi1 , Gi2 , . . . , GiN }
whose union still contains A,

N∪
n=1

Gin ⊃ A.

Definition 1.42. A set K ⊂ R is compact if every open cover of K has a finite
subcover.
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We illustrate the definition with several examples.

Example 1.43. The collection of open intervals

{In : n ∈ N} , In = (n− 1, n+ 1)

is an open cover of the natural numbers N since
∞∪

n=1

In = (0,∞) ⊃ N.

However, no finite subcollection {I1, I2, . . . , IN} of intervals covers N since their
union

N∪
n=1

In = (0, N + 1)

does not contain sufficiently large integers with n ≥ N +1. (A finite subcover that
omits some of the intervals Ii for 1 ≤ i ≤ N would have an even smaller union.)
Thus, N is not compact. A similar argument, using the intervals In = (−n, n),
shows that a compact set must be bounded.

Example 1.44. The collection of open intervals (which get smaller as they get
closer to 0)

{In : n = 0, 1, 2, 3, . . . } , In =

(
1

2n
− 1

2n+1
,
1

2n
+

1

2n+1

)
is an open cover of the open interval (0, 1); in fact

∞∪
n=0

In =

(
0,

3

2

)
⊃ (0, 1).

However, no finite subcollection {I0, I1, I2, . . . , IN} of intervals covers (0, 1) since
their union

N∪
n=0

In =

(
1

2N
− 1

2N+1
,
3

2

)
,

does not contain points in (0, 1) that are sufficiently close to 0. Thus, (0, 1) is not
compact.

Example 1.45. The collection of open intervals {In} in Example 1.44 isn’t an
open cover of the closed interval [0, 1] since 0 doesn’t belong to their union. We can
get an open cover {In, J} of [0, 1] by adding to the In an open interval J = (−δ, δ)
about zero, where δ > 0 can be arbitrarily small. In that case, if we choose N ∈ N
sufficiently large that

1

2N
− 1

2N+1
< δ,

then {I0, I1, I2, . . . , IN , J} is a finite subcover of [0, 1] since

N∪
n=0

In ∪ J =

(
−δ, 3

2

)
⊃ [0, 1].

Points sufficiently close to 0 belong to J , while points further away belong to Ii for
some 0 ≤ i ≤ N . As this example illustrates, [0, 1] is compact and every open cover
of [0, 1] has a finite subcover.
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Theorem 1.46. A subset of R is compact if and only if it is closed and bounded.

This result follows from the Heine-Borel theorem, that every open cover of a
closed, bounded interval has a finite subcover, but we omit a detailed proof.

It follows that a subset of R is sequentially compact if and only if it is compact,
since the subset is closed and bounded in either case. We therefore refer to any such
set simply as a compact set. We will use the sequential definition of compactness
in our proofs.



Chapter 2

Limits of Functions

In this chapter, we define limits of functions and describe some of their properties.

2.1. Limits

We begin with the ϵ-δ definition of the limit of a function.

Definition 2.1. Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an
accumulation point of A. Then

lim
x→c

f(x) = L

if for every ϵ > 0 there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that |f(x)− L| < ϵ.

We also denote limits by the ‘arrow’ notation f(x) → L as x → c, and often
leave it to be implicitly understood that x ∈ A is restricted to the domain of f .
Note that we exclude x = c, so the function need not be defined at c for the limit
as x→ c to exist. Also note that it follows directly from the definition that

lim
x→c

f(x) = L if and only if lim
x→c

|f(x)− L| = 0.

Example 2.2. Let A = [0,∞) \ {9} and define f : A→ R by

f(x) =
x− 9√
x− 3

.

We claim that
lim
x→9

f(x) = 6.

To prove this, let ϵ > 0 be given. For x ∈ A, we have from the difference of two
squares that f(x) =

√
x+ 3, and

|f(x)− 6| =
∣∣√x− 3

∣∣ = ∣∣∣∣ x− 9√
x+ 3

∣∣∣∣ ≤ 1

3
|x− 9|.

Thus, if δ = 3ϵ, then |x− 9| < δ and x ∈ A implies that |f(x)− 6| < ϵ.

11
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We can rephrase the ϵ-δ definition of limits in terms of neighborhoods. Recall
from Definition 1.16 that a set V ⊂ R is a neighborhood of c ∈ R if V ⊃ (c−δ, c+δ)
for some δ > 0, and (c − δ, c + δ) is called a δ-neighborhood of c. A set U is a
punctured (or deleted) neighborhood of c if U ⊃ (c−δ, c)∪ (c, c+δ) for some δ > 0,
and (c − δ, c) ∪ (c, c + δ) is called a punctured (or deleted) δ-neighborhood of c.
That is, a punctured neighborhood of c is a neighborhood of c with the point c
itself removed.

Definition 2.3. Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an
accumulation point of A. Then

lim
x→c

f(x) = L

if and only if for every neighborhood V of L, there is a punctured neighborhood U
of c such that

x ∈ A ∩ U implies that f(x) ∈ V .

This is essentially a rewording of the ϵ-δ definition. If Definition 2.1 holds and
V is a neighborhood of L, then V contains an ϵ-neighborhood of L, so there is a
punctured δ-neighborhood U of c that maps into V , which verifies Definition 2.3.
Conversely, if Definition 2.3 holds and ϵ > 0, let V = (L − ϵ, L + ϵ) be an ϵ-
neighborhood of L. Then there is a punctured neighborhood U of c that maps into
V and U contains a punctured δ-neighborhood of c, which verifies Definition 2.1.

The next theorem gives an equivalent sequential characterization of the limit.

Theorem 2.4. Let f : A → R, where A ⊂ R, and suppose that c ∈ R is an
accumulation point of A. Then

lim
x→c

f(x) = L

if and only if
lim

n→∞
f(xn) = L.

for every sequence (xn) in A with xn ̸= c for all n ∈ N such that

lim
n→∞

xn = c.

Proof. First assume that the limit exists. Suppose that (xn) is any sequence in
A with xn ̸= c that converges to c, and let ϵ > 0 be given. From Definition 2.1,
there exists δ > 0 such that |f(x) − L| < ϵ whenever 0 < |x − c| < δ, and since
xn → c there exists N ∈ N such that 0 < |xn − c| < δ for all n > N . It follows that
|f(xn)− L| < ϵ whenever n > N , so f(xn) → L as n→ ∞.

To prove the converse, assume that the limit does not exist. Then there is an
ϵ0 > 0 such that for every δ > 0 there is a point x ∈ A with 0 < |x − c| < δ but
|f(x)− L| ≥ ϵ0. Therefore, for every n ∈ N there is an xn ∈ A such that

0 < |xn − c| < 1

n
, |f(xn)− L| ≥ ϵ0.

It follows that xn ̸= c and xn → c, but f(xn) ̸→ L, so the sequential condition does
not hold. This proves the result. �

This theorem gives a way to show that a limit of a function does not exist.
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Figure 1. A plot of the function y = sin(1/x), with the hyperbola y = 1/x

shown in red, and a detail near the origin.

Corollary 2.5. Suppose that f : A→ R and c ∈ R is an accumulation point of A.
Then limx→c f(x) does not exist if either of the following conditions holds:

(1) There are sequences (xn), (yn) in A with xn, yn ̸= c such that

lim
n→∞

xn = lim
n→∞

yn = c, but lim
n→∞

f(xn) ̸= lim
n→∞

f(yn).

(2) There is a sequence (xn) in A with xn ̸= c such that limn→∞ xn = c but the
sequence (f(xn)) does not converge.

Example 2.6. Define the sign function sgn : R → R by

sgnx =


1 if x > 0,

0 if x = 0,

−1 if x < 0,

Then the limit

lim
x→0

sgnx

doesn’t exist. To prove this, note that (1/n) is a non-zero sequence such that
1/n → 0 and sgn(1/n) → 1 as n → ∞, while (−1/n) is a non-zero sequence such
that −1/n→ 0 and sgn(−1/n) → −1 as n→ ∞. Since the sequences of sgn-values
have different limits, Corollary 2.5 implies that the limit does not exist.

Example 2.7. The limit

lim
x→0

1

x
,

corresponding to the function f : R \ {0} → R given by f(x) = 1/x, doesn’t
exist. For example, consider the non-zero sequence (xn) given by xn = 1/n. Then
1/n→ 0 but the sequence of values (n) doesn’t converge.

Example 2.8. The limit

lim
x→0

sin

(
1

x

)
,
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corresponding to the function f : R \ {0} → R given by f(x) = sin(1/x), doesn’t
exist. (See Figure 1.) For example, the non-zero sequences (xn), (yn) defined by

xn =
1

2πn
, yn =

1

2πn+ π/2

both converge to zero as n→ ∞, but the limits

lim
n→∞

f(xn) = 0, lim
n→∞

f(yn) = 1

are different.

2.2. Left, right, and infinite limits

We can define other kinds of limits in an obvious way. We list some of them here
and give examples, whose proofs are left as an exercise. All these definitions can be
combined in various ways and have obvious equivalent sequential characterizations.

Definition 2.9 (Right and left limits). Let f : A→ R, where A ⊂ R, and suppose
that c ∈ R is an accumulation point of A. Then (right limit)

lim
x→c+

f(x) = L

if for every ϵ > 0 there exists a δ > 0 such that

c < x < c+ δ and x ∈ A implies that |f(x)− L| < ϵ,

and (left limit)

lim
x→c−

f(x) = L

if for every ϵ > 0 there exists a δ > 0 such that

c− δ < x < c and x ∈ A implies that |f(x)− L| < ϵ.

Example 2.10. For the sign function in Example 2.6, we have

lim
x→0+

sgnx = 1, lim
x→0−

sgnx = −1.

Next we introduce some convenient definitions for various kinds of limits involv-
ing infinity. We emphasize that ∞ and −∞ are not real numbers (what is sin∞,
for example?) and all these definition have precise translations into statements that
involve only real numbers.

Definition 2.11 (Limits as x → ±∞). Let f : A → R, where A ⊂ R. If A is not
bounded from above, then

lim
x→∞

f(x) = L

if for every ϵ > 0 there exists an M ∈ R such that

x > M and x ∈ A implies that |f(x)− L| < ϵ.

If A is not bounded from below, then

lim
x→−∞

f(x) = L

if for every ϵ > 0 there exists an m ∈ R such that

x < m and x ∈ A implies that |f(x)− L| < ϵ.
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Sometimes we write +∞ instead of ∞ to indicate that it denotes arbitrarily
large, positive values, while −∞ denotes arbitrarily large, negative values. It follows
from this definition that

lim
x→∞

f(x) = lim
t→0+

f

(
1

t

)
, lim

x→−∞
f(x) = lim

t→0−
f

(
1

t

)
,

and it is often useful to convert one of these limits into the other.

Example 2.12. We have

lim
x→∞

x√
1 + x2

= 1, lim
x→−∞

x√
1 + x2

= −1.

Definition 2.13 (Divergence to ±∞). Let f : A→ R, where A ⊂ R, and suppose
that c ∈ R is an accumulation point of A. Then

lim
x→c

f(x) = ∞

if for every M ∈ R there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that f(x) > M,

and

lim
x→c

f(x) = −∞

if for every m ∈ R there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that f(x) < m.

The notation limx→c f(x) = ±∞ is simply shorthand for the property stated
in this definition; it does not mean that the limit exists, and we say that f diverges
to ±∞.

Example 2.14. We have

lim
x→0

1

x2
= ∞, lim

x→∞

1

x2
= 0.

Example 2.15. We have

lim
x→0+

1

x
= ∞, lim

x→0−

1

x
= −∞.

How would you define these statements precisely? Note that

lim
x→0

1

x
̸= ±∞,

since 1/x takes arbitrarily large positive (if x > 0) and negative (if x < 0) values
in every two-sided neighborhood of 0.

Example 2.16. None of the limits

lim
x→0+

1

x
sin

(
1

x

)
, lim

x→0−

1

x
sin

(
1

x

)
, lim

x→0

1

x
sin

(
1

x

)
is ∞ or −∞, since (1/x) sin(1/x) oscillates between arbitrarily large positive and
negative values in every one-sided or two-sided neighborhood of 0.
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Example 2.17. We have

lim
x→∞

(
1

x
− x3

)
= −∞, lim

x→−∞

(
1

x
− x3

)
= ∞.

How would you define these statements precisely and prove them?

2.3. Properties of limits

The properties of limits of functions follow immediately from the corresponding
properties of sequences and the sequential characterization of the limit in Theo-
rem 2.4. We can also prove them directly from the ϵ-δ definition of the limit, and
we shall do so in a few cases below.

2.3.1. Uniqueness and boundedness. The following result might be taken for-
granted, but it requires proof.

Proposition 2.18. The limit of a function is unique if it exists.

Proof. Suppose that f : A → R and c ∈ R is an accumulation point of A ⊂ R.
Assume that

lim
x→c

f(x) = L1, lim
x→c

f(x) = L2

where L1, L2 ∈ R. Then for every ϵ > 0 there exist δ1, δ2 > 0 such that

0 < |x− c| < δ1 and x ∈ A implies that |f(x)− L1| < ϵ/2,

0 < |x− c| < δ2 and x ∈ A implies that |f(x)− L2| < ϵ/2.

Let δ = min(δ1, δ2) > 0. Then, since c is an accumulation point of A, there exists
x ∈ A such that 0 < |x− c| < δ. It follows that

|L1 − L2| ≤ |L1 − f(x)|+ |f(x)− L2| < ϵ.

Since this holds for arbitrary ϵ > 0, we must have L1 = L2. �

Note that in this proof we used the requirement in the definition of a limit
that c is an accumulation point of A. The limit definition would be vacuous if it
was applied to a non-accumulation point, and in that case every L ∈ R would be a
limit.

Definition 2.19. A function f : A→ R is bounded on B ⊂ A if there existsM ≥ 0
such that

|f(x)| ≤M for every x ∈ B.

A function is bounded if it is bounded on its domain.

Equivalently, f is bounded on B if f(B) is a bounded subset of R.

Example 2.20. The function f : (0, 1] → R defined by f(x) = 1/x is unbounded,
but it is bounded on any interval [δ, 1] with 0 < δ < 1. The function g : R → R
defined by g(x) = x2 is unbounded, but is it bounded on any finite interval [a, b].

If a function has a limit as x→ c, it must be locally bounded at c, as stated in
the next proposition.
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Proposition 2.21. Suppose that f : A→ R and c is an accumulation point of A.
If limx→c f(x) exists, then there is a punctured neighborhood U of c such that f is
bounded on A ∩ U .

Proof. Suppose that f(x) → L as x → c. Taking ϵ = 1 in the definition of the
limit, we get that there exists a δ > 0 such that

0 < |x− c| < δ and x ∈ A implies that |f(x)− L| < 1.

Let U = (c − δ, c) ∪ (c, c + δ), which is a punctured neighborhood of c. Then for
x ∈ A ∩ U , we have

|f(x)| ≤ |f(x)− L|+ |L| < 1 + |L|,

so f is bounded on A ∩ U . �

2.3.2. Algebraic properties. Limits of functions respect algebraic operations.

Theorem 2.22. Suppose that f, g : A → R, c is an accumulation point of A, and
the limits

lim
x→c

f(x) = L, lim
x→c

g(x) =M

exist. Then

lim
x→c

kf(x) = kL for every k ∈ R,

lim
x→c

[f(x) + g(x)] = L+M,

lim
x→c

[f(x)g(x)] = LM,

lim
x→c

f(x)

g(x)
=

L

M
if M ̸= 0.

Proof. We prove the results for sums and products from the definition of the limit,
and leave the remaining proofs as an exercise. All of the results also follow from
the corresponding results for sequences.

First, we consider the limit of f + g. Given ϵ > 0, choose δ1, δ2 such that

0 < |x− c| < δ1 and x ∈ A implies that |f(x)− L| < ϵ/2,

0 < |x− c| < δ2 and x ∈ A implies that |g(x)−M | < ϵ/2,

and let δ = min(δ1, δ2) > 0. Then 0 < |x− c| < δ implies that

|f(x) + g(x)− (L+M)| ≤ |f(x)− L|+ |g(x)−M | < ϵ,

which proves that lim(f + g) = lim f + lim g.

To prove the result for the limit of the product, first note that from the local
boundedness of functions with a limit (Proposition 2.21) there exists δ0 > 0 and
K > 0 such that |g(x)| ≤ K for all x ∈ A with 0 < |x− c| < δ0. Choose δ1, δ2 > 0
such that

0 < |x− c| < δ1 and x ∈ A implies that |f(x)− L| < ϵ/(2K),

0 < |x− c| < δ2 and x ∈ A implies that |g(x)−M | < ϵ/(2|L|+ 1).
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Let δ = min(δ0, δ1, δ2) > 0. Then for 0 < |x− c| < δ and x ∈ A,

|f(x)g(x)− LM | = |(f(x)− L) g(x) + L (g(x)−M)|
≤ |f(x)− L| |g(x)|+ |L| |g(x)−M |

<
ϵ

2K
·K + |L| · ϵ

2|L|+ 1

< ϵ,

which proves that lim(fg) = lim f lim g. �

2.3.3. Order properties. As for limits of sequences, limits of functions preserve
(non-strict) inequalities.

Theorem 2.23. Suppose that f, g : A → R and c is an accumulation point of A.
If

f(x) ≤ g(x) for all x ∈ A,

and limx→c f(x), limx→c g(x) exist, then

lim
x→c

f(x) ≤ lim
x→c

g(x).

Proof. Let
lim
x→c

f(x) = L, lim
x→c

g(x) =M.

Suppose for contradiction that L > M , and let

ϵ =
1

2
(L−M) > 0.

From the definition of the limit, there exist δ1, δ2 > 0 such that

|f(x)− L| < ϵ if x ∈ A and 0 < |x− c| < δ1,

|g(x)−M | < ϵ if x ∈ A and 0 < |x− c| < δ2.

Let δ = min(δ1, δ2). Since c is an accumulation point of A, there exists x ∈ A such
that 0 < |x− a| < δ, and it follows that

f(x)− g(x) = [f(x)− L] + L−M + [M − g(x)]

> L−M − 2ϵ

> 0,

which contradicts the assumption that f(x) ≤ g(x). �

Finally, we state a useful “sandwich” or “squeeze” criterion for the existence of
a limit.

Theorem 2.24. Suppose that f, g, h : A → R and c is an accumulation point of
A. If

f(x) ≤ g(x) ≤ h(x) for all x ∈ A

and
lim
x→c

f(x) = lim
x→c

h(x) = L,

then the limit of g(x) as x→ c exists and

lim
x→c

g(x) = L.
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We leave the proof as an exercise. We often use this result, without comment,
in the following way: If

0 ≤ f(x) ≤ g(x) or |f(x)| ≤ g(x)

and g(x) → 0 as x→ c, then f(x) → 0 as x→ c.

It is essential for the bounding functions f , h in Theorem 2.24 to have the same
limit.

Example 2.25. We have

−1 ≤ sin

(
1

x

)
≤ 1 for all x ̸= 0

and
lim
x→0

(−1) = −1, lim
x→0

1 = 1,

but

lim
x→0

sin

(
1

x

)
does not exist.





Chapter 3

Continuous Functions

In this chapter, we define continuous functions and study their properties.

3.1. Continuity

According to the definition introduced by Cauchy, and developed by Weierstrass,
continuous functions are functions that take nearby values at nearby points.

Definition 3.1. Let f : A→ R, where A ⊂ R, and suppose that c ∈ A. Then f is
continuous at c if for every ϵ > 0 there exists a δ > 0 such that

|x− c| < δ and x ∈ A implies that |f(x)− f(c)| < ϵ.

A function f : A → R is continuous on a set B ⊂ A if it is continuous at every
point in B, and continuous if it is continuous at every point of its domain A.

The definition of continuity at a point may be stated in terms of neighborhoods
as follows.

Definition 3.2. A function f : A→ R, where A ⊂ R, is continuous at c ∈ A if for
every neighborhood V of f(c) there is a neighborhood U of c such that

x ∈ A ∩ U implies that f(x) ∈ V .

The ϵ-δ definition corresponds to the case when V is an ϵ-neighborhood of f(c)
and U is a δ-neighborhood of c. We leave it as an exercise to prove that these
definitions are equivalent.

Note that c must belong to the domain A of f in order to define the continuity
of f at c. If c is an isolated point of A, then the continuity condition holds auto-
matically since, for sufficiently small δ > 0, the only point x ∈ A with |x − c| < δ
is x = c, and then 0 = |f(x) − f(c)| < ϵ. Thus, a function is continuous at every
isolated point of its domain, and isolated points are not of much interest.

21
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If c ∈ A is an accumulation point of A, then continuity of f at c is equivalent
to the condition that

lim
x→c

f(x) = f(c),

meaning that the limit of f as x→ c exists and is equal to the value of f at c.

Example 3.3. If f : (a, b) → R is defined on an open interval, then f is continuous
on (a, b) if and only if

lim
x→c

f(x) = f(c) for every a < c < b

since every point of (a, b) is an accumulation point.

Example 3.4. If f : [a, b] → R is defined on a closed, bounded interval, then f is
continuous on [a, b] if and only if

lim
x→c

f(x) = f(c) for every a < c < b,

lim
x→a+

f(x) = f(a), lim
x→b−

f(x) = f(b).

Example 3.5. Suppose that

A =

{
0, 1,

1

2
,
1

3
, . . . ,

1

n
, . . .

}
and f : A→ R is defined by

f(0) = y0, f

(
1

n

)
= yn

for some values y0, yn ∈ R. Then 1/n is an isolated point of A for every n ∈ N,
so f is continuous at 1/n for every choice of yn. The remaining point 0 ∈ A is an
accumulation point of A, and the condition for f to be continuous at 0 is that

lim
n→∞

yn = y0.

As for limits, we can give an equivalent sequential definition of continuity, which
follows immediately from Theorem 2.4.

Theorem 3.6. If f : A → R and c ∈ A is an accumulation point of A, then f is
continuous at c if and only if

lim
n→∞

f(xn) = f(c)

for every sequence (xn) in A such that xn → c as n→ ∞.

In particular, f is discontinuous at c ∈ A if there is sequence (xn) in the domain
A of f such that xn → c but f(xn) ̸→ f(c).

Let’s consider some examples of continuous and discontinuous functions to
illustrate the definition.

Example 3.7. The function f : [0,∞) → R defined by f(x) =
√
x is continuous

on [0,∞). To prove that f is continuous at c > 0, we note that for 0 ≤ x <∞,

|f(x)− f(c)| =
∣∣√x−

√
c
∣∣ = ∣∣∣∣ x− c√

x+
√
c

∣∣∣∣ ≤ 1√
c
|x− c|,
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so given ϵ > 0, we can choose δ =
√
cϵ > 0 in the definition of continuity. To prove

that f is continuous at 0, we note that if 0 ≤ x < δ where δ = ϵ2 > 0, then

|f(x)− f(0)| =
√
x < ϵ.

Example 3.8. The function sin : R → R is continuous on R. To prove this, we use
the trigonometric identity for the difference of sines and the inequality | sinx| ≤ |x|:

| sinx− sin c| =
∣∣∣∣2 cos(x+ c

2

)
sin

(
x− c

2

)∣∣∣∣
≤ 2

∣∣∣∣sin(x− c

2

)∣∣∣∣
≤ |x− c|.

It follows that we can take δ = ϵ in the definition of continuity for every c ∈ R.

Example 3.9. The sign function sgn : R → R, defined by

sgnx =


1 if x > 0,

0 if x = 0,

−1 if x < 0,

is not continuous at 0 since limx→0 sgnx does not exist (see Example 2.6). The left
and right limits of sgn at 0,

lim
x→0−

f(x) = −1, lim
x→0+

f(x) = 1,

do exist, but they are unequal. We say that f has a jump discontinuity at 0.

Example 3.10. The function f : R → R defined by

f(x) =

{
1/x if x ̸= 0,

0 if x = 0,

is not continuous at 0 since limx→0 f(x) does not exist (see Example 2.7). Neither
the left or right limits of f at 0 exist either, and we say that f has an essential
discontinuity at 0.

Example 3.11. The function f : R → R, defined by

f(x) =

{
sin(1/x) if x ̸= 0,

0 if x = 0.

is continuous at c ̸= 0 (see Example 3.20 below) but discontinuous at 0 because
limx→0 f(x) does not exist (see Example 2.8).

Example 3.12. The function f : R → R defined by

f(x) =

{
x sin(1/x) if x ̸= 0,

0 if x = 0.

is continuous at every point of R. (See Figure 1. The continuity at c ̸= 0 is proved
in Example 3.21 below. To prove continuity at 0, note that for x ̸= 0,

|f(x)− f(0)| = |x sin(1/x)| ≤ |x|,
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Figure 1. A plot of the function y = x sin(1/x) and a detail near the origin
with the lines y = ±x shown in red.

so f(x) → f(0) as x → 0. If we had defined f(0) to be any value other than
0, then f would not be continuous at 0. In that case, f would have a removable
discontinuity at 0.

Example 3.13. The Dirichlet function f : R → R defined by

f(x) =

{
1 if x ∈ Q,

0 if x /∈ Q

is discontinuous at every c ∈ R. If c /∈ Q, choose a sequence (xn) of rational
numbers such that xn → c (possible since Q is dense in R). Then xn → c and
f(xn) → 1 but f(c) = 0. If c ∈ Q, choose a sequence (xn) of irrational numbers
such that xn → c; for example if c = p/q, we can take

xn =
p

q
+

√
2

n
,

since xn ∈ Q would imply that
√
2 ∈ Q. Then xn → c and f(xn) → 0 but

f(c) = 1. In fact, taking a rational sequence (xn) and an irrational sequence (x̃n)
that converge to c, we see that limx→c f(x) does not exist for any c ∈ R.

Example 3.14. The Thomae function f : R → R defined by

f(x) =

{
1/q if x = p/q where p and q > 0 are relatively prime,

0 if x /∈ Q or x = 0

is continuous at 0 and every irrational number and discontinuous at every nonzero
rational number. See Figure 2 for a plot.

We can give a rough classification of a discontinuity of a function f : A→ R at
an accumulation point c ∈ A as follows.

(1) Removable discontinuity : limx→c f(x) = L exists but L ̸= f(c), in which case
we can make f continuous at c by redefining f(c) = L (see Example 3.12).

(2) Jump discontinuity : limx→c f(x) doesn’t exist, but both the left and right
limits limx→c− f(x), limx→c+ f(x) exist and are different (see Example 3.9).
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Figure 2. A plot of the Thomae function on [0, 1]

(3) Essential discontinuity : limx→c f(x) doesn’t exist and at least one of the left
or right limits limx→c− f(x), limx→c+ f(x) doesn’t exist (see Examples 3.10,
3.11, 3.13).

3.2. Properties of continuous functions

The basic properties of continuous functions follow from those of limits.

Theorem 3.15. If f, g : A→ R are continuous at c ∈ A and k ∈ R, then kf , f+g,
and fg are continuous at c. Moreover, if g(c) ̸= 0 then f/g is continuous at c.

Proof. This result follows immediately Theorem 2.22. �

A polynomial function is a function P : R → R of the form

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

where a0, a1, a2, . . . , an are real coefficients. A rational function R is a ratio of
polynomials P , Q

R(x) =
P (x)

Q(x)
.

The domain of R is the set of points in R such that Q ̸= 0.

Corollary 3.16. Every polynomial function is continuous on R and every rational
function is continuous on its domain.

Proof. The constant function f(x) = 1 and the identity function g(x) = x are
continuous on R. Repeated application of Theorem 3.15 for scalar multiples, sums,
and products implies that every polynomial is continuous on R. It also follows that
a rational function R = P/Q is continuous at every point where Q ̸= 0. �



26 3. Continuous Functions

Example 3.17. The function f : R → R given by

f(x) =
x+ 3x3 + 5x5

1 + x2 + x4

is continuous on R since it is a rational function whose denominator never vanishes.

In addition to forming sums, products and quotients, another way to build up
more complicated functions from simpler functions is by composition.

We recall that if f : A→ R and g : B → R where f(A) ⊂ B, meaning that the
domain of g contains the range of f , then we define the composition g ◦ f : A→ R
by

(g ◦ f)(x) = g (f(x)) .

The next theorem states that the composition of continuous functions is continuous.
Note carefully the points at which we assume f and g are continuous.

Theorem 3.18. Let f : A→ R and g : B → R where f(A) ⊂ B. If f is continuous
at c ∈ A and g is continuous at f(c) ∈ B, then g ◦ f : A→ R is continuous at c.

Proof. Let ϵ > 0 be given. Since g is continuous at f(c), there exists η > 0 such
that

|y − f(c)| < η and y ∈ B implies that |g(y)− g (f(c))| < ϵ.

Next, since f is continuous at c, there exists δ > 0 such that

|x− c| < δ and x ∈ A implies that |f(x)− f(c)| < η.

Combing these inequalities, we get that

|x− c| < δ and x ∈ A implies that |g (f(x))− g (f(c))| < ϵ,

which proves that g ◦ f is continuous at c. �

Corollary 3.19. Let f : A→ R and g : B → R where f(A) ⊂ B. If f is continuous
on A and g is continuous on f(A), then g ◦ f is continuous on A.

Example 3.20. The function

f(x) =

{
sin(1/x) if x ̸= 0,

0 if x = 0.

is continuous on R\{0}, since it is the composition of x 7→ 1/x, which is continuous
on R \ {0}, and y 7→ sin y, which is continuous on R.

Example 3.21. The function

f(x) =

{
x sin(1/x) if x ̸= 0,

0 if x = 0.

is continuous on R \ {0} since it is a product of functions that are continuous on
R \ {0}. As shown in Example 3.12, f is also continuous at 0, so f is continuous
on R.
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3.3. Uniform continuity

Uniform continuity is a subtle but powerful strengthening of continuity.

Definition 3.22. Let f : A → R, where A ⊂ R. Then f is uniformly continuous
on A if for every ϵ > 0 there exists a δ > 0 such that

|x− y| < δ and x, y ∈ A implies that |f(x)− f(y)| < ϵ.

The key point of this definition is that δ depends only on ϵ, not on x, y. A
uniformly continuous function on A is continuous at every point of A, but the
converse is not true, as we explain next.

If a function is continuous on A, then given ϵ > 0 there exists δ(c) > 0 for every
c ∈ A such that

|x− c| < δ(c) and x ∈ A implies that |f(x)− f(c)| < ϵ.

In general, δ(c) depends on both ϵ and c, but we don’t show the ϵ-dependence
explicitly since we’re thinking of ϵ as fixed. If

inf
c∈A

δ(c) = 0

however we choose δ(c), then no δ0 > 0 depending only on ϵ works simultaneously
for all c ∈ A. In that case, the function is continuous on A but not uniformly
continuous.

Before giving examples, we state a sequential condition for uniform continuity
to fail.

Proposition 3.23. A function f : A→ R is not uniformly continuous on A if and
only if there exists ϵ0 > 0 and sequences (xn), (yn) in A such that

lim
n→∞

|xn − yn| = 0 and |f(xn)− f(yn)| ≥ ϵ0 for all n ∈ N.

Proof. If f is not uniformly continuous, then there exists ϵ0 > 0 such that for every
δ > 0 there are points x, y ∈ A with |x − y| < δ and |f(x) − f(y)| ≥ ϵ0. Choosing
xn, yn ∈ A to be any such points for δ = 1/n, we get the required sequences.

Conversely, if the sequential condition holds, then for every δ > 0 there exists
n ∈ N such that |xn−yn| < δ and |f(xn)− f(yn)| ≥ ϵ0. It follows that the uniform
continuity condition in Definition 3.22 cannot hold for any δ > 0 if ϵ = ϵ0, so f is
not uniformly continuous. �

Example 3.24. Example 3.8 shows that the sine function is uniformly continuous
on R, since we can take δ = ϵ for every x, y ∈ R.

Example 3.25. Define f : [0, 1] → R by f(x) = x2. Then f is uniformly continuous
on [0, 1]. To prove this, note that for all x, y ∈ [0, 1] we have∣∣x2 − y2

∣∣ = |x+ y| |x− y| ≤ 2|x− y|,

so we can take δ = ϵ/2 in the definition of uniform continuity. Similarly, f(x) = x2

is uniformly continuous on any bounded set.
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Example 3.26. The function f(x) = x2 is continuous but not uniformly continuous
on R. We have already proved that f is continuous on R (it’s a polynomial). To
prove that f is not uniformly continuous, let

xn = n, yn = n+
1

n
.

Then

lim
n→∞

|xn − yn| = lim
n→∞

1

n
= 0,

but

|f(xn)− f(yn)| =
(
n+

1

n

)2

− n2 = 2 +
1

n2
≥ 2 for every n ∈ N.

It follows from Proposition 3.23 that f is not uniformly continuous on R. The
problem here is that, for given ϵ > 0, we need to make δ(c) smaller as c gets larger
to prove the continuity of f at c, and δ(c) → 0 as c→ ∞.

Example 3.27. The function f : (0, 1] → R defined by

f(x) =
1

x

is continuous but not uniformly continuous on (0, 1]. We have already proved that
f is continuous on (0, 1] (it’s a rational function whose denominator x is nonzero in
(0, 1]). To prove that f is not uniformly continuous, define xn, yn ∈ (0, 1] for n ∈ N
by

xn =
1

n
, yn =

1

n+ 1
.

Then xn → 0, yn → 0, and |xn − yn| → 0 as n→ ∞, but

|f(xn)− f(yn)| = (n+ 1)− n = 1 for every n ∈ N.

It follows from Proposition 3.23 that f is not uniformly continuous on (0, 1]. The
problem here is that, for given ϵ > 0, we need to make δ(c) smaller as c gets closer
to 0 to prove the continuity of f at c, and δ(c) → 0 as c→ 0+.

The non-uniformly continuous functions in the last two examples were un-
bounded. However, even bounded continuous functions can fail to be uniformly
continuous if they oscillate arbitrarily quickly.

Example 3.28. Define f : (0, 1] → R by

f(x) = sin

(
1

x

)
Then f is continuous on (0, 1] but it isn’t uniformly continuous on (0, 1]. To prove
this, define xn, yn ∈ (0, 1] for n ∈ N by

xn =
1

2nπ
, yn =

1

2nπ + π/2
.

Then xn → 0, yn → 0, and |xn − yn| → 0 as n→ ∞, but

|f(xn)− f(yn)| = sin
(
2nπ +

π

2

)
− sin 2nπ = 1 for all n ∈ N.
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It isn’t a coincidence that these examples of non-uniformly continuous functions
have a domain that is either unbounded or not closed. We will prove in Section 3.5
that a continuous function on a closed, bounded set is uniformly continuous.

3.4. Continuous functions and open sets

Let f : A→ R be a function. Recall that if B ⊂ A, the set

f(B) = {y ∈ R : y = f(x) for some x ∈ B}
is called the image of B under f , and if C ⊂ R, the set

f−1(C) = {x ∈ A : f(x) ∈ C}
is called the inverse image or preimage of C under f . Note that f−1(C) is a well-
defined set even if the function f does not have an inverse.

Example 3.29. Suppose f : R → R is defined by f(x) = x2. If I = (1, 4), then

f(I) = (1, 16), f−1(I) = (−2,−1) ∪ (1, 2).

Note that we get two intervals in the preimage because f is two-to-one on f−1(I).
If J = (−1, 1), then

f(J) = [0, 1), f−1(J) = (−1, 1).

In the previous example, the preimages of the open sets I, J under the continu-
ous function f are open, but the image of J under f isn’t open. Thus, a continuous
function needn’t map open sets to open sets. As we will show, however, the inverse
image of an open set under a continuous function is always open. This property is
the topological definition of a continuous function; it is a global definition in the
sense that it implies that the function is continuous at every point of its domain.

Recall from Section 1.2 that a subset B of a set A ⊂ R is relatively open in
A, or open in A, if B = A ∩ U where U is open in R. Moreover, as stated in
Proposition 1.22, B is relatively open in A if and only if every point x ∈ B has a
relative neighborhood C = A ∩ V such that C ⊂ B, where V is a neighborhood of
x in R.

Theorem 3.30. A function f : A→ R is continuous on A if and only if f−1(V ) is
open in A for every set V that is open in R.

Proof. First assume that f is continuous on A, and suppose that c ∈ f−1(V ).
Then f(c) ∈ V and since V is open it contains an ϵ-neighborhood

Vϵ (f(c)) = (f(c)− ϵ, f(c) + ϵ)

of f(c). Since f is continuous at c, there is a δ-neighborhood

Uδ(c) = (c− δ, c+ δ)

of c such that

f (A ∩ Uδ(c)) ⊂ Vϵ (f(c)) .

This statement just says that if |x − c| < δ and x ∈ A, then |f(x) − f(c)| < ϵ. It
follows that

A ∩ Uδ(c) ⊂ f−1(V ),
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meaning that f−1(V ) contains a relative neighborhood of c. Therefore f−1(V ) is
relatively open in A.

Conversely, assume that f−1(V ) is open in A for every open V in R, and let
c ∈ A. Then the preimage of the ϵ-neighborhood (f(c)− ϵ, f(c)+ ϵ) is open in A, so
it contains a relative δ-neighborhood A∩(c−δ, c+δ). It follows that |f(x)−f(c)| < ϵ
if |x− c| < δ and x ∈ A, which means that f is continuous at c. �

3.5. Continuous functions on compact sets

Continuous functions on compact sets have especially nice properties. For example,
they are bounded and attain their maximum and minimum values, and they are
uniformly continuous. Since a closed, bounded interval is compact, these results
apply, in particular, to continuous functions f : [a, b] → R.

First we prove that the continuous image of a compact set is compact.

Theorem 3.31. If f : K → R is continuous and K ⊂ R is compact, then f(K) is
compact.

Proof. We show that f(K) is sequentially compact. Let (yn) be a sequence in
f(K). Then yn = f(xn) for some xn ∈ K. Since K is compact, the sequence (xn)
has a convergent subsequence (xni) such that

lim
i→∞

xni = x

where x ∈ K. Since f is continuous on K,

lim
i→∞

f (xni) = f(x).

Writing y = f(x), we have y ∈ f(K) and

lim
i→∞

yni = y.

Therefore every sequence (yn) in f(K) has a convergent subsequence whose limit
belongs to f(K), so f(K) is compact.

Let us also give an alternative proof based on the Heine-Borel property. Sup-
pose that {Vi : i ∈ I} is an open cover of f(K). Since f is continuous, Theorem 3.30
implies that f−1(Vi) is open in K, so {f−1(Vi) : i ∈ I} is an open cover of K. Since
K is compact, there is a finite subcover{

f−1(Vi1), f
−1(Vi2), . . . , f

−1(ViN )
}

of K, and it follows that

{Vi1 , Vi2 , . . . , ViN }

is a finite subcover of the original open cover of f(K). This proves that f(K) is
compact. �

Note that compactness is essential here; it is not true, in general, that a con-
tinuous function maps closed sets to closed sets.
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Example 3.32. Define f : [0,∞) → R by

f(x) =
1

1 + x2
.

Then [0,∞) is closed but f ([0,∞)) = (0, 1] is not.

The following result is the most important property of continuous functions on
compact sets.

Theorem 3.33 (Weierstrass extreme value). If f : K → R is continuous and
K ⊂ R is compact, then f is bounded on K and f attains its maximum and
minimum values on K.

Proof. Since f(K) is compact, Theorem 1.40 implies that it is bounded, which
means that f is bounded on K. Proposition 1.41 implies that the maximum M
and minimum m of f(K) belong to f(K). Therefore there are points x, y ∈ K such
that f(x) =M , f(y) = m, and f attains its maximum and minimum on K. �
Example 3.34. Define f : [0, 1] → R by

f(x) =

{
1/x if 0 < x ≤ 1,

0 if x = 0.

Then f is unbounded on [0, 1] and has no maximum value (f does, however, have
a minimum value of 0 attained at x = 0). In this example, [0, 1] is compact but f
is discontinuous at 0, which shows that a discontinuous function on a compact set
needn’t be bounded.

Example 3.35. Define f : (0, 1] → R by f(x) = 1/x. Then f is unbounded on
(0, 1] with no maximum value (f does, however, have a minimum value of 1 attained
at x = 1). In this example, f is continuous but the half-open interval (0, 1] isn’t
compact, which shows that a continuous function on a non-compact set needn’t be
bounded.

Example 3.36. Define f : (0, 1) → R by f(x) = x. Then

inf
x∈(0,1)

f(x) = 0, sup
x∈(0,1)

f(x) = 1

but f(x) ̸= 0, f(x) ̸= 1 for any 0 < x < 1. Thus, even if a continuous function on
a non-compact set is bounded, it needn’t attain its supremum or infimum.

Example 3.37. Define f : [0, 2/π] → R by

f(x) =

{
x+ x sin(1/x) if 0 < x ≤ 2/π,

0 if x = 0.

(See Figure 3.) Then f is continuous on the compact interval [0, 2/π], so by The-
orem 3.33 it attains its maximum and minimum. For 0 ≤ x ≤ 2/π, we have
0 ≤ f(x) ≤ 1/π since | sin 1/x| ≤ 1. Thus, the minimum value of f is 0, attained
at x = 0. It is also attained at infinitely many other interior points in the interval,

xn =
1

2nπ + 3π/2
, n = 0, 1, 2, 3, . . . ,

where sin(1/xn) = −1. The maximum value of f is 1/π, attained at x = 2/π.
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Figure 3. A plot of the function y = x + x sin(1/x) on [0, 2/π] and a detail

near the origin.

Finally, we prove that continuous functions on compact sets are uniformly
continuous

Theorem 3.38. If f : K → R is continuous and K ⊂ R is compact, then f is
uniformly continuous on K.

Proof. Suppose for contradiction that f is not uniformly continuous on K. Then
from Proposition 3.23 there exists ϵ0 > 0 and sequences (xn), (yn) in K such that

lim
n→∞

|xn − yn| = 0 and |f(xn)− f(yn)| ≥ ϵ0 for every n ∈ N.

Since K is compact, there is a convergent subsequence (xni) of (xn) such that

lim
i→∞

xni = x ∈ K.

Moreover, since (xn − yn) → 0 as n→ ∞, it follows that

lim
i→∞

yni = lim
i→∞

[xni − (xni − yni)] = lim
i→∞

xni − lim
i→∞

(xni − yni) = x,

so (yni) also converges to x. Then, since f is continuous on K,

lim
i→∞

|f(xni
)− f(yni

)| =
∣∣∣ lim
i→∞

f(xni
)− lim

i→∞
f(yni

)
∣∣∣ = |f(x)− f(x)| = 0,

but this contradicts the non-uniform continuity condition

|f(xni)− f(yni)| ≥ ϵ0.

Therefore f is uniformly continuous. �

Example 3.39. The function f : [0, 2/π] → R defined in Example 3.37 is uniformly
continuous on [0, 2/π] since it is is continuous and [0, 2/π] is compact.

3.6. The intermediate value theorem

The intermediate value theorem states that a continuous function on an interval
takes on all values between any two of its values. We first prove a special case.
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Theorem 3.40. Suppose that f : [a, b] → R is a continuous function on a closed,
bounded interval. If f(a) < 0 and f(b) > 0, or f(a) > 0 and f(b) < 0, then there
is a point a < c < b such that f(c) = 0.

Proof. Assume for definiteness that f(a) < 0 and f(b) > 0. (If f(a) > 0 and
f(b) < 0, consider −f instead of f .) The set

E = {x ∈ [a, b] : f(x) < 0}

is nonempty, since a ∈ E, and E is bounded from above by b. Let

c = supE ∈ [a, b],

which exists by the completeness of R. We claim that f(c) = 0.

Suppose for contradiction that f(c) ̸= 0. Since f is continuous at c, there exists
δ > 0 such that

|x− c| < δ and x ∈ [a, b] implies that |f(x)− f(c)| < 1

2
|f(c)|.

If f(c) < 0, then c ̸= b and

f(x) = f(c) + f(x)− f(c) < f(c)− 1

2
f(c)

for all x ∈ [a, b] such that |x− c| < δ, so f(x) < 1
2f(c) < 0. It follows that there are

points x ∈ E with x > c, which contradicts the fact that c is an upper bound of E.

If f(c) > 0, then c ̸= a and

f(x) = f(c) + f(x)− f(c) > f(c)− 1

2
f(c)

for all x ∈ [a, b] such that |x − c| < δ, so f(x) > 1
2f(c) > 0. It follows that there

exists η > 0 such that c− η ≥ a and

f(x) > 0 for c− η ≤ x ≤ c.

In that case, c − η < c is an upper bound for E, since c is an upper bound and
f(x) > 0 for c − η ≤ x ≤ c, which contradicts the fact that c is the least upper
bound. This proves that f(c) = 0. Finally, c ̸= a, b since f is nonzero at the
endpoints, so a < c < b. �

We give some examples to show that all of the hypotheses in this theorem are
necessary.

Example 3.41. Let K = [−2,−1] ∪ [1, 2] and define f : K → R by

f(x) =

{
−1 if −2 ≤ x ≤ −1

1 if 1 ≤ x ≤ 2

Then f(−2) < 0 and f(2) > 0, but f doesn’t vanish at any point in its domain.
Thus, in general, Theorem 3.40 fails if the domain of f is not a connected interval
[a, b].
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Example 3.42. Define f : [−1, 1] → R by

f(x) =

{
−1 if −1 ≤ x < 0

1 if 0 ≤ x ≤ 1

Then f(−1) < 0 and f(1) > 0, but f doesn’t vanish at any point in its domain.
Here, f is defined on an interval but it is discontinuous at 0. Thus, in general,
Theorem 3.40 fails for discontinuous functions.

Example 3.43. Define the continuous function f : [1, 2] → R by

f(x) = x2 − 2.

Then f(1) < 0 and f(2) > 0, so Theorem 3.40 implies that there exists 1 < c < 2
such that c2 = 2. Moreover, since x2 − 2 is strictly increasing on [0,∞), there is a

unique such positive number, so we have proved the existence of
√
2.

We can get more accurate approximations to
√
2 by repeatedly bisecting the

interval [1, 2]. For example f(3/2) = 1/4 > 0 so 1 <
√
2 < 3/2, and f(5/4) < 0

so 5/4 <
√
2 < 3/2, and so on. This bisection method is a simple, but useful,

algorithm for computing numerical approximations of solutions of f(x) = 0 where
f is a continuous function.

Note that we used the existence of a supremum in the proof of Theorem 3.40. If
we restrict f(x) = x2−2 to rational numbers, f : A→ Q where A = [1, 2]∩Q, then

f is continuous on A, f(1) < 0 and f(2) > 0, but f(c) ̸= 0 for any c ∈ A since
√
2

is irrational. This shows that the completeness of R is essential for Theorem 3.40
to hold. (Thus, in a sense, the theorem actually describes the completeness of the
continuum R rather than the continuity of f !)

The general statement of the Intermediate Value Theorem follows immediately
from this special case.

Theorem 3.44 (Intermediate value theorem). Suppose that f : [a, b] → R is
a continuous function on a closed, bounded interval. Then for every d strictly
between f(a) and f(b) there is a point a < c < b such that f(c) = d.

Proof. Suppose, for definiteness, that f(a) < f(b) and f(a) < d < f(b). (If
f(a) > f(b) and f(b) < d < f(a), apply the same proof to −f , and if f(a) = f(b)
there is nothing to prove.) Let g(x) = f(x) − d. Then g(a) < 0 and g(b) > 0, so
Theorem 3.40 implies that g(c) = 0 for some a < c < b, meaning that f(c) = d. �

As one consequence of our previous results, we prove that a continuous function
maps compact intervals to compact intervals.

Theorem 3.45. Suppose that f : [a, b] → R is a continuous function on a closed,
bounded interval. Then f([a, b]) = [m,M ] is a closed, bounded interval.

Proof. Theorem 3.33 implies that m ≤ f(x) ≤ M for all x ∈ [a, b], where m and
M are the maximum and minimum values of f , so f([a, b]) ⊂ [m,M ]. Moreover,
there are points c, d ∈ [a, b] such that f(c) = m, f(d) =M .

Let J = [c, d] if c ≤ d or J = [d, c] if d < c. Then J ⊂ [a, b], and Theorem 3.44
implies that f takes on all values in [m,M ] on J . It follows that f([a, b]) ⊃ [m,M ],
so f([a, b]) = [m,M ]. �
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First we give an example to illustrate the theorem.

Example 3.46. Define f : [−1, 1] → R by

f(x) = x− x3.

Then, using calculus to compute the maximum and minimum of f , we find that

f ([−1, 1]) = [−M,M ], M =
2

3
√
3
.

This example illustrates that f ([a, b]) ̸= [f(a), f(b)] unless f is increasing.

Next we give some examples to show that the continuity of f and the con-
nectedness and compactness of the interval [a, b] are essential for Theorem 3.45 to
hold.

Example 3.47. Let sgn : [−1, 1] → R be the sign function defined in Example 2.6.
Then f is a discontinuous function on a compact interval [−1, 1], but the range
f([−1, 1]) = {−1, 0, 1} consists of three isolated points and is not an interval.

Example 3.48. In Example 3.41, the function f : K → R is continuous on a
compact set K but f(K) = {−1, 1} consists of two isolated points and is not an
interval.

Example 3.49. The continuous function f : [0,∞) → R in Example 3.32 maps
the unbounded, closed interval [0,∞) to a half-open interval (0, 1].

The last example shows that a continuous function may map a closed but
unbounded interval to an interval which isn’t closed (or open). Nevertheless, it
follows from the fact that a continuous function maps compact intervals to compact
intervals that it maps intervals to intervals (where the intervals may be open, closed,
half-open, bounded, or unbounded). We omit a detailed proof.

3.7. Monotonic functions

Monotonic functions have continuity properties that are not shared by general func-
tions.

Definition 3.50. Let I ⊂ R be an interval. A function f : I → R is increasing if

f(x1) ≤ f(x2) if x1, x2 ∈ I and x1 < x2,

strictly increasing if

f(x1) < f(x2) if x1, x2 ∈ I and x1 < x2,

decreasing if

f(x1) ≥ f(x2) if x1, x2 ∈ I and x1 < x2,

and strictly decreasing if

f(x1) > f(x2) if x1, x2 ∈ I and x1 < x2.

An increasing or decreasing function is called a monotonic function, and a strictly
increasing or strictly decreasing function is called a strictly monotonic function.
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A commonly used alternative (and, unfortunately, incompatible) terminology
is “nondecreasing” for “increasing,” “increasing” for “strictly increasing,” “nonin-
creasing” for “decreasing,” and “decreasing” for “strictly decreasing.” According to
our terminology, a constant function is both increasing and decreasing. Monotonic
functions are also referred to as monotone functions.

Theorem 3.51. If f : I → R is monotonic on an interval I, then the left and right
limits of f ,

lim
x→c−

f(x), lim
x→c+

f(x),

exist at every interior point c of I.

Proof. Assume for definiteness that f is increasing. (If f is decreasing, we can
apply the same argument to −f which is increasing). We will prove that

lim
x→c−

f(x) = supE, E = {f(x) ∈ R : x ∈ I and x < c} .

The set E is nonempty since c in an interior point of I, so there exists x ∈ I
with x < c, and E bounded from above by f(c) since f is increasing. It follows
that L = supE ∈ R exists. (Note that L may be strictly less than f(c)!)

Suppose that ϵ > 0 is given. Since L is a least upper bound of E, there exists
y0 ∈ E such that L − ϵ < y0 ≤ L, and therefore x0 ∈ I with x0 < c such that
f(x0) = y0. Let δ = c − x0 > 0. If c − δ < x < c, then x0 < x < c and therefore
f(x0) ≤ f(x) ≤ L since f is increasing and L is an upper bound of E. It follows
that

L− ϵ < f(x) ≤ L if c− δ < x < c,

which proves that limx→c− f(x) = L.

A similar argument, or the same argument applied to g(x) = −f(−x), shows
that

lim
x→c+

f(x) = inf {f(x) ∈ R : x ∈ I and x > c} .

We leave the details as an exercise. �

Similarly, if I = [a, b] is a closed interval and f is monotonic on I, then the
left limit limx→b− f(x) exists at the right endpoint, although it may not equal f(b),
and the right limit limx→a+ f(x) exists at the left endpoint, although it may not
equal f(a).

Corollary 3.52. Every discontinuity of a monotonic function f : I → R at an
interior point of the interval I is a jump discontinuity.

Proof. If c is an interior point of I, then the left and right limits of f at c exist by
the previous theorem. Moreover, assuming for definiteness that f is increasing, we
have

f(x) ≤ f(c) ≤ f(y) for all x, y ∈ I with x < c < y,

and since limits preserve inequalities

lim
x→c−

f(x) ≤ f(c) ≤ lim
x→c+

f(x).
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If the left and right limits are equal, then the limit exists and is equal to the left
and right limits, so

lim
x→c

f(x) = f(c),

meaning that f is continuous at c. In particular, a monotonic function cannot have
a removable discontinuity at an interior point of its domain (although it can have
one at an endpoint of a closed interval). If the left and right limits are not equal,
then f has a jump discontinuity at c, so f cannot have an essential discontinuity
either. �

One can show that a monotonic function has, at most, a countable number
of discontinuities, and it may have a countably infinite number, but we omit the
proof. By contrast, the non-monotonic Dirichlet function has uncountably many
discontinuities at every point of R.





Chapter 4

Differentiable Functions

A differentiable function is a function that can be approximated locally by a linear
function.

4.1. The derivative

Definition 4.1. Suppose that f : (a, b) → R and a < c < b. Then f is differentiable
at c with derivative f ′(c) if

lim
h→0

[
f(c+ h)− f(c)

h

]
= f ′(c).

The domain of f ′ is the set of points c ∈ (a, b) for which this limit exists. If the
limit exists for every c ∈ (a, b) then we say that f is differentiable on (a, b).

Graphically, this definition says that the derivative of f at c is the slope of the
tangent line to y = f(x) at c, which is the limit as h→ 0 of the slopes of the lines
through (c, f(c)) and (c+ h, f(c+ h)).

We can also write

f ′(c) = lim
x→c

[
f(x)− f(c)

x− c

]
,

since if x = c+ h, the conditions 0 < |x− c| < δ and 0 < |h| < δ in the definitions
of the limits are equivalent. The ratio

f(x)− f(c)

x− c

is undefined (0/0) at x = c, but it doesn’t have to be defined in order for the limit
as x→ c to exist.

Like continuity, differentiability is a local property. That is, the differentiability
of a function f at c and the value of the derivative, if it exists, depend only the
values of f in a arbitrarily small neighborhood of c. In particular if f : A → R

39
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where A ⊂ R, then we can define the differentiability of f at any interior point
c ∈ A since there is an open interval (a, b) ⊂ A with c ∈ (a, b).

4.1.1. Examples of derivatives. Let us give a number of examples that illus-
trate differentiable and non-differentiable functions.

Example 4.2. The function f : R → R defined by f(x) = x2 is differentiable on
R with derivative f ′(x) = 2x since

lim
h→0

[
(c+ h)2 − c2

h

]
= lim

h→0

h(2c+ h)

h
= lim

h→0
(2c+ h) = 2c.

Note that in computing the derivative, we first cancel by h, which is valid since
h ̸= 0 in the definition of the limit, and then set h = 0 to evaluate the limit. This
procedure would be inconsistent if we didn’t use limits.

Example 4.3. The function f : R → R defined by

f(x) =

{
x2 if x > 0,

0 if x ≤ 0.

is differentiable on R with derivative

f ′(x) =

{
2x if x > 0,

0 if x ≤ 0.

For x > 0, the derivative is f ′(x) = 2x as above, and for x < 0, we have f ′(x) = 0.
For 0,

f ′(0) = lim
h→0

f(h)

h
.

The right limit is

lim
h→0+

f(h)

h
= lim

h→0
h = 0,

and the left limit is

lim
h→0−

f(h)

h
= 0.

Since the left and right limits exist and are equal, so does the limit

lim
h→0

[
f(h)− f(0)

h

]
= 0,

and f is differentiable at 0 with f ′(0) = 0.

Next, we consider some examples of non-differentiability at discontinuities, cor-
ners, and cusps.

Example 4.4. The function f : R → R defined by

f(x) =

{
1/x if x ̸= 0,

0 if x = 0,
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is differentiable at x ̸= 0 with derivative f ′(x) = −1/x2 since

lim
h→0

[
f(c+ h)− f(c)

h

]
= lim

h→0

[
1/(c+ h)− 1/c

h

]
= lim

h→0

[
c− (c+ h)

hc(c+ h)

]
= − lim

h→0

1

c(c+ h)

= − 1

c2
.

However, f is not differentiable at 0 since the limit

lim
h→0

[
f(h)− f(0)

h

]
= lim

h→0

[
1/h− 0

h

]
= lim

h→0

1

h2

does not exist.

Example 4.5. The sign function f(x) = sgnx, defined in Example 2.6, is differ-
entiable at x ̸= 0 with f ′(x) = 0, since in that case f(x + h) − f(x) = 0 for all
sufficiently small h. The sign function is not differentiable at 0 since

lim
h→0

[
sgnh− sgn 0

h

]
= lim

h→0

sgnh

h

and

sgnh

h
=

{
1/h if h > 0

−1/h if h < 0

is unbounded in every neighborhood of 0, so its limit does not exist.

Example 4.6. The absolute value function f(x) = |x| is differentiable at x ̸= 0
with derivative f ′(x) = sgnx. It is not differentiable at 0, however, since

lim
h→0

f(h)− f(0)

h
= lim

h→0

|h|
h

= lim
h→0

sgnh

does not exist.

Example 4.7. The function f : R → R defined by f(x) = x1/3 is differentiable at
x ̸= 0 with

f ′(x) =
1

3x2/3
.

To prove this, we use the identity for the difference of cubes,

a3 − b3 = (a− b)(a2 + ab+ b2),
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Figure 1. A plot of the function y = x2 sin(1/x) and a detail near the origin
with the parabolas y = ±x2 shown in red.

and get for c ̸= 0 that

lim
h→0

[
f(c+ h)− f(c)

h

]
= lim

h→0

(c+ h)1/3 − c1/3

h

= lim
h→0

(c+ h)− c

h
[
(c+ h)2/3 + (c+ h)1/3c1/3 + c2/3

]
= lim

h→0

1

(c+ h)2/3 + (c+ h)1/3c1/3 + c2/3

=
1

3c2/3
.

However, f is not differentiable at 0, since

lim
h→0

f(h)− f(0)

h
= lim

h→0

1

h2/3
,

which does not exist.

Finally, we consider some examples of highly oscillatory functions.

Example 4.8. Define f : R → R by

f(x) =

{
x sin(1/x) if x ̸= 0,

0 if x = 0.

It follows from the product and chain rules proved below that f is differentiable at
x ̸= 0 with derivative

f ′(x) = sin
1

x
− 1

x
cos

1

x
.

However, f is not differentiable at 0, since

lim
h→0

f(h)− f(0)

h
= lim

h→0
sin

1

h
,

which does not exist.
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Example 4.9. Define f : R → R by

f(x) =

{
x2 sin(1/x) if x ̸= 0,

0 if x = 0.

Then f is differentiable on R. (See Figure 1.) It follows from the product and chain
rules proved below that f is differentiable at x ̸= 0 with derivative

f ′(x) = 2x sin
1

x
− cos

1

x
.

Moreover, f is differentiable at 0 with f ′(0) = 0, since

lim
h→0

f(h)− f(0)

h
= lim

h→0
h sin

1

h
= 0.

In this example, limx→0 f
′(x) does not exist, so although f is differentiable on R,

its derivative f ′ is not continuous at 0.

4.1.2. Derivatives as linear approximations. Another way to view Defini-
tion 4.1 is to write

f(c+ h) = f(c) + f ′(c)h+ r(h)

as the sum of a linear approximation f(c)+f ′(c)h of f(c+h) and a remainder r(h).
In general, the remainder also depends on c, but we don’t show this explicitly since
we’re regarding c as fixed.

As we prove in the following proposition, the differentiability of f at c is equiv-
alent to the condition

lim
h→0

r(h)

h
= 0.

That is, the remainder r(h) approaches 0 faster than h, so the linear terms in h
provide a leading order approximation to f(c+ h) when h is small. We also write
this condition on the remainder as

r(h) = o(h) as h→ 0,

pronounced “r is little-oh of h as h→ 0.”

Graphically, this condition means that the graph of f near c is close the line
through the point (c, f(c)) with slope f ′(c). Analytically, it means that the function

h 7→ f(c+ h)− f(c)

is approximated near c by the linear function

h 7→ f ′(c)h.

Thus, f ′(c) may be interpreted as a scaling factor by which a differentiable function
f shrinks or stretches lengths near c.

If |f ′(c)| < 1, then f shrinks the length of a small interval about c by (ap-
proximately) this factor; if |f ′(c)| > 1, then f stretches the length of an interval
by (approximately) this factor; if f ′(c) > 0, then f preserves the orientation of
the interval, meaning that it maps the left endpoint to the left endpoint of the
image and the right endpoint to the right endpoints; if f ′(c) < 0, then f reverses
the orientation of the interval, meaning that it maps the left endpoint to the right
endpoint of the image and visa-versa.

We can use this description as a definition of the derivative.
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Proposition 4.10. Suppose that f : (a, b) → R. Then f is differentiable at c ∈
(a, b) if and only if there exists a constant A ∈ R and a function r : (a−c, b−c) → R
such that

f(c+ h) = f(c) +Ah+ r(h), lim
h→0

r(h)

h
= 0.

In that case, A = f ′(c).

Proof. First suppose that f is differentiable at c, as in Definition 4.1, and define

r(h) = f(c+ h)− f(c)− f ′(c)h.

Then

lim
h→0

r(h)

h
= lim

h→0

[
f(c+ h)− f(c)

h
− f ′(c)

]
= 0.

Conversely, suppose that f(c+ h) = f(c) +Ah+ r(h) where r(h)/h→ 0 as h→ 0.
Then

lim
h→0

[
f(c+ h)− f(c)

h

]
= lim

h→0

[
A+

r(h)

h

]
= A,

which proves that f is differentiable at c with f ′(c) = A. �

Example 4.11. In Example 4.2 with f(x) = x2,

(c+ h)2 = c2 + 2ch+ h2,

and r(h) = h2, which goes to zero at a quadratic rate as h→ 0.

Example 4.12. In Example 4.4 with f(x) = 1/x,

1

c+ h
=

1

c
− 1

c2
h+ r(h),

for c ̸= 0, where the quadratically small remainder is

r(h) =
h2

c2(c+ h)
.

4.1.3. Left and right derivatives. We can use left and right limits to define
one-sided derivatives, for example at the endpoint of an interval, but for the most
part we will consider only two-sided derivatives defined at an interior point of the
domain of a function.

Definition 4.13. Suppose f : [a, b] → R. Then f is right-differentiable at a ≤ c < b
with right derivative f ′(c+) if

lim
h→0+

[
f(c+ h)− f(c)

h

]
= f ′(c+)

exists, and f is left-differentiable at a < c ≤ b with left derivative f ′(c−) if

lim
h→0−

[
f(c+ h)− f(c)

h

]
= lim

h→0+

[
f(c)− f(c− h)

h

]
= f ′(c−).

A function is differentiable at a < c < b if and only if the left and right
derivatives exist at c and are equal.
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Example 4.14. If f : [0, 1] → R is defined by f(x) = x2, then

f ′(0+) = 0, f ′(1−) = 2.

These left and right derivatives remain the same if f is extended to a function
defined on a larger domain, say

f(x) =


x2 if 0 ≤ x ≤ 1,

0 if x > 1,

1/x if x < 0.

For this extended function we have f ′(1+) = 0, which is not equal to f ′(1−), and
f ′(0−) does not exist, so it is not differentiable at 0 or 1.

Example 4.15. The absolute value function f(x) = |x| in Example 4.6 is left and
right differentiable at 0 with left and right derivatives

f ′(0+) = 1, f ′(0−) = −1.

These are not equal, and f is not differentiable at 0.

4.2. Properties of the derivative

In this section, we prove some basic properties of differentiable functions.

4.2.1. Differentiability and continuity. First we discuss the relation between
differentiability and continuity.

Theorem 4.16. If f : (a, b) → R is differentiable at at c ∈ (a, b), then f is
continuous at c.

Proof. If f is differentiable at c, then

lim
h→0

f(c+ h)− f(c) = lim
h→0

[
f(c+ h)− f(c)

h
· h
]

= lim
h→0

[
f(c+ h)− f(c)

h

]
· lim
h→0

h

= f ′(c) · 0
= 0,

which implies that f is continuous at c. �

For example, the sign function in Example 4.5 has a jump discontinuity at 0
so it cannot be differentiable at 0. The converse does not hold, and a continuous
function needn’t be differentiable. The functions in Examples 4.6, 4.7, 4.8 are
continuous but not differentiable at 0. Example 5.24 describes a function that is
continuous on R but not differentiable anywhere.

In Example 4.9, the function is differentiable on R, but the derivative f ′ is not
continuous at 0. Thus, while a function f has to be continuous to be differentiable,
if f is differentiable its derivative f ′ needn’t be continuous. This leads to the
following definition.
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Definition 4.17. A function f : (a, b) → R is continuously differentiable on (a, b),
written f ∈ C1(a, b), if it is differentiable on (a, b) and f ′ : (a, b) → R is continuous.

For example, the function f(x) = x2 with derivative f ′(x) = 2x is continuously
differentiable on any interval (a, b). As Example 4.9 illustrates, functions that
are differentiable but not continuously differentiable may still behave in rather
pathological ways. On the other hand, continuously differentiable functions, whose
tangent lines vary continuously, are relatively well-behaved.

4.2.2. Algebraic properties of the derivative. Next, we state the linearity of
the derivative and the product and quotient rules.

Theorem 4.18. If f, g : (a, b) → R are differentiable at c ∈ (a, b) and k ∈ R, then
kf , f + g, and fg are differentiable at c with

(kf)′(c) = kf ′(c), (f + g)′(c) = f ′(c) + g′(c), (fg)′(c) = f ′(c)g(c) + f(c)g′(c).

Furthermore, if g(c) ̸= 0, then f/g is differentiable at c with(
f

g

)′

(c) =
f ′(c)g(c)− f(c)g′(c)

g2(c)
.

Proof. The first two properties follow immediately from the linearity of limits
stated in Theorem 2.22. For the product rule, we write

(fg)′(c) = lim
h→0

[
f(c+ h)g(c+ h)− f(c)g(c)

h

]
= lim

h→0

[
(f(c+ h)− f(c)) g(c+ h) + f(c) (g(c+ h)− g(c))

h

]
= lim

h→0

[
f(c+ h)− f(c)

h

]
lim
h→0

g(c+ h) + f(c) lim
h→0

[
g(c+ h)− g(c)

h

]
= f ′(c)g(c) + f(c)g′(c),

where we have used the properties of limits in Theorem 2.22 and Theorem 4.18,
which implies that g is continuous at c. The quotient rule follows by a similar
argument, or by combining the product rule with the chain rule, which implies that
(1/g)′ = −g′/g2. (See Example 4.21 below.) �

Example 4.19. We have 1′ = 0 and x′ = 1. Repeated application of the product
rule implies that xn is differentiable on R for every n ∈ N with

(xn)′ = nxn−1.

Alternatively, we can prove this result by induction: The formula holds for n = 1.
Assuming that it holds for some n ∈ N, we get from the product rule that

(xn+1)′ = (x · xn)′ = 1 · xn + x · nxn−1 = (n+ 1)xn,

and the result follows. It follows by linearity that every polynomial function is
differentiable on R, and from the quotient rule that every rational function is dif-
ferentiable at every point where its denominator is nonzero. The derivatives are
given by their usual formulae.
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4.2.3. The chain rule. The chain rule states the differentiability of a composi-
tion of functions. The result is quite natural if one thinks in terms of derivatives as
linear maps. If f is differentiable at c, it scales lengths by a factor f ′(c), and if g is
differentiable at f(c), it scales lengths by a factor g′ (f(c)). Thus, the composition
g ◦ f scales lengths at c by a factor g′ (f(c)) · f ′(c). Equivalently, the derivative of
a composition is the composition of the derivatives. We will prove the chain rule
by making this observation rigorous.

Theorem 4.20 (Chain rule). Let f : A → R and g : B → R where A ⊂ R and
f (A) ⊂ B, and suppose that c is an interior point of A and f(c) is an interior point
of B. If f is differentiable at c and g is differentiable at f(c), then g ◦ f : A→ R is
differentiable at c and

(g ◦ f)′(c) = g′ (f(c)) f ′(c).

Proof. Since f is differentiable at c, there is a function r(h) such that

f(c+ h) = f(c) + f ′(c)h+ r(h), lim
h→0

r(h)

h
= 0,

and since g is differentiable at f(c), there is a function s(k) such that

g (f(c) + k) = g (f(c)) + g′ (f(c)) k + s(k), lim
k→0

s(k)

k
= 0.

It follows that

(g ◦ f)(c+ h) = g (f(c) + f ′(c)h+ r(h))

= g (f(c)) + g′ (f(c)) (f ′(c)h+ r(h)) + s (f ′(c)h+ r(h))

= g (f(c)) + g′ (f(c)) f ′(c)h+ t(h)

where

t(h) = r(h) + s (ϕ(h)) , ϕ(h) = f ′(c)h+ r(h).

Then, since r(h)/h→ 0 as h→ 0,

lim
h→0

t(h)

h
= lim

h→0

s (ϕ(h))

h
.

We claim that this is limit is zero, and then it follows from Proposition 4.10 that
g ◦ f is differentiable at c with

(g ◦ f)′(c) = g′ (f(c)) f ′(c).

To prove the claim, we use the facts that

ϕ(h)

h
→ f ′(c) as h→ 0,

s(k)

k
→ 0 as k → 0.

Roughly speaking, we have ϕ(h) ∼ f ′(c)h when h is small and therefore

s (ϕ(h))

h
∼ s (f ′(c)h)

h
→ 0 as h→ 0.

To prove this in detail, let ϵ > 0 be given. We want to show that there exists δ > 0
such that ∣∣∣∣s (ϕ(h))h

∣∣∣∣ < ϵ if 0 < |h| < δ.
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Choose η > 0 so that ∣∣∣∣s(k)k
∣∣∣∣ < ϵ

2|f ′(c)|+ 1
if 0 < |k| < η.

(We include a “1” in the denominator to avoid a division by 0 if f ′(c) = 0.) Next,
choose δ1 > 0 such that∣∣∣∣r(h)h

∣∣∣∣ < |f ′(c)|+ 1 if 0 < |h| < δ1.

If 0 < |h| < δ1, then

|ϕ(h)| ≤ |f ′(c)| |h|+ |r(h)|
< |f ′(c)| |h|+ (|f ′(c)|+ 1)|h|
< (2|f ′(c)|+ 1) |h|.

Define δ2 > 0 by

δ2 =
η

2|f ′(c)|+ 1
,

and let δ = min(δ1, δ2) > 0. If 0 < |h| < δ, then |ϕ(h)| < η and

|ϕ(h)| < (2|f ′(c)|+ 1) |h|.

It follows that for 0 < |h| < δ

|s (ϕ(h)) | < ϵ|ϕ(h)|
2|f ′(c)|+ 1

< ϵ|h|.

(If ϕ(h) = 0, then s(ϕ(h)) = 0, so the inequality holds in that case also.) This
proves that

lim
h→0

s (ϕ(h))

h
= 0.

�

Example 4.21. Suppose that f is differentiable at c and f(c) ̸= 0. Then g(y) = 1/y
is differentiable at f(c), with g′(y) = −1/y2 (see Example 4.4). It follows that
1/f = g ◦ f is differentiable at c with(

1

f

)′

(c) = − f ′(c)

f(c)2
.

4.2.4. The derivative of inverse functions. The chain rule gives an expression
for the derivative of an inverse function. In terms of linear approximations, it states
that if f scales lengths at c by a nonzero factor f ′(c), then f−1 scales lengths at
f(c) by the factor 1/f ′(c).

Proposition 4.22. Suppose that f : A → R is a one-to-one function on A ⊂ R
with inverse f−1 : B → R where B = f (A). If f is differentiable at an interior
point c ∈ A with f ′(c) ̸= 0, f(c) is an interior point of B, and f−1 is differentiable
at f(c), then

(f−1)′ (f(c)) =
1

f ′(c)
.
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Proof. The definition of the inverse implies that

f−1 (f(x)) = x.

Since f is differentiable at c and f−1 is differentiable at f(c), the chain rule implies
that (

f−1
)′
(f(c)) f ′(c) = 1.

Dividing this equation by f ′(c) ̸= 0, we get the result. Moreover, it follows that
f−1 cannot be differentiable at f(c) if f ′(c) = 0. �

Alternatively, setting d = f(c), we can write the result as

(f−1)′(d) =
1

f ′ (f−1(d))
.

The following example illustrates the necessity of the condition f ′(c) ̸= 0 for the
differentiability of the inverse.

Example 4.23. Define f : R → R by f(x) = x3. Then f is strictly increasing,
one-to-one, and onto with inverse f−1 : R → R given by

f−1(y) = y1/3.

Then f ′(0) = 0 and f−1 is not differentiable at f(0)= 0. On the other hand, f−1

is differentiable at non-zero points of R, with

(f−1)′(x3) =
1

f ′(x)
=

1

3x2
,

or, writing y = x3,

(f−1)′(y) =
1

3y2/3
,

in agreement with Example 4.7.

Proposition 4.22 is not entirely satisfactory because it assumes the differen-
tiability of f−1 at f(c). One can show that if f : I → R is a continuous and
one-to-one function on an interval I, then f is strictly monotonic and f−1 is also
continuous and strictly monotonic. In that case, f−1 is differentiable at f(c) if f is
differentiable at c and f ′(c) ̸= 0. We omit the proof of these statements.

Another condition for the existence and differentiability of f−1, which gener-
alizes to functions of several variables, is given by the inverse function theorem:
If f is differentiable in a neighborhood of c, f ′(c) ̸= 0, and f ′ is continuous at c,
then f has a local inverse f−1 defined in a neighborhood of f(c) and the inverse is
differentiable at f(c) with derivative given by Proposition 4.22.

4.3. Extreme values

Definition 4.24. Suppose that f : A → R. Then f has a global (or absolute)
maximum at c ∈ A if

f(x) ≤ f(c) for all x ∈ A,

and f has a local (or relative) maximum at c ∈ A if there is a neighborhood U of
c such that

f(x) ≤ f(c) for all x ∈ A ∩ U.
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Similarly, f has a global (or absolute) minimum at c ∈ A if

f(x) ≥ f(c) for all x ∈ A,

and f has a local (or relative) minimum at c ∈ A if there is a neighborhood U of c
such that

f(x) ≥ f(c) for all x ∈ A ∩ U.
If f has a (local or global) maximum or minimum at c ∈ A, then f is said to have
a (local or global) extreme value at c.

Theorem 3.33 states that a continuous function on a compact set has a global
maximum and minimum. The following fundamental result goes back to Fermat.

Theorem 4.25. Suppose that f : A → R has a local extreme value at an interior
point c ∈ A and f is differentiable at c. Then f ′(c) = 0.

Proof. If f has a local maximum at c, then f(x) ≤ f(c) for all x in a δ-neighborhood
(c− δ, c+ δ) of c, so

f(c+ h)− f(c)

h
≤ 0 for all 0 < h < δ,

which implies that

f ′(c) = lim
h→0+

[
f(c+ h)− f(c)

h

]
≤ 0.

Moreover,
f(c+ h)− f(c)

h
≥ 0 for all −δ < h < 0,

which implies that

f ′(c) = lim
h→0−

[
f(c+ h)− f(c)

h

]
≥ 0.

It follows that f ′(c) = 0. If f has a local minimum at c, then the signs in these
inequalities are reversed and we also conclude that f ′(c) = 0. �

For this result to hold, it is crucial that c is an interior point, since we look at
the sign of the difference quotient of f on both sides of c. At an endpoint, we get
an inequality condition on the derivative. If f : [a, b] → R, the right derivative of f
exists at a, and f has a local maximum at a, then f(x) ≤ f(a) for a ≤ x < a+ δ,
so f ′(a+) ≤ 0. Similarly, if the left derivative of f exists at b, and f has a local
maximum at b, then f(x) ≤ f(b) for b − δ < x ≤ b, so f ′(b−) ≥ 0. The signs are
reversed for local minima at the endpoints.

Definition 4.26. Suppose that f : A→ R. An interior point c ∈ A such that f is
not differentiable at c or f ′(c) = 0 is called a critical point of f . An interior point
where f ′(c) = 0 is called a stationary point of f .

Theorem 4.25 limits the search for points where f has a maximum or minimum
value on A to:

(1) Boundary points of A;

(2) Interior points where f is not differentiable;
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(3) Stationary points of f .

4.4. The mean value theorem

We begin by proving a special case.

Theorem 4.27 (Rolle). Suppose that f : [a, b] → R is continuous on the closed,
bounded interval [a, b], differentiable on the open interval (a, b), and f(a) = f(b).
Then there exists a < c < b such that f ′(c) = 0.

Proof. By the Weierstrass extreme value theorem, Theorem 3.33, f attains its
global maximum and minimum values on [a, b]. If these are both attained at the
endpoints, then f is constant, and f ′(c) = 0 for every a < c < b. Otherwise, f
attains at least one of its global maximum or minimum values at an interior point
a < c < b. Theorem 4.25 implies that f ′(c) = 0. �

Note that we require continuity on the closed interval [a, b] but differentiability
only on the open interval (a, b). This proof is deceptively simple, but the result
is not trivial. It relies on the extreme value theorem, which in turn relies on the
completeness of R. The theorem would not be true if we restricted attention to
functions defined on the rationals Q.

The mean value theorem is an immediate consequence of Rolle’s theorem: for
a general function f with f(a) ̸= f(b), we subtract off a linear function to make
the values of the resulting function equal at the endpoints.

Theorem 4.28 (Mean value). Suppose that f : [a, b] → R is continuous on the
closed, bounded interval [a, b], and differentiable on the open interval (a, b). Then
there exists a < c < b such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. The function g : [a, b] → R defined by

g(x) = f(x)− f(a)−
[
f(b)− f(a)

b− a

]
(x− a)

is continuous on [a, b] and differentiable on (a, b) with

g′(x) = f ′(x)− f(b)− f(a)

b− a
.

Moreover, g(a) = g(b) = 0. Rolle’s Theorem implies that there exists a < c < b
such that g′(c) = 0, which proves the result. �

Graphically, this result says that there is point a < c < b at which the slope
of the graph y = f(x) is equal to the slope of the chord between the endpoints
(a, f(a)) and (b, f(b)).

Analytically, the mean value theorem is a key result that connects the local
behavior of a function, described by the derivative f ′(c), to its global behavior,
described by the difference f(b)− f(a). As a first application we prove a converse
to the obvious fact that the derivative of a constant functions is zero.
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Theorem 4.29. If f : (a, b) → R is differentiable on (a, b) and f ′(x) = 0 for every
a < x < b, then f is constant on (a, b).

Proof. Fix x0 ∈ (a, b). The mean value theorem implies that for all x ∈ (a, b) with
x ̸= x0

f ′(c) =
f(x)− f(x0)

x− x0
for some c between x0 and x. Since f ′(c) = 0, it follows that f(x) = f(x0) for all
x ∈ (a, b), meaning that f is constant on (a, b). �

Corollary 4.30. If f, g : (a, b) → R are differentiable on (a, b) and f ′(x) = g′(x)
for every a < x < b, then f(x) = g(x) + C for some constant C.

Proof. This follows from the previous theorem since (f − g)′ = 0. �

We can also use the mean value theorem to relate the monotonicity of a differ-
entiable function with the sign of its derivative.

Theorem 4.31. Suppose that f : (a, b) → R is differentiable on (a, b). Then f is
increasing if and only if f ′(x) ≥ 0 for every a < x < b, and decreasing if and only
if f ′(x) ≤ 0 for every a < x < b. Furthermore, if f ′(x) > 0 for every a < x < b
then f is strictly increasing, and if f ′(x) < 0 for every a < x < b then f is strictly
decreasing.

Proof. If f is increasing, then

f(x+ h)− f(x)

h
≥ 0

for all sufficiently small h (positive or negative), so

f ′(x) = lim
h→0

[
f(x+ h)− f(x)

h

]
≥ 0.

Conversely if f ′ ≥ 0 and a < x < y < b, then by the mean value theorem

f(y)− f(x)

y − x
= f ′(c) ≥ 0

for some x < c < y, which implies that f(x) ≤ f(y), so f is increasing. Moreover,
if f ′(c) > 0, we get f(x) < f(y), so f is strictly increasing.

The results for a decreasing function f follow in a similar way, or we can apply
of the previous results to the increasing function −f . �

Note that if f is strictly increasing, it does not follow that f ′(x) > 0 for every
x ∈ (a, b).

Example 4.32. The function f : R → R defined by f(x) = x3 is strictly increasing
on R, but f ′(0) = 0.

If f is continuously differentiable and f ′(c) > 0, then f ′(x) > 0 for all x in a
neighborhood of c and Theorem 4.31 implies that f is strictly increasing near c.
This conclusion may fail if f is not continuously differentiable at c.
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Example 4.33. The function

f(x) =

{
x/2 + x2 sin(1/x) if x ̸= 0,

0 if x = 0,

is differentiable, but not continuously differentiable, at 0 and f ′(0) = 1/2 > 0.
However, f is not increasing in any neighborhood of 0 since

f ′(x) =
1

2
− cos

(
1

x

)
+ 2x sin

(
1

x

)
is continuous for x ̸= 0 and takes negative values in any neighborhood of 0, so f is
strictly decreasing near those points.

4.5. Taylor’s theorem

If f : (a, b) → R is differentiable on (a, b) and f ′ : (a, b) → R is differentiable, then
we define the second derivative f ′′ : (a, b) → R of f as the derivative of f ′. We
define higher-order derivatives similarly. If f has derivatives f (n) : (a, b) → R of all
orders n ∈ N, then we say that f is infinitely differentiable on (a, b).

Taylor’s theorem gives an approximation for an (n + 1)-times differentiable
function in terms of its Taylor polynomial of degree n.

Definition 4.34. Let f : (a, b) → R and suppose that f has n derivatives f ′, f ′′, . . . f (n) :
(a, b) → R on (a, b). The Taylor polynomial of degree n of f at a < c < b is

Pn(x) = f(c) + f ′(c)(x− c) +
1

2!
f ′′(c)(x− c)2 + · · ·+ 1

n!
f (n)(c)(x− c)n.

Equivalently,

Pn(x) =
n∑

k=0

ak(x− c)k, ak =
1

k!
f (k)(c).

We call ak the kth Taylor coefficient of f at c. The computation of the Taylor
polynomials in the following examples are left as an exercise.

Example 4.35. If P (x) is a polynomial of degree n, then Pn(x) = P (x).

Example 4.36. The Taylor polynomial of degree n of ex at x = 0 is

Pn(x) = 1 + x+
1

2!
x2 · · ·+ 1

n!
xn.

Example 4.37. The Taylor polynomial of degree 2n of cosx at x = 0 is

P2n(x) = 1− 1

2!
x2 +

1

4!
x4 − · · ·+ (−1)n

1

(2n)!
x2n.

We also have P2n+1 = P2n.

Example 4.38. The Taylor polynomial of degree 2n+ 1 of sinx at x = 0 is

P2n+1(x) = x− 1

3!
x3 +

1

5!
x5 − · · ·+ (−1)n

1

(2n+ 1)!
x2n+1.

We also have P2n+2 = P2n+1.
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Example 4.39. The Taylor polynomial of degree n of 1/x at x = 1 is

Pn(x) = 1− (x− 1) + (x− 1)2 − · · ·+ (−1)n(x− 1)n.

Example 4.40. The Taylor polynomial of degree n of log x at x = 1 is

Pn(x) = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − · · ·+ (−1)n+1(x− 1)n.

We write

f(x) = Pn(x) +Rn(x).

where Rn is the error, or remainder, between f and its Taylor polynomial Pn. The
next theorem is one version of Taylor’s theorem, which gives an expression for the
remainder due to Lagrange. It can be regarded as a generalization of the mean
value theorem, which corresponds to the case n = 0.

The proof is a bit tricky, but the essential idea is to subtract a suitable poly-
nomial from the function and apply Rolle’s theorem, just as we proved the mean
value theorem by subtracting a suitable linear function.

Theorem 4.41 (Taylor). Suppose f : (a, b) → R has n + 1 derivatives on (a, b)
and let a < c < b. For every a < x < b, there exists ξ between c and x such that

f(x) = f(c) + f ′(c)(x− c) +
1

2!
f ′′(c)(x− c)2 + · · ·+ 1

n!
f (n)(c)(x− c)n +Rn(x)

where

Rn(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− c)n+1.

Proof. Fix x, c ∈ (a, b). For t ∈ (a, b), let

g(t) = f(x)− f(t)− f ′(t)(x− t)− 1

2!
f ′′(t)(x− t)2 − · · · − 1

n!
f (n)(t)(x− t)n.

Then g(x) = 0 and

g′(t) = − 1

n!
f (n+1)(t)(x− t)n.

Define

h(t) = g(t)−
(
x− t

x− c

)n+1

g(c).

Then h(c) = h(x) = 0, so by Rolle’s theorem, there exists a point ξ between c and
x such that h′(ξ) = 0, which implies that

g′(ξ) + (n+ 1)
(x− ξ)n

(x− c)n+1
g(c) = 0.

It follows from the expression for g′ that

1

n!
f (n+1)(ξ)(x− ξ)n = (n+ 1)

(x− ξ)n

(x− c)n+1
g(c),

and using the expression for g in this equation, we get the result. �
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Note that the remainder term

Rn(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− c)n+1

has the same form as the (n+1)th term in the Taylor polynomial of f , except that
the derivative is evaluated at an (unknown) intermediate point ξ between c and x,
instead of at c.

Example 4.42. Let us prove that

lim
x→0

(
1− cosx

x2

)
=

1

2
.

By Taylor’s theorem,

cosx = 1− 1

2
x2 +

1

4!
(cos ξ)x4

for some ξ between 0 and x. It follows that for x ̸= 0,

1− cosx

x2
− 1

2
= − 1

4!
(cos ξ)x2.

Since | cos ξ| ≤ 1, we get ∣∣∣∣1− cosx

x2
− 1

2

∣∣∣∣ ≤ 1

4!
x2,

which implies that

lim
x→0

∣∣∣∣1− cosx

x2
− 1

2

∣∣∣∣ = 0.

Note that Taylor’s theorem not only proves the limit, but it also gives an explicit
upper bound for the difference between (1− cosx)/x2 and its limit 1/2.





Chapter 5

Sequences and Series of
Functions

In this chapter, we define and study the convergence of sequences and series of
functions. There are many different ways to define the convergence of a sequence
of functions, and different definitions lead to inequivalent types of convergence. We
consider here two basic types: pointwise and uniform convergence.

5.1. Pointwise convergence

Pointwise convergence defines the convergence of functions in terms of the conver-
gence of their values at each point of their domain.

Definition 5.1. Suppose that (fn) is a sequence of functions fn : A → R and
f : A → R. Then fn → f pointwise on A if fn(x) → f(x) as n → ∞ for every
x ∈ A.

We say that the sequence (fn) converges pointwise if it converges pointwise to
some function f , in which case

f(x) = lim
n→∞

fn(x).

Pointwise convergence is, perhaps, the most natural way to define the convergence
of functions, and it is one of the most important. Nevertheless, as the following
examples illustrate, it is not as well-behaved as one might initially expect.

Example 5.2. Suppose that fn : (0, 1) → R is defined by

fn(x) =
n

nx+ 1
.

Then, since x ̸= 0,

lim
n→∞

fn(x) = lim
n→∞

1

x+ 1/n
=

1

x
,

57



58 5. Sequences and Series of Functions

so fn → f pointwise where f : (0, 1) → R is given by

f(x) =
1

x
.

We have |fn(x)| < n for all x ∈ (0, 1), so each fn is bounded on (0, 1), but their
pointwise limit f is not. Thus, pointwise convergence does not, in general, preserve
boundedness.

Example 5.3. Suppose that fn : [0, 1] → R is defined by fn(x) = xn. If 0 ≤ x < 1,
then xn → 0 as n → ∞, while if x = 1, then xn → 1 as n → ∞. So fn → f
pointwise where

f(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1.

Although each fn is continuous on [0, 1], their pointwise limit f is not (it is discon-
tinuous at 1). Thus, pointwise convergence does not, in general, preserve continuity.

Example 5.4. Define fn : [0, 1] → R by

fn(x) =


2n2x if 0 ≤ x ≤ 1/(2n)

2n2(1/n− x) if 1/(2n) < x < 1/n,

0 1/n ≤ x ≤ 1.

If 0 < x ≤ 1, then fn(x) = 0 for all n ≥ 1/x, so fn(x) → 0 as n→ ∞; and if x = 0,
then fn(x) = 0 for all n, so fn(x) → 0 also. It follows that fn → 0 pointwise on
[0, 1]. This is the case even though max fn = n→ ∞ as n→ ∞. Thus, a pointwise
convergent sequence of functions need not be bounded, even if it converges to zero.

Example 5.5. Define fn : R → R by

fn(x) =
sinnx

n
.

Then fn → 0 pointwise on R. The sequence (f ′n) of derivatives f ′n(x) = cosnx does
not converge pointwise on R; for example,

f ′n(π) = (−1)n

does not converge as n→ ∞. Thus, in general, one cannot differentiate a pointwise
convergent sequence. This is because the derivative of a small, rapidly oscillating
function may be large.

Example 5.6. Define fn : R → R by

fn(x) =
x2√

x2 + 1/n
.

If x ̸= 0, then

lim
n→∞

x2√
x2 + 1/n

=
x2

|x|
= |x|

while fn(0) = 0 for all n ∈ N, so fn → |x| pointwise on R. The limit |x| not
differentiable at 0 even though all of the fn are differentiable on R. (The fn “round
off” the corner in the absolute value function.)
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Example 5.7. Define fn : R → R by

fn(x) =
(
1 +

x

n

)n
.

Then by the limit formula for the exponential, which we do not prove here, fn → ex

pointwise on R.

5.2. Uniform convergence

In this section, we introduce a stronger notion of convergence of functions than
pointwise convergence, called uniform convergence. The difference between point-
wise convergence and uniform convergence is analogous to the difference between
continuity and uniform continuity.

Definition 5.8. Suppose that (fn) is a sequence of functions fn : A → R and
f : A → R. Then fn → f uniformly on A if, for every ϵ > 0, there exists N ∈ N
such that

n > N implies that |fn(x)− f(x)| < ϵ for all x ∈ A.

When the domain A of the functions is understood, we will often say fn → f
uniformly instead of uniformly on A.

The crucial point in this definition is that N depends only on ϵ and not on
x ∈ A, whereas for a pointwise convergent sequence N may depend on both ϵ
and x. A uniformly convergent sequence is always pointwise convergent (to the
same limit), but the converse is not true. If for some ϵ > 0 one needs to choose
arbitrarily large N for different x ∈ A, meaning that there are sequences of values
which converge arbitrarily slowly on A, then a pointwise convergent sequence of
functions is not uniformly convergent.

Example 5.9. The sequence fn(x) = xn in Example 5.3 converges pointwise on
[0, 1] but not uniformly on [0, 1]. For 0 ≤ x < 1 and 0 < ϵ < 1, we have

|fn(x)− f(x)| = |xn| < ϵ

if and only if 0 ≤ x < ϵ1/n. Since ϵ1/n < 1 for all n ∈ N, no N works for all x
sufficiently close to 1 (although there is no difficulty at x = 1). The sequence does,
however, converge uniformly on [0, b] for every 0 ≤ b < 1; for 0 < ϵ < 1, we can
take N = log ϵ/log b.

Example 5.10. The pointwise convergent sequence in Example 5.4 does not con-
verge uniformly. If it did, it would have to converge to the pointwise limit 0, but∣∣∣∣fn( 1

2n

)∣∣∣∣ = n,

so for no ϵ > 0 does there exist an N ∈ N such that |fn(x) − 0| < ϵ for all x ∈ A
and n > N , since this inequality fails for n ≥ ϵ if x = 1/(2n).

Example 5.11. The functions in Example 5.5 converge uniformly to 0 on R, since

|fn(x)| =
| sinnx|

n
≤ 1

n
,

so |fn(x)− 0| < ϵ for all x ∈ R if n > 1/ϵ.
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5.3. Cauchy condition for uniform convergence

The Cauchy condition in Definition 1.9 provides a necessary and sufficient condi-
tion for a sequence of real numbers to converge. There is an analogous uniform
Cauchy condition that provides a necessary and sufficient condition for a sequence
of functions to converge uniformly.

Definition 5.12. A sequence (fn) of functions fn : A → R is uniformly Cauchy
on A if for every ϵ > 0 there exists N ∈ N such that

m,n > N implies that |fm(x)− fn(x)| < ϵ for all x ∈ A.

The key part of the following proof is the argument to show that a pointwise
convergent, uniformly Cauchy sequence converges uniformly.

Theorem 5.13. A sequence (fn) of functions fn : A → R converges uniformly on
A if and only if it is uniformly Cauchy on A.

Proof. Suppose that (fn) converges uniformly to f on A. Then, given ϵ > 0, there
exists N ∈ N such that

|fn(x)− f(x)| < ϵ

2
for all x ∈ A if n > N.

It follows that if m,n > N then

|fm(x)− fn(x)| ≤ |fm(x)− f(x)|+ |f(x)− fn(x)| < ϵ for all x ∈ A,

which shows that (fn) is uniformly Cauchy.

Conversely, suppose that (fn) is uniformly Cauchy. Then for each x ∈ A, the
real sequence (fn(x)) is Cauchy, so it converges by the completeness of R. We
define f : A→ R by

f(x) = lim
n→∞

fn(x),

and then fn → f pointwise.

To prove that fn → f uniformly, let ϵ > 0. Since (fn) is uniformly Cauchy, we
can choose N ∈ N (depending only on ϵ) such that

|fm(x)− fn(x)| <
ϵ

2
for all x ∈ A if m,n > N.

Let n > N and x ∈ A. Then for every m > N we have

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| < ϵ

2
+ |fm(x)− f(x)|.

Since fm(x) → f(x) as m → ∞, we can choose m > N (depending on x, but it
doesn’t matter since m doesn’t appear in the final result) such that

|fm(x)− f(x)| < ϵ

2
.

It follows that if n > N , then

|fn(x)− f(x)| < ϵ for all x ∈ A,

which proves that fn → f uniformly.
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Alternatively, we can take the limit as m→ ∞ in the Cauchy condition to get
for all x ∈ A and n > N that

|f(x)− fn(x)| = lim
m→∞

|fm(x)− fn(x)| ≤
ϵ

2
< ϵ.

�

5.4. Properties of uniform convergence

In this section we prove that, unlike pointwise convergence, uniform convergence
preserves boundedness and continuity. Uniform convergence does not preserve dif-
ferentiability any better than pointwise convergence. Nevertheless, we give a result
that allows us to differentiate a convergent sequence; the key assumption is that
the derivatives converge uniformly.

5.4.1. Boundedness. First, we consider the uniform convergence of bounded
functions.

Theorem 5.14. Suppose that fn : A → R is bounded on A for every n ∈ N and
fn → f uniformly on A. Then f : A→ R is bounded on A.

Proof. Taking ϵ = 1 in the definition of the uniform convergence, we find that
there exists N ∈ N such that

|fn(x)− f(x)| < 1 for all x ∈ A if n > N.

Choose some n > N . Then, since fn is bounded, there is a constant Mn ≥ 0 such
that

|fn(x)| ≤Mn for all x ∈ A.

It follows that

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| < 1 +Mn for all x ∈ A,

meaning that f is bounded on A (by 1 +Mn). �

We do not assume here that all the functions in the sequence are bounded by
the same constant. (If they were, the pointwise limit would also be bounded by that
constant.) In particular, it follows that if a sequence of bounded functions converges
pointwise to an unbounded function, then the convergence is not uniform.

Example 5.15. The sequence of functions fn : (0, 1) → R in Example 5.2, defined
by

fn(x) =
n

nx+ 1
,

cannot converge uniformly on (0, 1), since each fn is bounded on (0, 1), but their
pointwise limit f(x) = 1/x is not. The sequence (fn) does, however, converge
uniformly to f on every interval [a, 1) with 0 < a < 1. To prove this, we estimate
for a ≤ x < 1 that

|fn(x)− f(x)| =
∣∣∣∣ n

nx+ 1
− 1

x

∣∣∣∣ = 1

x(nx+ 1)
<

1

nx2
≤ 1

na2
.

Thus, given ϵ > 0 choose N = 1/(a2ϵ), and then

|fn(x)− f(x)| < ϵ for all x ∈ [a, 1) if n > N,
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which proves that fn → f uniformly on [a, 1). Note that

|f(x)| ≤ 1

a
for all x ∈ [a, 1)

so the uniform limit f is bounded on [a, 1), as Theorem 5.14 requires.

5.4.2. Continuity. One of the most important property of uniform convergence
is that it preserves continuity. We use an “ϵ/3” argument to get the continuity of
the uniform limit f from the continuity of the fn.

Theorem 5.16. If a sequence (fn) of continuous functions fn : A → R converges
uniformly on A ⊂ R to f : A→ R, then f is continuous on A.

Proof. Suppose that c ∈ A and ϵ > 0 is given. Then, for every n ∈ N,

|f(x)− f(c)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)| .

By the uniform convergence of (fn), we can choose n ∈ N such that

|fn(x)− f(x)| < ϵ

3
for all x ∈ A,

and for such an n it follows that

|f(x)− f(c)| < |fn(x)− fn(c)|+
2ϵ

3
.

(Here we use the fact that fn is close to f at both x and c, where x is an an arbitrary
point in a neighborhood of c; this is where we use the uniform convergence in a
crucial way.)

Since fn is continuous on A, there exists δ > 0 such that

|fn(x)− fn(c)| <
ϵ

3
if |x− c| < δ and x ∈ A,

which implies that

|f(x)− f(c)| < ϵ if |x− c| < δ and x ∈ A.

This proves that f is continuous. �

This result can be interpreted as justifying an “exchange in the order of limits”

lim
n→∞

lim
x→c

fn(x) = lim
x→c

lim
n→∞

fn(x).

Such exchanges of limits always require some sort of condition for their validity — in
this case, the uniform convergence of fn to f is sufficient, but pointwise convergence
is not.

It follows from Theorem 5.16 that if a sequence of continuous functions con-
verges pointwise to a discontinuous function, as in Example 5.3, then the conver-
gence is not uniform. The converse is not true, however, and the pointwise limit
of a sequence of continuous functions may be continuous even if the convergence is
not uniform, as in Example 5.4.
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5.4.3. Differentiability. The uniform convergence of differentiable functions
does not, in general, imply anything about the convergence of their derivatives or
the differentiability of their limit. As noted above, this is because the values of
two functions may be close together while the values of their derivatives are far
apart (if, for example, one function varies slowly while the other oscillates rapidly,
as in Example 5.5). Thus, we have to impose strong conditions on a sequence of
functions and their derivatives if we hope to prove that fn → f implies f ′n → f ′.

The following example shows that the limit of the derivatives need not equal
the derivative of the limit even if a sequence of differentiable functions converges
uniformly and their derivatives converge pointwise.

Example 5.17. Consider the sequence (fn) of functions fn : R → R defined by

fn(x) =
x

1 + nx2
.

Then fn → 0 uniformly on R. To see this, we write

|fn(x)| =
1√
n

( √
n|x|

1 + nx2

)
=

1√
n

(
t

1 + t2

)
where t =

√
n|x|. We have

t

1 + t2
≤ 1

2
for all t ∈ R,

since (1− t)2 ≥ 0, which implies that 2t ≤ 1 + t2. Using this inequality, we get

|fn(x)| ≤
1

2
√
n

for all x ∈ R.

Hence, given ϵ > 0, choose N = 1/(4ϵ2). Then

|fn(x)| < ϵ for all x ∈ R if n > N,

which proves that (fn) converges uniformly to 0 on R. (Alternatively, we could get
the same result by using calculus to compute the maximum value of |fn| on R.)

Each fn is differentiable with

f ′n(x) =
1− nx2

(1 + nx2)2
.

It follows that f ′n → g pointwise as n→ ∞ where

g(x) =

{
0 if x ̸= 0,

1 if x = 0.

The convergence is not uniform since g is discontinuous at 0. Thus, fn → 0 uni-
formly, but f ′n(0) → 1, so the limit of the derivatives is not the derivative of the
limit.

However, we do get a useful result if we strengthen the assumptions and require
that the derivatives converge uniformly, not just pointwise. The proof involves a
slightly tricky application of the mean value theorem.

Theorem 5.18. Suppose that (fn) is a sequence of differentiable functions fn :
(a, b) → R such that fn → f pointwise and f ′n → g uniformly for some f, g :
(a, b) → R. Then f is differentiable on (a, b) and f ′ = g.
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Proof. Let c ∈ (a, b), and let ϵ > 0 be given. To prove that f ′(c) = g(c), we
estimate the difference quotient of f in terms of the difference quotients of the fn:∣∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣∣ ≤ ∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣
+

∣∣∣∣fn(x)− fn(c)

x− c
− f ′n(c)

∣∣∣∣+ |f ′n(c)− g(c)|

where x ∈ (a, b) and x ̸= c. We want to make each of the terms on the right-hand
side of the inequality less than ϵ/3. This is straightforward for the second term
(since fn is differentiable) and the third term (since f ′n → g). To estimate the first
term, we approximate f by fm, use the mean value theorem, and let m→ ∞.

Since fm−fn is differentiable, the mean value theorem implies that there exists
ξ between c and x such that

fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c
=

(fm − fn)(x)− (fm − fn)(c)

x− c

= f ′m(ξ)− f ′n(ξ).

Since (f ′n) converges uniformly, it is uniformly Cauchy by Theorem 5.13. Therefore
there exists N1 ∈ N such that

|f ′m(ξ)− f ′n(ξ)| <
ϵ

3
for all ξ ∈ (a, b) if m,n > N1,

which implies that ∣∣∣∣fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ < ϵ

3
.

Taking the limit of this equation as m → ∞, and using the pointwise convergence
of (fm) to f , we get that∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ ≤ ϵ

3
for n > N1.

Next, since (f ′n) converges to g, there exists N2 ∈ N such that

|f ′n(c)− g(c)| < ϵ

3
for all n > N2.

Choose some n > max(N1, N2). Then the differentiability of fn implies that there
exists δ > 0 such that∣∣∣∣fn(x)− fn(c)

x− c
− f ′n(c)

∣∣∣∣ < ϵ

3
if 0 < |x− c| < δ.

Putting these inequalities together, we get that∣∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣∣ < ϵ if 0 < |x− c| < δ,

which proves that f is differentiable at c with f ′(c) = g(c). �

Like Theorem 5.16, Theorem 5.18 can be interpreted as giving sufficient condi-
tions for an exchange in the order of limits:

lim
n→∞

lim
x→c

[
fn(x)− fn(c)

x− c

]
= lim

x→c
lim

n→∞

[
fn(x)− fn(c)

x− c

]
.
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It is worth noting that in Theorem 5.18 the derivatives f ′n are not assumed to
be continuous. If they are continuous, one can use Riemann integration and the
fundamental theorem of calculus (FTC) to give a simpler proof of the theorem, as
follows. Fix some x0 ∈ (a, b). The uniform convergence f ′n → g implies that∫ x

x0

f ′ndx→
∫ x

x0

g dx.

(This is the main point: although we cannot differentiate a uniformly convergent
sequence, we can integrate it.) It then follows from one direction of the FTC that

fn(x)− fn(x0) →
∫ x

x0

g dx,

and the pointwise convergence fn → f implies that

f(x) = f(x0) +

∫ x

x0

g dx.

The other direction of the FTC then implies that f is differentiable and f ′ = g.

5.5. Series

The convergence of a series is defined in terms of the convergence of its sequence of
partial sums, and any result about sequences is easily translated into a correspond-
ing result about series.

Definition 5.19. Suppose that (fn) is a sequence of functions fn : A → R, and
define a sequence (Sn) of partial sums Sn : A→ R by

Sn(x) =
n∑

k=1

fk(x).

Then the series

S(x) =
∞∑

n=1

fn(x)

converges pointwise to S : A → R on A if Sn → S as n → ∞ pointwise on A, and
uniformly to S on A if Sn → S uniformly on A.

We illustrate the definition with a series whose partial sums we can compute
explicitly.

Example 5.20. The geometric series
∞∑

n=0

xn = 1 + x+ x2 + x3 + . . .

has partial sums

Sn(x) =

n∑
k=0

xk =
1− xn+1

1− x
.

Thus, Sn(x) → 1/(1− x) as n→ ∞ if |x| < 1 and diverges if |x| ≥ 1, meaning that
∞∑

n=0

xn =
1

1− x
pointwise on (−1, 1).
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Since 1/(1−x) is unbounded on (−1, 1), Theorem 5.14 implies that the convergence
cannot be uniform.

The series does, however, converges uniformly on [−ρ, ρ] for every 0 ≤ ρ < 1.
To prove this, we estimate for |x| ≤ ρ that∣∣∣∣Sn(x)−

1

1− x

∣∣∣∣ = |x|n+1

1− x
≤ ρn+1

1− ρ
.

Since ρn+1/(1− ρ) → 0 as n→ ∞, given any ϵ > 0 there exists N ∈ N, depending
only on ϵ and ρ, such that

0 ≤ ρn+1

1− ρ
< ϵ for all n > N.

It follows that∣∣∣∣∣
n∑

k=0

xk − 1

1− x

∣∣∣∣∣ < ϵ for all x ∈ [−ρ, ρ] and all n > N,

which proves that the series converges uniformly on [−ρ, ρ].

The Cauchy condition for the uniform convergence of sequences immediately
gives a corresponding Cauchy condition for the uniform convergence of series.

Theorem 5.21. Let (fn) be a sequence of functions fn : A→ R. The series

∞∑
n=1

fn

converges uniformly on A if and only if for every ϵ > 0 there exists N ∈ N such
that ∣∣∣∣∣

n∑
k=m+1

fk(x)

∣∣∣∣∣ < ϵ for all x ∈ A and all n > m > N.

Proof. Let

Sn(x) =
n∑

k=1

fk(x) = f1(x) + f2(x) + · · ·+ fn(x).

From Theorem 5.13 the sequence (Sn), and therefore the series
∑
fn, converges

uniformly if and only if for every ϵ > 0 there exists N such that

|Sn(x)− Sm(x)| < ϵ for all x ∈ A and all n,m > N.

Assuming n > m without loss of generality, we have

Sn(x)− Sm(x) = fm+1(x) + fm+2(x) + · · ·+ fn(x) =
n∑

k=m+1

fk(x),

so the result follows. �

This condition says that the sum of any number of consecutive terms in the
series gets arbitrarily small sufficiently far down the series.
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5.6. The Weierstrass M-test

The following simple criterion for the uniform convergence of a series is very useful.
The name comes from the letter traditionally used to denote the constants, or
“majorants,” that bound the functions in the series.

Theorem 5.22 (WeierstrassM -test). Let (fn) be a sequence of functions fn : A→
R, and suppose that for every n ∈ N there exists a constant Mn ≥ 0 such that

|fn(x)| ≤Mn for all x ∈ A,

∞∑
n=1

Mn <∞.

Then
∞∑

n=1

fn(x).

converges uniformly on A.

Proof. The result follows immediately from the observation that
∑
fn is uniformly

Cauchy if
∑
Mn is Cauchy.

In detail, let ϵ > 0 be given. The Cauchy condition for the convergence of a
real series implies that there exists N ∈ N such that

n∑
k=m+1

Mk < ϵ for all n > m > N.

Then for all x ∈ A and all n > m > N , we have∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣ ≤
n∑

k=m+1

|fk(x)|

≤
n∑

k=m+1

Mk

< ϵ.

Thus,
∑
fn satisfies the uniform Cauchy condition in Theorem 5.21, so it converges

uniformly. �

This proof illustrates the value of the Cauchy condition: we can prove the
convergence of the series without having to know what its sum is.

Example 5.23. Returning to Example 5.20, we consider the geometric series
∞∑

n=0

xn.

If |x| ≤ ρ where 0 ≤ ρ < 1, then

|xn| ≤ ρn,

∞∑
n=0

ρn < 1.

The M -test, with Mn = ρn, implies that the series converges uniformly on [−ρ, ρ].
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Figure 1. Graph of the Weierstrass continuous, nowhere differentiable func-
tion y =

∑∞
n=0 2

−n cos(3nx) on one period [0, 2π].

Example 5.24. The series

f(x) =

∞∑
n=1

1

2n
cos (3nx)

converges uniformly on R by the M -test since∣∣∣∣ 12n cos (3nx)

∣∣∣∣ ≤ 1

2n
,

∞∑
n=1

1

2n
= 1.

It then follows from Theorem 5.16 that f is continuous on R. (See Figure 1.)

Taking the formal term-by-term derivative of the series for f , we get a series
whose coefficients grow with n,

−
∞∑

n=1

(
3

2

)n

sin (3nx) ,

so we might expect that there are difficulties in differentiating f . As Figure 2 illus-
trates, the function does not appear to be smooth at all length-scales. Weierstrass
(1872) proved that f is not differentiable at any point of R. Bolzano (1830) had also
constructed a continuous, nowhere differentiable function, but his results weren’t
published until 1922. Subsequently, Tagaki (1903) constructed a similar function
to the Weierstrass function whose nowhere-differentiability is easier to prove. Such
functions were considered to be highly counter-intuitive and pathological at the
time Weierstrass discovered them, and they weren’t well-received by many promi-
nent mathematicians.
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Figure 2. Details of the Weierstrass function showing its self-similar, fractal
behavior under rescalings.

If the Weierstrass M -test applies to a series of functions to prove uniform
convergence, it also implies that the series converges absolutely, meaning that

∞∑
n=1

|fn(x)| <∞ for every x ∈ A.

Thus, the M -test is not applicable to series that converge uniformly but not abso-
lutely.

Absolute convergence of a series is completely different from uniform conver-
gence, and the two concepts should not be confused. Absolute convergence on A is
a pointwise condition for each x ∈ A, while uniform convergence is a global condi-
tion that involves all points x ∈ A simultaneously. We illustrate the difference with
a rather trivial example.

Example 5.25. Let fn : R → R be the constant function

fn(x) =
(−1)n+1

n
.

Then
∑
fn converges on R to the constant function f(x) = c, where

c =

∞∑
n=1

(−1)n+1

n

is the sum of the alternating harmonic series (c = log 2). The convergence of
∑
fn is

uniform on R since the terms in the series do not depend on x, but the convergence
is not absolute at any x ∈ R since the harmonic series

∞∑
n=1

1

n

diverges to infinity.

5.7. The sup-norm

An equivalent, and often clearer, way to describe uniform convergence is in terms
of the uniform, or sup, norm.
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Definition 5.26. Suppose that f : A → R. The uniform, or sup, norm ∥f∥ of f
on A is

∥f∥ = sup
x∈A

|f(x)|.

A function is bounded on A if and only if ∥f∥ <∞.

Example 5.27. Let A = (0, 1) and define f, g, h : (0, 1) → R by

f(x) = x2, g(x) = x2 − x, h(x) =
1

x
.

Then

∥f∥ = 1, ∥g∥ =
1

4
, ∥h∥ = ∞.

We have the following characterization of uniform convergence.

Definition 5.28. A sequence (fn) of functions fn : A→ R converges uniformly on
A to a function f : A→ R if

lim
n→∞

∥fn − f∥ = 0.

Similarly, we can define a uniformly Cauchy sequence in terms of the sup-norm.

Definition 5.29. A sequence (fn) of functions fn : A → R is uniformly Cauchy
on A if for every ϵ > 0 there exists N ∈ N such that

m,n > N implies that ∥fm − fn∥ < ϵ.

Thus, the uniform convergence of a sequence of functions is defined in exactly
the same way as the convergence of a sequence of real numbers with the absolute
| · | value replaced by the sup-norm ∥ · ∥.

5.8. Spaces of continuous functions

Our previous theorems about continuous functions on compact sets can be restated
in a more geometrical way using the sup-norm.

Definition 5.30. Let K ⊂ R be a compact set. The space C(K) consists of all
continuous functions f : K → R.

Thus, we think of a function f as a point in a function space C(K), just as we
think of a real number x as a point in R.

Theorem 5.31. The space C(K) is a vector space with respect to the usual point-
wise definitions of scalar multiplication and addition of functions: If f, g ∈ C(K)
and k ∈ R, then

(kf)(x) = kf(x), (f + g)(x) = f(x) + g(x).

This follows from Theorem 3.15, which states that scalar multiples and sums of
continuous functions are continuous and therefore belong to C(K). The algebraic
vector-space properties of C(K) follow immediately from those of the real numbers.
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Definition 5.32. A normed vector space (X, ∥ · ∥) is a vector space X (which we
assume to be real) together with a function ∥ ·∥ : X → R, called a norm on X, such
that for all f, g ∈ X and k ∈ R:

(1) 0 ≤ ∥f∥ <∞ and ∥f∥ = 0 if and only if f = 0;

(2) ∥kf∥ = |k|∥f∥;
(3) ∥f + g∥ ≤ ∥f∥+ ∥g∥.

We think of ∥f∥ as defining a “length” of the vector f ∈ X and ∥f − g∥ as
the corresponding “distance” between f, g ∈ X. (There are typically many ways
to define a norm on a vector space satisfying Definition 5.32, each leading to a
different notion of the distance between vectors.)

The properties in Definition 5.32 are natural one to require of a length: The
length of f is 0 if and only if f is the 0-vector; multiplying a vector by k multiplies
its length by |k|; and the length of the “hypoteneuse” f + g is less than or equal
to the sum of the lengths of the “sides” f , g. Because of this last interpretation,
property (3) is referred to as the triangle inequality.

It is straightforward to verify that the sup-norm on C(K) has these properties.

Theorem 5.33. The space C(K) with the sup-norm ∥ · ∥ : C(K) → R given in
Definition 5.26 is a normed vector space.

Proof. From Theorem 3.33, the sup-norm of a continuous function f : K → R
on a compact set K is finite, and it is clearly nonnegative, so 0 ≤ ∥f∥ < ∞. If
∥f∥ = 0, then supx∈K |f(x)| = 0, which implies that f(x) = 0 for every x ∈ K,
meaning that f = 0 is the zero function.

We also have

∥kf∥ = sup
x∈K

|k(f(x)| = |k| sup
x∈K

|f(x)| = k∥f∥,

and

∥f + g∥ = sup
x∈K

|(f(x) + g(x)|

≤ sup
x∈K

{|f(x)|+ |g(x)|}

≤ sup
x∈K

|f(x)|+ sup
x∈K

|g(x)|

≤ ∥f∥+ ∥g∥,
which verifies the properties of a norm. �
Definition 5.34. A sequence (fn) in a normed vector space (X, ∥ · ∥) converges to
f ∈ X if ∥fn − f∥ → 0 as n → ∞. That is, if for every ϵ > 0 there exists N ∈ N
such that

n > N implies that ∥fn − f∥ < ϵ.

The sequence is a Cauchy sequence for every ϵ > 0 there exists N ∈ N such that

m,n > N implies that ∥fm − fn∥ < ϵ.

Definition 5.35. A normed vector space is complete if every Cauchy sequence
converges. A complete normed linear space is called a Banach space.
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Theorem 5.36. The space C(K) with the sup-norm is a Banach space.

Proof. The space C(K) with the sup-norm is a normed space from Theorem 5.33.
Theorem 5.13 implies that it is complete. �



Chapter 6

Power Series

Power series are one of the most useful type of series in analysis. For example,
we can use them to define transcendental functions such as the exponential and
trigonometric functions (and many other less familiar functions).

6.1. Introduction

A power series (centered at 0) is a series of the form

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·+ anx
n + . . . .

where the an are some coefficients. If all but finitely many of the an are zero,
then the power series is a polynomial function, but if infinitely many of the an are
nonzero, then we need to consider the convergence of the power series.

The basic facts are these: Every power series has a radius of convergence 0 ≤
R ≤ ∞, which depends on the coefficients an. The power series converges absolutely
in |x| < R and diverges in |x| > R, and the convergence is uniform on every interval
|x| < ρ where 0 ≤ ρ < R. If R > 0, the sum of the power series is infinitely
differentiable in |x| < R, and its derivatives are given by differentiating the original
power series term-by-term.

Power series work just as well for complex numbers as real numbers, and are
in fact best viewed from that perspective, but we restrict our attention here to
real-valued power series.

Definition 6.1. Let (an)
∞
n=0 be a sequence of real numbers and c ∈ R. The power

series centered at c with coefficients an is the series

∞∑
n=0

an(x− c)n.

73
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Here are some power series centered at 0:
∞∑

n=0

xn = 1 + x+ x2 + x3 + x4 + . . . ,

∞∑
n=0

1

n!
xn = 1 + x+

1

2
x2 +

1

6
x3 +

1

24
x4 + . . . ,

∞∑
n=0

(n!)xn = 1 + x+ 2x2 + 6x3 + 24x4 + . . . ,

∞∑
n=0

(−1)nx2
n

= x− x2 + x4 − x8 + . . . ;

and here is a power series centered at 1:
∞∑

n=1

(−1)n+1

n
(x− 1)n = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 + . . . .

The power series in Definition 6.1 is a formal expression, since we have not said
anything about its convergence. By changing variables x 7→ (x− c), we can assume
without loss of generality that a power series is centered at 0, and we will do so
when it’s convenient.

6.2. Radius of convergence

First, we prove that every power series has a radius of convergence.

Theorem 6.2. Let
∞∑

n=0

an(x− c)n

be a power series. There is an 0 ≤ R ≤ ∞ such that the series converges absolutely
for 0 ≤ |x − c| < R and diverges for |x − c| > R. Furthermore, if 0 ≤ ρ < R, then
the power series converges uniformly on the interval |x− c| ≤ ρ, and the sum of the
series is continuous in |x− c| < R.

Proof. Assume without loss of generality that c = 0 (otherwise, replace x by x−c).
Suppose the power series

∞∑
n=0

anx
n
0

converges for some x0 ∈ R with x0 ̸= 0. Then its terms converge to zero, so they
are bounded and there exists M ≥ 0 such that

|anxn0 | ≤M for n = 0, 1, 2, . . . .

If |x| < |x0|, then

|anxn| = |anxn0 |
∣∣∣∣ xx0

∣∣∣∣n ≤Mrn, r =

∣∣∣∣ xx0
∣∣∣∣ < 1.

Comparing the power series with the convergent geometric series
∑
Mrn, we see

that
∑
anx

n is absolutely convergent. Thus, if the power series converges for some
x0 ∈ R, then it converges absolutely for every x ∈ R with |x| < |x0|.
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Let

R = sup
{
|x| ≥ 0 :

∑
anx

n converges
}
.

If R = 0, then the series converges only for x = 0. If R > 0, then the series
converges absolutely for every x ∈ R with |x| < R, because it converges for some
x0 ∈ R with |x| < |x0| < R. Moreover, the definition of R implies that the series
diverges for every x ∈ R with |x| > R. If R = ∞, then the series converges for all
x ∈ R.

Finally, let 0 ≤ ρ < R and suppose |x| ≤ ρ. Choose σ > 0 such that ρ < σ < R.
Then

∑
|anσn| converges, so |anσn| ≤M , and therefore

|anxn| = |anσn|
∣∣∣x
σ

∣∣∣n ≤ |anσn|
∣∣∣ ρ
σ

∣∣∣n ≤Mrn,

where r = ρ/σ < 1. Since
∑
Mrn < ∞, the M -test (Theorem 5.22) implies that

the series converges uniformly on |x| ≤ ρ, and then it follows from Theorem 5.16
that the sum is continuous on |x| ≤ ρ. Since this holds for every 0 ≤ ρ < R, the
sum is continuous in |x| < R. �

The following definition therefore makes sense for every power series.

Definition 6.3. If the power series

∞∑
n=0

an(x− c)n

converges for |x − c| < R and diverges for |x − c| > R, then 0 ≤ R ≤ ∞ is called
the radius of convergence of the power series.

Theorem 6.2 does not say what happens at the endpoints x = c ± R, and in
general the power series may converge or diverge there. We refer to the set of all
points where the power series converges as its interval of convergence, which is one
of

(c−R, c+R), (c−R, c+R], [c−R, c+R), [c−R, c+R].

We will not discuss any general theorems about the convergence of power series at
the endpoints (e.g. the Abel theorem).

Theorem 6.2 does not give an explicit expression for the radius of convergence
of a power series in terms of its coefficients. The ratio test gives a simple, but useful,
way to compute the radius of convergence, although it doesn’t apply to every power
series.

Theorem 6.4. Suppose that an ̸= 0 for all sufficiently large n and the limit

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣
exists or diverges to infinity. Then the power series

∞∑
n=0

an(x− c)n

has radius of convergence R.
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Proof. Let

r = lim
n→∞

∣∣∣∣an+1(x− c)n+1

an(x− c)n

∣∣∣∣ = |x− c| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
By the ratio test, the power series converges if 0 ≤ r < 1, or |x − c| < R, and
diverges if 1 < r ≤ ∞, or |x− c| > R, which proves the result. �

The root test gives an expression for the radius of convergence of a general
power series.

Theorem 6.5 (Hadamard). The radius of convergence R of the power series
∞∑

n=0

an(x− c)n

is given by

R =
1

lim supn→∞ |an|1/n

where R = 0 if the lim sup diverges to ∞, and R = ∞ if the lim sup is 0.

Proof. Let

r = lim sup
n→∞

|an(x− c)n|1/n = |x− c| lim sup
n→∞

|an|1/n .

By the root test, the series converges if 0 ≤ r < 1, or |x − c| < R, and diverges if
1 < r ≤ ∞, or |x− c| > R, which proves the result. �

This theorem provides an alternate proof of Theorem 6.2 from the root test; in
fact, our proof of Theorem 6.2 is more-or-less a proof of the root test.

6.3. Examples of power series

We consider a number of examples of power series and their radii of convergence.

Example 6.6. The geometric series
∞∑

n=0

xn = 1 + x+ x2 + . . .

has radius of convergence

R = lim
n→∞

1

1
= 1.

so it converges for |x| < 1, to 1/(1 − x), and diverges for |x| > 1. At x = 1, the
series becomes

1 + 1 + 1 + 1 + . . .

and at x = −1 it becomes

1− 1 + 1− 1 + 1− . . . ,

so the series diverges at both endpoints x = ±1. Thus, the interval of convergence
of the power series is (−1, 1). The series converges uniformly on [−ρ, ρ] for every
0 ≤ ρ < 1 but does not converge uniformly on (−1, 1) (see Example 5.20. Note
that although the function 1/(1− x) is well-defined for all x ̸= 1, the power series
only converges to it when |x| < 1.
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Example 6.7. The series
∞∑

n=1

1

n
xn = x+

1

2
x2 +

1

3
x3 +

1

4
x4 + . . .

has radius of convergence

R = lim
n→∞

1/n

1/(n+ 1)
= lim

n→∞

(
1 +

1

n

)
= 1.

At x = 1, the series becomes the harmonic series
∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . . ,

which diverges, and at x = −1 it is minus the alternating harmonic series
∞∑

n=1

(−1)n

n
= −1 +

1

2
− 1

3
+

1

4
− . . . ,

which converges, but not absolutely. Thus the interval of convergence of the power
series is [−1, 1). The series converges uniformly on [−ρ, ρ] for every 0 ≤ ρ < 1 but
does not converge uniformly on (−1, 1).

Example 6.8. The power series
∞∑

n=0

1

n!
xn = 1 + x+

1

2!
x+

1

3!
x3 + . . .

has radius of convergence

R = lim
n→∞

1/n!

1/(n+ 1)!
= lim

n→∞

(n+ 1)!

n!
= lim

n→∞
(n+ 1) = ∞,

so it converges for all x ∈ R. Its sum provides a definition of the exponential
function exp : R → R. (See Section 6.5.)

Example 6.9. The power series
∞∑

n=0

(−1)n

(2n)!
x2n = 1− 1

2!
x2 +

1

4!
x4 + . . .

has radius of convergence R = ∞, and it converges for all x ∈ R. Its sum provides
a definition of the cosine function cos : R → R.

Example 6.10. The series∑
n=0∞

(−1)n

(2n+ 1)!
x2n+1 = x− 1

3!
x3 +

1

5!
x5 + . . .

has radius of convergence R = ∞, and it converges for all x ∈ R. Its sum provides
a definition of the sine function sin : R → R.

Example 6.11. The power series
∞∑

n=0

(n!)xn = 1 + x+ (2!)x+ (3!)x3 + (4!)x4 + . . .
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Figure 1. Graph of the lacunary power series y =
∑∞

n=0(−1)nx2n on [0, 1).
It appears relatively well-behaved; however, the small oscillations visible near
x = 1 are not a numerical artifact.

has radius of convergence

R = lim
n→∞

n!

(n+ 1)!
= lim

n→∞

1

n+ 1
= 0,

so it converges only for x = 0. If x ̸= 0, its terms grow larger once n > 1/|x| and
|(n!)xn| → ∞ as n→ ∞.

Example 6.12. The series

∞∑
n=1

(−1)n+1

n
(x− 1)n = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − . . .

has radius of convergence

R = lim
n→∞

∣∣∣∣ (−1)n+1/n

(−1)n+2/(n+ 1)

∣∣∣∣ = lim
n→∞

n

n+ 1
= lim

n→∞

1

1 + 1/n
= 1,

so it converges if |x− 1| < 1 and diverges if |x− 1| > 1. At the endpoint x = 2, the
power series becomes the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+ . . . ,

which converges. At the endpoint x = 0, the power series becomes the harmonic
series

1 +
1

2
+

1

3
+

1

4
+ . . . ,

which diverges. Thus, the interval of convergence is (0, 2].
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Example 6.13. The power series
∞∑

n=0

(−1)nx2
n

= x− x2 + x4 − x8 + x16 − x32 + . . .

with

an =

{
1 if n = 2k,

0 if n ̸= 2k,

has radius of convergence R = 1. To prove this, note that the series converges for
|x| < 1 by comparison with the convergent geometric series

∑
|x|n, since

|anxn| =

{
|x|n if n = 2k,

0 ≤ |x|n if n ̸= 2k.

If |x| > 1, the terms do not approach 0 as n→ ∞, so the series diverges. Alterna-
tively, we have

|an|1/n =

{
1 if n = 2k,

0 if n ̸= 2k,

so

lim sup
n→∞

|an|1/n = 1

and the root test (Theorem 6.5) gives R = 1. The series does not converge at either
endpoint x = ±1, so its interval of convergence is (−1, 1).

There are successively longer gaps (or “lacuna”) between the powers with non-
zero coefficients. Such series are called lacunary power series, and they have many
interesting properties. For example, although the series does not converge at x = 1,
one can ask if

lim
x→1−

[ ∞∑
n=0

(−1)nx2
n

]
exists. In a plot of this sum on [0, 1), shown in Figure 1, the function appears
relatively well-behaved near x = 1. However, Hardy (1907) proved that the function
has infinitely many, very small oscillations as x → 1−, as illustrated in Figure 2,
and the limit does not exist. Subsequent results by Hardy and Littlewood (1926)
showed, under suitable assumptions on the growth of the “gaps” between non-zero
coefficients, that if the limit of a lacunary power series as x → 1− exists, then the
series must converge at x = 1. Since the lacunary power series considered here does
not converge at 1, its limit as x→ 1− cannot exist

6.4. Differentiation of power series

We saw in Section 5.4.3 that, in general, one cannot differentiate a uniformly con-
vergent sequence or series. We can, however, differentiate power series, and they
behaves as nicely as one can imagine in this respect. The sum of a power series

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + . . .

is infinitely differentiable inside its interval of convergence, and its derivative

f ′(x) = a1 + 2a2x+ 3a3x
2 + 4a4x

3 + . . .
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Figure 2. Details of the lacunary power series
∑∞

n=0(−1)nx2n near x = 1,

showing its oscillatory behavior and the nonexistence of a limit as x → 1−.

is given by term-by-term differentiation. To prove this, we first show that the
term-by-term derivative of a power series has the same radius of convergence as the
original power series. The idea is that the geometrical decay of the terms of the
power series inside its radius of convergence dominates the algebraic growth of the
factor n.

Theorem 6.14. Suppose that the power series
∞∑

n=0

an(x− c)n

has radius of convergence R. Then the power series
∞∑

n=1

nan(x− c)n−1

also has radius of convergence R.

Proof. Assume without loss of generality that c = 0, and suppose |x| < R. Choose
ρ such that |x| < ρ < R, and let

r =
|x|
ρ
, 0 < r < 1.

To estimate the terms in the differentiated power series by the terms in the original
series, we rewrite their absolute values as follows:∣∣nanxn−1

∣∣ = n

ρ

(
|x|
ρ

)n−1

|anρn| =
nrn−1

ρ
|anρn|.

The ratio test shows that the series
∑
nrn−1 converges, since

lim
n→∞

[
(n+ 1)rn

nrn−1

]
= lim

n→∞

[(
1 +

1

n

)
r

]
= r < 1,

so the sequence (nrn−1) is bounded, by M say. It follows that∣∣nanxn−1
∣∣ ≤ M

ρ
|anρn| for all n ∈ N.
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The series
∑

|anρn| converges, since ρ < R, so the comparison test implies that∑
nanx

n−1 converges absolutely.

Conversely, suppose |x| > R. Then
∑

|anxn| diverges (since
∑
anx

n diverges)
and ∣∣nanxn−1

∣∣ ≥ 1

|x|
|anxn|

for n ≥ 1, so the comparison test implies that
∑
nanx

n−1 diverges. Thus the series
have the same radius of convergence. �

Theorem 6.15. Suppose that the power series

f(x) =

∞∑
n=0

an(x− c)n for |x− c| < R

has radius of convergence R > 0 and sum f . Then f is differentiable in |x− c| < R
and

f ′(x) =
∞∑

n=1

nan(x− c)n−1 for |x− c| < R.

Proof. The term-by-term differentiated power series converges in |x − c| < R by
Theorem 6.14. We denote its sum by

g(x) =
∞∑

n=1

nan(x− c)n−1.

Let 0 < ρ < R. Then, by Theorem 6.2, the power series for f and g both converge
uniformly in |x− c| < ρ. Applying Theorem 5.18 to their partial sums, we conclude
that f is differentiable in |x − c| < ρ and f ′ = g. Since this holds for every
0 ≤ ρ < R, it follows that f is differentiable in |x−c| < R and f ′ = g, which proves
the result. �

Repeated application Theorem 6.15 implies that the sum of a power series is
infinitely differentiable inside its interval of convergence and its derivatives are given
by term-by-term differentiation of the power series. Furthermore, we can get an
expression for the coefficients an in terms of the function f ; they are simply the
Taylor coefficients of f at c.

Theorem 6.16. If the power series

f(x) =
∞∑

n=0

an(x− c)n

has radius of convergence R > 0, then f is infinitely differentiable in |x − c| < R
and

an =
f (n)(c)

n!
.

Proof. We assume c = 0 without loss of generality. Applying Theorem 6.16 to the
power series

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n + . . .
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k times, we find that f has derivatives of every order in |x| < R, and

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + . . . ,

f ′′(x) = 2a2 + (3 · 2)a3x+ · · ·+ n(n− 1)anx
n−2 + . . . ,

f ′′′(x) = (3 · 2 · 1)a3 + · · ·+ n(n− 1)(n− 2)anx
n−3 + . . . ,

...

f (k)(x) = (k!)ak + · · ·+ n!

(n− k)!
xn−k + . . . ,

where all of these power series have radius of convergence R. Setting x = 0 in these
series, we get

a0 = f(0), a1 = f ′(0), . . . ak =
f (k)(0)

k!
,

which proves the result (after replacing 0 by c). �

One consequence of this result is that convergent power series with different
coefficients cannot converge to the same sum.

Corollary 6.17. If two power series
∞∑

n=0

an(x− c)n,

∞∑
n=0

bn(x− c)n

have nonzero-radius of convergence and are equal on some neighborhood of 0, then
an = bn for every n = 0, 1, 2, . . . .

Proof. If the common sum in |x− c| < δ is f(x), we have

an =
f (n)(c)

n!
, bn =

f (n)(c)

n!
,

since the derivatives of f at c are determined by the values of f in an arbitrarily
small open interval about c, so the coefficients are equal �

6.5. The exponential function

We showed in Example 6.8 that the power series

E(x) = 1 + x+
1

2!
x2 +

1

3!
x3 + · · ·+ 1

n!
xn + . . . .

has radius of convergence∞. It therefore defines an infinitely differentiable function
E : R → R.

Term-by-term differentiation of the power series, which is justified by Theo-
rem 6.15, implies that

E′(x) = 1 + x+
1

2!
x2 + · · ·+ 1

(n− 1)!
x(n−1) + . . . ,

so E′ = E. Moreover E(0) = 1. As we show below, there is a unique function
with these properties, and they are shared by the exponential function ex. Thus,
this power series provides an analytical definition of ex = E(x). All of the other
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familiar properties of the exponential follow from its power-series definition, and
we will prove a few of them.

First, we show that exey = ex+y. We continue to write the function as E(x) to
emphasise that we use nothing beyond its power series definition.

Proposition 6.18. For every x, y ∈ R,

E(x)E(y) = E(x+ y).

Proof. We have

E(x) =
∞∑
j=0

xj

j!
, E(y) =

∞∑
k=0

yk

k!
.

Multiplying these series term-by-term and rearranging the sum, which is justified
by the absolute converge of the power series, we get

E(x)E(y) =
∞∑
j=0

∞∑
k=0

xjyk

j! k!

=

∞∑
n=0

n∑
k=0

xn−kyk

(n− k)! k!
.

From the binomial theorem,

n∑
k=0

xn−kyk

(n− k)! k!
=

1

n!

n∑
k=0

n!

(n− k)! k!
xn−kyk =

1

n!
(x+ y)

n
.

Hence,

E(x)E(y) =
∞∑

n=0

(x+ y)n

n!
= E(x+ y),

which proves the result. �

In particular, it follows that

E(−x) = 1

E(x)
.

Note that E(x) > 0 for all x > 0 since all the terms in its power series are positive,
so E(x) > 0 for every x ∈ R.

The following proposition, which we use below in Section 6.6.2, states that ex

grows faster than any power of x as x→ ∞.

Proposition 6.19. Suppose that n is a non-negative integer. Then

lim
x→∞

xn

E(x)
= 0.

Proof. The terms in the power series of E(x) are positive for x > 0, so for every
k ∈ N

E(x) =

∞∑
n=0

xn

n!
>
xk

k!
for all x > 0.
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Taking k = n+ 1, we get for x > 0 that

0 <
xn

E(x)
<

xn

x(n+1)/(n+ 1)!
=

(n+ 1)!

x
.

Since 1/x→ 0 as x→ ∞, the result follows. �

Finally, we prove that the exponential is characterized by the properties E′ = E
and E(0) = 1. This is a uniqueness result for an initial value problem for a simple
linear ordinary differential equation.

Proposition 6.20. Suppose f : R → R is a differentiable function such that

f ′ = f, f(0) = 1.

Then f = E.

Proof. Suppose that f ′ = f . Then using the equation E′ = E, the fact that E is
nonzero on R, and the quotient rule, we get(

f

E

)′

=
fE′ − Ef ′

E2
=
fE − Ef

E2
= 0.

It follows from Theorem 4.29 that f/E is constant on R. Since f(0) = E(0) = 1,
we have f/E = 1, which implies that f = E. �

The logarithm can be defined as the inverse of the exponential. Other tran-
scendental functions, such as the trigonometric functions, can be defined in terms
of their power series, and these can be used to prove their usual properties. We
will not do this in detail; we just want to emphasize that, once we have developed
the theory of power series, we can define all of the functions arising in elementary
calculus from the first principles of analysis.

6.6. Taylor’s theorem and power series

Theorem 6.16 looks similar to Taylor’s theorem, Theorem 4.41. There is, however, a
fundamental difference. Taylor’s theorem gives an expression for the error between
a function and its Taylor polynomial of degree n. No questions of convergence are
involved here. On the other hand, Theorem 6.16 asserts the convergence of an
infinite power series to a function f , and gives an expression for the coefficients of
the power series in terms of f . The coefficients of the Taylor polynomials and the
power series are the same in both cases, but the Theorems are different.

Roughly speaking, Taylor’s theorem describes the behavior of the Taylor poly-
nomials Pn(x) of f as x→ c with n fixed, while the power series theorem describes
the behavior of Pn(x) as n→ ∞ with x fixed.

6.6.1. Smooth functions and analytic functions. To explain the difference
between Taylor’s theorem and power series in more detail, we introduce an im-
portant distinction between smooth and analytic functions: smooth functions have
continuous derivatives of all orders, while analytic functions are sums of power
series.
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Definition 6.21. Let k ∈ N. A function f : (a, b) → R is Ck on (a, b), written
f ∈ Ck(a, b), if it has continuous derivatives f (j) : (a, b) → R of orders 1 ≤ j ≤ k.
A function f is smooth (or C∞, or infinitely differentiable) on (a, b), written f ∈
C∞(a, b), if it has continuous derivatives of all orders on (a, b).

In fact, if f has derivatives of all orders, then they are automatically continuous,
since the differentiability of f (k) implies its continuity; on the other hand, the
existence of k derivatives of f does not imply the continuity of f (k). The statement
“f is smooth” is sometimes used rather loosely to mean “f has as many continuous
derivatives as we want,” but we will use it to mean that f is C∞.

Definition 6.22. A function f : (a, b) → R is analytic on (a, b) if for every c ∈ (a, b)
f is the sum in a neighborhood of c of a power series centered at c with nonzero
radius of convergence.

Strictly speaking, this is the definition of a real analytic function, and analytic
functions are complex functions that are sums of power series. Since we consider
only real functions, we abbreviate “real analytic” to “analytic.”

Theorem 6.16 implies that an analytic function is smooth: If f is analytic on
(a, b) and c ∈ (a, b), then there is an R > 0 and coefficients (an) such that

f(x) =
∞∑

n=0

an(x− c)n for |x− c| < R.

Then Theorem 6.16 implies that f has derivatives of all orders in |x− c| < R, and
since c ∈ (a, b) is arbitrary, f has derivatives of all orders in (a, b). Moreover, it
follows that the coefficients an in the power series expansion of f at c are given by
Taylor’s formula.

What is less obvious is that a smooth function need not be analytic. If f is
smooth, then we can define its Taylor coefficients an = f (n)(c)/n! at c for every
n ≥ 0, and write down the corresponding Taylor series

∑
an(x− c)n. The problem

is that the Taylor series may have zero radius of convergence, in which case it
diverges for every x ̸= c, or the power series may converge, but not to f .

6.6.2. A smooth, non-analytic function. In this section, we give an example
of a smooth function that is not the sum of its Taylor series.

It follows from Proposition 6.19 that if

p(x) =
n∑

k=0

akx
k

is any polynomial function, then

lim
x→∞

p(x)

ex
=

n∑
k=0

ak lim
x→∞

xk

ex
= 0.

We will use this limit to exhibit a non-zero function that approaches zero faster
than every power of x as x→ 0. As a result, all of its derivatives at 0 vanish, even
though the function itself does not vanish in any neighborhood of 0. (See Figure 3.)
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Figure 3. Left: Plot y = ϕ(x) of the smooth, non-analytic function defined

in Proposition 6.23. Right: A detail of the function near x = 0. The dotted
line is the power-function y = x6/50. The graph of ϕ near 0 is “flatter’ than
the graph of the power-function, illustrating that ϕ(x) goes to zero faster than
any power of x as x → 0.

Proposition 6.23. Define ϕ : R → R by

ϕ(x) =

{
exp(−1/x) if x > 0,

0 if x ≤ 0.

Then ϕ has derivatives of all orders on R and

ϕ(n)(0) = 0 for all n ≥ 0.

Proof. The infinite differentiability of ϕ(x) at x ̸= 0 follows from the chain rule.
Moreover, its nth derivative has the form

ϕ(n)(x) =

{
pn(1/x) exp(−1/x) if x > 0,

0 if x < 0,

where pn(1/x) is a polynomial in 1/x. (This follows, for example, by induction.)
Thus, we just have to show that ϕ has derivatives of all orders at 0, and that these
derivatives are equal to zero.

First, consider ϕ′(0). The left derivative ϕ′(0−) of ϕ at 0 is clearly 0 since
ϕ(0) = 0 and ϕ(h) = 0 for all h < 0. For the right derivative, writing 1/h = x and
using Proposition 6.19, we get

ϕ′(0+) = lim
h→0+

[
ϕ(h)− ϕ(0)

h

]
= lim

h→0+

exp(−1/h)

h

= lim
x→∞

x

ex

= 0.

Since both the left and right derivatives equal zero, we have ϕ′(0) = 0.

To show that all the derivatives of ϕ at 0 exist and are zero, we use a proof
by induction. Suppose that ϕ(n)(0) = 0, which we have verified for n = 1. The
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left derivative ϕ(n+1)(0−) is clearly zero, so we just need to prove that the right
derivative is zero. Using the form of ϕ(n)(h) for h > 0 and Proposition 6.19, we get
that

ϕ(n+1)(0+) = lim
h→0+

[
ϕ(n)(h)− ϕ(n)(0)

h

]
= lim

h→0+

pn(1/h) exp(−1/h)

h

= lim
x→∞

xpn(x)

ex

= 0,

which proves the result. �

Corollary 6.24. The function ϕ : R → R defined by

ϕ(x) =

{
exp(−1/x) if x > 0,

0 if x ≤ 0,

is smooth but not analytic on R.

Proof. From Proposition 6.23, the function ϕ is smooth, and the nth Taylor coef-
ficient of ϕ at 0 is an = 0. The Taylor series of ϕ at 0 therefore converges to 0, so
its sum is not equal to ϕ in any neighborhood of 0, meaning that ϕ is not analytic
at 0. �

The fact that the Taylor polynomial of ϕ at 0 is zero for every degree n ∈ N does
not contradict Taylor’s theorem, which states that for x > 0 there exists 0 < ξ < x
such that

ϕ(x) =
pn+1(1/ξ)

(n+ 1)!
e−1/ξxn+1.

Since the derivatives of ϕ are bounded, this shows that for every n ∈ N there exists
a constant Cn+1 such that

0 ≤ ϕ(x) ≤ Cn+1x
n+1 for all 0 ≤ x <∞,

but this does not imply that ϕ(x) = 0.

We can construct other smooth, non-analytic functions from ϕ.

Example 6.25. The function

ψ(x) =

{
exp(−1/x2) if x ̸= 0,

0 if x = 0,

is infinitely differentiable on R, since ψ(x) = ϕ(x2) is a composition of smooth
functions.

The following example is useful in many parts of analysis.

Definition 6.26. A function f : R → R has compact support if there exists R ≥ 0
such that f(x) = 0 for all x ∈ R with |x| ≥ R.
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Figure 4. Plot of the smooth, compactly supported “bump” function defined
in Example 6.27.

It isn’t hard to construct continuous functions with compact support; one ex-
ample that vanishes for |x| ≥ 1 is

f(x) =

{
1− |x| if |x| < 1,

0 if |x| ≥ 1.

By matching left and right derivatives of a piecewise-polynomial function, we can
similarly construct C1 or Ck functions with compact support. Using ϕ, however,
we can construct a smooth (C∞) function with compact support, which might seem
unexpected at first sight.

Example 6.27. The function

η(x) =

{
exp[−1/(1− x2)] if |x| < 1,

0 if |x| ≥ 1,

is infinitely differentiable on R, since η(x) = ϕ(1− x2) is a composition of smooth
functions. Moreover, it vanishes for |x| ≥ 1, so it is a smooth function with compact
support. Figure 4 shows its graph.

The function ϕ defined in Proposition 6.23 illustrates that knowing the values
of a smooth function and all of its derivatives at one point does not tell us anything
about the values of the function at other points. By contrast, an analytic function
on an interval has the remarkable property that the value of the function and all of
its derivatives at one point of the interval determine its values at all other points
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of the interval, since we can extend the function from point to point by summing
its power series. (This claim requires a proof, which we omit.)

For example, it is impossible to construct an analytic function with compact
support, since if an analytic function on R vanishes in any interval (a, b) ⊂ R, then
it must be identically zero on R. Thus, the non-analyticity of the “bump”-function
η in Example 6.27 is essential.

6.7. Appendix: Review of series

We summarize the results and convergence tests that we use to study power series.
Power series are closely related to geometric series, so most of the tests involve
comparisons with a geometric series.

Definition 6.28. Let (an) be a sequence of real numbers. The series

∞∑
n=1

an

converges to a sum S ∈ R if the sequence (Sn) of partial sums

Sn =
n∑

k=1

ak

converges to S. The series converges absolutely if

∞∑
n=1

|an|

converges.

The following Cauchy condition for series is an immediate consequence of the
Cauchy condition for the sequence of partial sums.

Theorem 6.29 (Cauchy condition). The series

∞∑
n=1

an

converges if and only for every ϵ > 0 there exists N ∈ N such that∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ = |am+1 + am+2 + · · ·+ an| < ϵ for all n > m > N.

Proof. The series converges if and only if the sequence (Sn) of partial sums is
Cauchy, meaning that for every ϵ > 0 there exists N such that

|Sn − Sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ϵ for all n > m > N,

which proves the result. �
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Since ∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
n∑

k=m+1

|ak|

the series
∑
an is Cauchy if

∑
|an| is Cauchy, so an absolutely convergent series

converges. We have the following necessary, but not sufficient, condition for con-
vergence of a series.

Theorem 6.30. If the series
∞∑

n=1

an

converges, then
lim

n→∞
an = 0.

Proof. If the series converges, then it is Cauchy. Taking m = n− 1 in the Cauchy
condition in Theorem 6.29, we find that for every ϵ > 0 there exists N ∈ N such
that |an| < ϵ for all n > N , which proves that an → 0 as n→ ∞. �

Next, we derive the comparison, ratio, and root tests, which provide explicit
sufficient conditions for the convergence of a series.

Theorem 6.31 (Comparison test). Suppose that |bn| ≤ an and
∑
an converges.

Then
∑
bn converges absolutely.

Proof. Since
∑
an converges it satisfies the Cauchy condition, and since

n∑
k=m+1

|bk| ≤
n∑

k=m+1

ak

the series
∑

|bn| also satisfies the Cauchy condition. Therefore
∑
bn converges

absolutely. �
Theorem 6.32 (Ratio test). Suppose that (an) is a sequence of real numbers such
that an is nonzero for all sufficiently large n ∈ N and the limit

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists or diverges to infinity. Then the series

∞∑
n=1

an

converges absolutely if 0 ≤ r < 1 and diverges if 1 < r ≤ ∞.

Proof. If r < 1, choose s such that r < s < 1. Then there exists N ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ < s for all n > N.

It follows that
|an| ≤Msn for all n > N

whereM is a suitable constant. Therefore
∑
an converges absolutely by comparison

with the convergent geometric series
∑
Msn.
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If r > 1, choose s such that r > s > 1. There exists N ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ > s for all n > N,

so that |an| ≥ Msn for all n > N and some M > 0. It follows that (an) does not
approach 0 as n→ ∞, so the series diverges. �

Before stating the root test, we define the lim sup.

Definition 6.33. If (an) is a sequence of real numbers, then

lim sup
n→∞

an = lim
n→∞

bn, bn = sup
k≥n

ak.

If (an) is a bounded sequence, then lim sup an ∈ R always exists since (bn)
is a monotone decreasing sequence of real numbers that is bounded from below.
If (an) isn’t bounded from above, then bn = ∞ for every n ∈ N (meaning that
{ak : k ≥ n} isn’t bounded from above) and we write lim sup an = ∞. If (an) is
bounded from above but (bn) diverges to −∞, then (an) diverges to −∞ and we
write lim sup an = −∞. With these conventions, every sequence of real numbers
has a lim sup, even if it doesn’t have a limit or diverge to ±∞.

We have the following equivalent characterization of the lim sup, which is what
we often use in practice. If the lim sup is finite, it states that every number bigger
than the lim sup eventually bounds all the terms in a tail of the sequence from
above, while infinitely many terms in the sequence are greater than every number
less than the lim sup.

Proposition 6.34. Let (an) be a real sequence with

L = lim sup
n→∞

an.

(1) If L ∈ R is finite, then for every M > L there exists N ∈ N such that an < M
for all n > N , and for every m < L there exist infinitely many n ∈ N such
that an > m.

(2) If L = −∞, then for every M ∈ R there exists N ∈ N such that an < M for
all n > N .

(3) If L = ∞, then for every m ∈ R, there exist infinitely many n ∈ N such that
an > m.

Theorem 6.35 (Root test). Suppose that (an) is a sequence of real numbers and
let

r = lim sup
n→∞

|an|1/n .

Then the series
∞∑

n=1

an

converges absolutely if 0 ≤ r < 1 and diverges if 1 < r ≤ ∞.

Proof. First suppose 0 ≤ r < 1. If 0 < r < 1, choose s such that r < s < 1, and
let

t =
r

s
, r < t < 1.
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If r = 0, choose any 0 < t < 1. Since t > lim sup |an|1/n, Proposition 6.34 implies
that there exists N ∈ N such that

|an|1/n < t for all n > N.

Therefore |an| < tn for all n > N , where t < 1, so it follows that the series converges
by comparison with the convergent geometric series

∑
tn.

Next suppose 1 < r ≤ ∞. If 1 < r <∞, choose s such that 1 < s < r, and let

t =
r

s
, 1 < t < r.

If r = ∞, choose any 1 < t <∞. Since t < lim sup |an|1/n, Proposition 6.34 implies
that

|an|1/n > t for infinitely many n ∈ N.
Therefore |an| > tn for infinitely many n ∈ N, where t > 1, so (an) does not
approach zero as n→ ∞, and the series diverges. �



Chapter 7

Metric Spaces

A metric space is a set X that has a notion of the distance d(x, y) between every
pair of points x, y ∈ X. The purpose of this chapter is to introduce metric spaces
and give some definitions and examples. We do not develop their theory in detail,
and we leave the verifications and proofs as an exercise. In most cases, the proofs
are essentially the same as the ones for real functions or they simply involve chasing
definitions.

7.1. Metrics

A metric on a set is a function that satisfies the minimal properties we might expect
of a distance.

Definition 7.1. A metric d on a set X is a function d : X ×X → R such that for
all x, y ∈ X:

(1) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) (symmetry);

(3) d(x, y) ≤ d(x, z) + d(z, x) (triangle inequality).

A metric space (X, d) is a set X with a metric d defined on X.

We can define many different metrics on the same set, but if the metric on X
is clear from the context, we refer to X as a metric space and omit explicit mention
of the metric d.

Example 7.2. A rather trivial example of a metric on any set X is the discrete
metric

d(x, y) =

{
0 if x = y,

1 if x ̸= y.

Example 7.3. Define d : R× R → R by

d(x, y) = |x− y|.

93
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Then d is a metric on R. Nearly all the concepts we discuss for metric spaces are
natural generalizations of the corresponding concepts for R with this absolute-value
metric.

Example 7.4. Define d : R2 × R2 → R by

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 x = (x1, x2), y = (y1, y2).

Then d is a metric on R2, called the Euclidean, or ℓ2, metric. It corresponds to
the usual notion of distance between points in the plane. The triangle inequality is
geometrically obvious, but requires an analytical proof (see Section 7.6).

Example 7.5. The Euclidean metric d : Rn × Rn → R on Rn is defined by

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + . . . (xn − yn)2

where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

For n = 1 this metric reduces to the absolute-value metric on R, and for n = 2 it is
the previous example. We will mostly consider the case n = 2 for simplicity. The
triangle inequality for this metric follows from the Minkowski inequality, which is
proved in Section 7.6.

Example 7.6. Define d : R2 × R2 → R by

d(x, y) = |x1 − y1|+ |x2 − y2| x = (x1, x2), y = (y1, y2).

Then d is a metric on R2, called the ℓ1 metric. It is also referred to informally as the
“taxicab” metric, since it’s the distance one would travel by taxi on a rectangular
grid of streets.

Example 7.7. Define d : R2 × R2 → R by

d(x, y) = max (|x1 − y1| , |x2 − y2|) x = (x1, x2), y = (y1, y2).

Then d is a metric on R2, called the ℓ∞, or maximum, metric.

Example 7.8. Define d : R2 × R2 → R for x = (x1, x2), y = (y1, y2) as follows: if
(x1, x2) ̸= k(y1, y2) for k ∈ R, then

d(x, y) =
√
x21 + x22 +

√
y21 + y22 ;

and if (x1, x2) = k(y1, y2) for some k ∈ R, then

d(x, y) =

√
(x1 − y1)

2
+ (x2 − y2)

2
.

That is, d(x, y) is the sum of the Euclidean distances of x and y from the origin,
unless x and y lie on the same line through the origin, in which case it is the
Euclidean distance from x to y. Then d defines a metric on R2.

In Britain, d is sometimes called the “British Rail” metric, because all the train
lines radiate from London (located at the origin). To take a train from town x to
town y, one has to take a train from x to 0 and then take a train from 0 to y, unless
x and y are on the same line, when one can take a direct train.
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Example 7.9. Let C(K) denote the set of continuous functions f : K → R, where
K ⊂ R is compact; for example, we could take K = [a, b] to be a closed, bounded
interval. For f, g ∈ C(K) define

d(f, g) = sup
x∈K

|f(x)− g(x)| .

The function d : C(K)×C(K) → R is well-defined, since a continuous function on
a compact set is bounded; in fact, such a function attains it maximum value, so we
could also write

d(f, g) = max
x∈K

|f(x)− g(x)| .

Then d is a metric on C(K). Two functions are close with respect to this metric if
their values are close at every point of K.

Subspaces of a metric space (X, d) are subsets A ⊂ X with the metric dA
obtained by restricting the metric d on X to A.

Definition 7.10. Let (X, d) be a metric space. A subspace (A, dA) of (X, d)
consists of a subset A ⊂ X whose metric dA : A× A → R is is the restriction of d
to A; that is, dA(x, y) = d(x, y) for all x, y ∈ A.

We can often formulate properties of subsets A ⊂ X of a metric space (X, d)
in terms of properties of the corresponding metric subspace (A, dA).

7.2. Norms

In general, there are no algebraic operations defined on a metric space, only a
distance function. Most of the spaces that arise in analysis are vector, or linear,
spaces, and the metrics on them are usually derived from a norm, which gives the
“length” of a vector

Definition 7.11. A normed vector space (X, ∥ · ∥) is a vector space X (which we
assume to be real) together with a function ∥ ·∥ : X → R, called a norm on X, such
that for all x, y ∈ X and k ∈ R:

(1) 0 ≤ ∥x∥ <∞ and ∥x∥ = 0 if and only if x = 0;

(2) ∥kx∥ = |k|∥x∥;
(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

The properties in Definition 7.11 are natural ones to require of a length: The
length of x is 0 if and only if x is the 0-vector; multiplying a vector by k multiplies
its length by |k|; and the length of the “hypoteneuse” x + y is less than or equal
to the sum of the lengths of the “sides” x, y. Because of this last interpretation,
property (3) is referred to as the triangle inequality.

Proposition 7.12. If (X, ∥ · ∥) is a normed vector space X, then d : X ×X → R
defined by d(x, y) = ∥x− y∥ is a metric on X.

Proof. The metric-properties of d follow immediately from properties (1) and (3)
of a norm in Definition 7.11. �
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A metric associated with a norm has the additional properties that for all
x, y, z ∈ X and k ∈ R

d(x+ z, y + z) = d(x, y), d(kx, ky) = |k|d(x, y),

which are called translation invariance and homogeneity, respectively. These prop-
erties do not even make sense in a general metric space since we cannot add points
or multiply them by scalars. If X is a normed vector space, we always use the
metric associated with its norm, unless stated specifically otherwise.

Example 7.13. The set of real numbers R with the absolute-value norm | · | is a
one-dimensional normed vector space.

Example 7.14. The set R2 with any of the norms defined for x = (x1, x2) by

∥x∥1 = |x1|+ |x2|, ∥x∥2 =
√
x21 + x22, ∥x∥∞ = max (|x1|, |x2|)

is a two-dimensional normed vector space. The corresponding metrics are the “taxi-
cab” metric, the Euclidean metric, and the maximum metric, respectively.

These norms are special cases of the following example.

Example 7.15. The set Rn with the ℓp-norm defined for x = (x1, x2, . . . , xn) and
1 ≤ p <∞ by

∥x∥p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p

and for p = ∞ by

∥x∥∞ = max (|x1|, |x2|p, . . . , |xn|p)

is an n-dimensional normed vector space for every 1 ≤ p ≤ ∞. The Euclidean case
p = 2 is distinguished by the fact that the norm ∥ · ∥2 is derived from an inner
product on Rn:

∥x∥2 =
√
⟨x, x⟩, ⟨x, y⟩ =

n∑
i=1

xiyi.

The triangle inequality for the ℓp-norm is called Minkowski’s inequality. It is
straightforward to verify if p = 1 or p = ∞, but it is not obvious if 1 < p <∞. We
give a proof of the simplest case p = 2 in Section 7.6.

Example 7.16. Let K ⊂ R be compact. Then the space C(K) of continuous
functions f : K → R with the sup-norm ∥ · ∥ : C(K) → R, defined by

∥f∥ = sup
x∈K

|f(x)|,

is a normed vector space. The corresponding metric is the one described in Exam-
ple 7.9.

Example 7.17. The discrete metric in Example 7.2 and the metric in Example 7.8
are not derived from a norm.
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Figure 1. Boundaries of the unit balls B1(0) in R2 for the ℓ1-norm (diamond),
the ℓ2-norm (circle), and the ℓ∞-norm (square).

7.3. Sets

We first define an open ball in a metric space, which is analogous to a bounded
open interval in R.

Definition 7.18. Let (X, d) be a metric space. The open ball of radius r > 0 and
center x ∈ X is the set

Br(x) = {y ∈ X : d(x, y) < r} .

Example 7.19. Consider R with its standard absolute-value metric, defined in
Example 7.3. Then the open ball

Br(x) = {y ∈ R : |x− y| < r}
is the open interval of radius r centered at x.

Next, we describe the unit balls in R2 with respect to some different metrics.

Example 7.20. Consider R2 with the Euclidean metric defined in Example 7.4.
Then Br(x) is a disc of diameter 2r centered at x. For the ℓ1-metric in Example 7.6,
the ball Br(x) is a diamond of diameter 2r, and for the ℓ∞-metric in Example 7.7,
it is a square of side 2r (see Figure 1).

The norms ∥ · ∥1, ∥ · ∥2, ∥ · ∥∞ on Rn satisfy

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤ n∥x∥∞.
These inequalities correspond to the nesting of one ball inside another in Figure 1.
Furthermore, the ℓ∞-ball of radius 1 is included in the ℓ1-ball of radius 2. As a
result, every open ball with respect to one norm contains an open ball with respect
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to the other norms, and we say that the norms are equivalent. It follows from
the definitions below that, despite the different geometries of their unit balls, these
norms define the same collection of open sets and neighborhoods (i.e. the same
topologies) and the same convergent sequences, limits, and continuous functions.

Example 7.21. Consider the space C(K) of continuous functions f : K → R with
the sup-metric defined in Example 7.9. The ball Br(f) consists of all continuous
functions g : K → R whose values are strictly within r of the values of f at every
point x ∈ K.

One has to be a little careful with the notion of open balls in a general metric
space because they do not always behave the way their name suggests.

Example 7.22. Let X be a set with the discrete metric given in Example 7.2.
Then Br(x) = {x} consists of a single point if 0 ≤ r < 1 and Br(x) = X is the
whole space if r ≥ 1.

An another example, what are the open balls for the metric in Example 7.8?

We define open sets in a metric space analogously to open sets in R.
Definition 7.23. Let X be a metric space. A set G ⊂ X is open if for every x ∈ G
there exists r > 0 such that Br(x) ⊂ G.

We can give a more geometrical definition of an open set in terms of neighbor-
hoods.

Definition 7.24. Let X be a metric space. A set U ⊂ X is a neighborhood of
x ∈ X if Br(x) ⊂ U for some r > 0.

Thus, a set is open if and only if every point in the set has a neighborhood that
is contained in the set. In particular, an open set is itself a neighborhood of every
point in the set.

The following is the topological definition of a closed set.

Definition 7.25. Let X be a metric space. A set F ⊂ X is closed if

F c = {x ∈ X : x /∈ F}
is open.

Bounded sets in a metric space are defined in the obvious way.

Definition 7.26. Let (X, d) be a metric space A set A ⊂ X is bounded if there
exist x ∈ X and 0 ≤ R <∞ such that

d(x, y) ≤ R for all y ∈ A.

Equivalently, this definition says that A ⊂ BR(x). The center point x ∈ X is
not important here. The triangle inequality implies that

BR(x) ⊂ BS(y), S = R+ d(x, y),

so if the definition holds for some x ∈ X, then it holds for every x ∈ X. Alterna-
tively, we define the diameter 0 ≤ diamA ≤ ∞ of a set A ⊂ X by

diamA = sup {d(x, y) : x, y ∈ A} .
Then A is bounded if and only if diamA <∞.
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Example 7.27. Let X be a set with the discrete metric given in Example 7.2.
Then X is bounded since X = B1(x) for any x ∈ X.

Example 7.28. Let C(K) be the space of continuous functions f : K → R on a
compact setK ⊂ R equipped with the sup-norm. The set F ⊂ C(K) of all functions
f such that |f(x)| ≤ 1 for every x ∈ K is a bounded set since ∥f∥ = d(f, 0) ≤ 1 for
all f ∈ F .

Compact sets are sets that have the Heine-Borel property

Definition 7.29. A subset K ⊂ X of a metric space X is compact if every open
cover of K has a finite subcover.

A significant property of R (or Rn) that does not generalize to arbitrary metric
spaces is that a set is compact if and only if it is closed and bounded. In general,
a compact subset of a metric space is closed and bounded; however, a closed and
bounded set need not be compact.

Finally, we define some relationships of points to a set that are analogous to
the ones for R.

Definition 7.30. Let X be a metric space and A ⊂ X.

(1) A point x ∈ A is an interior point of A if Br(x) ⊂ A for some r > 0.

(2) A point x ∈ A is an isolated point of A if Br(x) ∩ A = {x} for some r > 0,
meaning that x is the only point of A that belongs to Br(x).

(3) A point x ∈ X is a boundary point of A if, for every r > 0, the ball Br(x)
contains points in A and points not in A.

(4) A point x ∈ X is an accumulation point of A if, for every r > 0, the ball Br(x)
contains a point y ∈ A such that y ̸= x.

A set is open if and only if every point in the set is an interior point, and a set
is closed if and only if every accumulation point of the set belongs to the set.

7.4. Sequences

A sequence (xn) in a set X is a function f : N → X, where we write xn = f(n) for
the nth term in the sequence.

Definition 7.31. Let (X, d) be a metric space. A sequence (xn) in X converges
to x ∈ X, written xn → x as n→ ∞ or

lim
n→∞

xn = x,

if for every ϵ > 0 there exists N ∈ N such that

n > N implies that d(xn, x) < ϵ.

That is, xn → x if d(xn, x) → 0 as n→ ∞. Equivalently, xn → x as n→ ∞ if
for every neighborhood U of x there exists N ∈ N such that xn ∈ U for all n > N .

Example 7.32. For R with its standard absolute value metric, Definition 7.31 is
just the definition of the convergence of a real sequence.
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Example 7.33. Let K ⊂ R be compact. A sequence of continuous functions (fn)
in C(K) converges to f ∈ C(K) with respect to the sup-norm if and only if fn → f
as n→ ∞ uniformly on K.

We define closed sets in terms of sequences in the same way as for R.

Definition 7.34. A subset F ⊂ X of a metric space X is sequentially closed if the
limit every convergent sequence (xn) in F belongs to F .

Explicitly, this means that if (xn) is a sequence of points xn ∈ F and xn → x
as n → ∞ in X, then x ∈ F . A subset of a metric space is sequentially closed if
and only if it is closed.

Example 7.35. Let F ⊂ C(K) be the set of continuous functions f : K → R such
that |f(x)| ≤ 1 for all x ∈ K. Then F is a closed subset of C(K).

We can also give a sequential definition of compactness, which generalizes the
Bolzano-Weierstrass property.

Definition 7.36. A subset K ⊂ X of a metric space X is sequentially compact if
every sequence in K has a convergent subsequence whose limit belongs to K.

Explicitly, this means that if (xn) is a sequence of points xn ∈ K then there is
a subsequence (xnk

) such that xnk
→ x as k → ∞, and x ∈ K.

Theorem 7.37. A subset of a metric space is sequentially compact if and only if
it is compact.

We can also define Cauchy sequences in a metric space.

Definition 7.38. Let (X, d) be a metric space. A sequence (xn) in X is a Cauchy
sequence for every ϵ > 0 there exists N ∈ N such that

m,n > N implies that d(xm, xn) < ϵ.

Completeness of a metric space is defined using the Cauchy condition.

Definition 7.39. A metric space is complete if every Cauchy sequence converges.

For R, completeness is equivalent to the existence of suprema, but general
metric spaces are not ordered so this property does not apply to them.

Definition 7.40. A Banach space is a complete normed vector space.

Nearly all metric and normed spaces that arise in analysis are complete.

Example 7.41. The space (R, | · |) is a Banach space. More generally, Rn with the
ℓp-norm defined in Example 7.15 is a Banach space.

Example 7.42. If K ⊂ R is compact, the space C(K) with the sup-norm is a
Banach space. A sequence of functions (fn) is Cauchy in C(K) if and only if it is
uniformly Cauchy. Thus, Theorem 5.21 states that C(K) is complete.
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7.5. Continuous functions

The definitions of limits and continuity of functions between metric spaces parallel
the definitions for real functions.

Definition 7.43. Let (X, dX) and (Y, dY ) be metric spaces, and suppose that
c ∈ X is an accumulation point of X. If f : X \ {c} → Y , then y ∈ Y is the limit
of f(x) as x→ c, or

lim
x→c

f(x) = y,

if for every ϵ > 0 there exists δ > 0 such that

0 < dX(x, c) < δ implies that dY (f(x), y) < ϵ.

In terms of neighborhoods, the definition says that for every neighborhood V
of y in Y there exists a neighborhood U of c in X such that f maps U \ {c} into V .

Definition 7.44. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y
is continuous at c ∈ X if for every ϵ > 0 there exists δ > 0 such that

dX(x, c) < δ implies that dY (f(x), f(c)) < ϵ.

The function is continuous on X if it is continuous at every point of X.

In terms of neighborhoods, the definition says that for every neighborhood V
of f(c) in Y there exists a neighborhood U of c in X such that f maps U into V .

Example 7.45. A function f : R2 → R, where R2 is equipped with the Euclidean
norm ∥ · ∥ and R with the absolute value norm | · |, is continuous at c ∈ R2 if

∥x− c∥ < δ implies that |f(x)− f(c)| < ϵ

Explicitly, if x = (x1, x2), c = (c1, c2) and

f(x) = (f1(x1, x2), f2(x1, x2)) ,

this condition reads: √
(x1 − c1)2 + (x2 − c2)2 < δ

implies that

|f(x1, x2)− f(c1, c2)| < ϵ.

Example 7.46. A function f : R → R2, where R2 is equipped with the Euclidean
norm ∥ · ∥ and R with the absolute value norm | · |, is continuous at c ∈ R2 if

|x− c| < δ implies that ∥f(x)− f(c)∥ < ϵ

Explicitly, if f(x) = (f1(x), f2(x)), where where f1, f2 : R → R, this condition
reads: |x− c| < δ implies that√

[f1(x)− f1(c)]
2
+ [f1(x)− f1(c)]

2
< ϵ.

The previous examples generalize in a natural way to define the continuity of
an m-component vector-valued function of n variables.
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Example 7.47. A function f : Rn → Rm, where both Rn and Rm are equipped
with the Euclidean norm, is continuous at c if for every ϵ > 0 there is a δ > 0 such
that

∥x− c∥ < δ implies that ∥f(x)− f(c)∥ < ϵ.

This definition would look complicated if it was written out explicitly, but it is
much clearer when it is expressed in terms or metrics or norms.

We also have a sequential definition of continuity in a metric space.

Definition 7.48. Let X and Y be metric spaces. A function f : X → Y is
sequentially continuous at c ∈ X if

f(xn) → f(c) as n→ ∞

for every sequence (xn) in X such that

xn → c as n→ ∞

As for real functions, this is equivalent to continuity.

Proposition 7.49. A function f : X → Y is sequentially continuous at c ∈ X if
and only if it is continuous at c.

We define uniform continuity similarly.

Definition 7.50. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y
is uniformly continuous on X if for every ϵ > 0 there exists δ > 0 such that

dX(x, y) < δ implies that dY (f(x), f(y)) < ϵ.

The proofs of the following theorems are identical to the proofs we gave for
functions f : R → R.

First, a function on a metric space is continuous if and only if the inverse images
of open sets are open.

Theorem 7.51. A function f : X → Y between metric spaces X and Y is contin-
uous on X if and only if f−1(V ) is open in X for every open set V in Y .

Second, the continuous image of a compact set is compact.

Theorem 7.52. Let K be a compact metric space and Y a metric space. If
f : K → Y is a continuous function, then f(K) is a compact subset of Y .

Third, a continuous functions on a compact set is uniformly continuous.

Theorem 7.53. If f : K → Y is a continuous function on a compact set K, then
f is uniformly continuous.

7.6. Appendix: The Minkowski inequality

Inequalities are essential to analysis. Their proofs, however, are often not obvious
and may require considerable ingenuity. Moreover, there may be many different
ways to prove the same inequality.
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The triangle inequality for the ℓp-norm on Rn defined in Example 7.15 is called
the Minkowski inequality, and it is one of the most important inequalities in analy-
sis. In this section, we prove it in the Euclidean case p = 2. The general case, with
arbitrary 1 < p <∞, is more involved, and we will not prove it here.

We first prove the Cauchy-Schwartz inequality, which is itself a fundamental
inequality.

Theorem 7.54 (Cauchy-Schwartz). If (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Rn, then

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

x2i

)1/2( n∑
i=1

y2i

)1/2

.

Proof. Since |
∑
xiyi| ≤

∑
|xi| |yi|, it is sufficient to prove the inequality for

xi, yi ≥ 0. Furthermore, the inequality is obvious if either x = 0 or y = 0, so
we assume at least one xi and one yi is nonzero.

For every α, β ∈ R, we have

0 ≤
n∑

i=1

(αxi − βyi)
2
.

Expanding the square on the right-hand side and rearranging the terms, we get
that

2αβ
n∑

i=1

xiyi ≤ α2
n∑

i=1

x2i + β2
n∑

i=1

y2i .

We choose α, β > 0 to “balance” the terms on the right-hand side,

α =

(
n∑

i=1

y2i

)1/2

, β =

(
n∑

i=1

x2i

)1/2

.

Then division of the resulting inequality by 2αβ proves the theorem. �

The Minkowski inequality for p = 2 is an immediate consequence of the Cauchy-
Schwartz inequality.

Corollary 7.55. If (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Rn, then

[
n∑

i=1

(xi + yi)
2

]1/2
≤

(
n∑

i=1

x2i

)1/2

+

(
n∑

i=1

y2i

)1/2

.
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Proof. Expanding the square in the following equation and using the Cauchy-
Schwartz inequality, we have

n∑
i=1

(xi + yi)
2 =

n∑
i=1

x2i + 2
n∑

i=1

xiyi +
n∑

i=1

y2i

≤
n∑

i=1

x2i + 2

(
n∑

i=1

x2i

)1/2( n∑
i=1

y2i

)1/2

+

n∑
i=1

y2i

≤

( n∑
i=1

x2i

)1/2

+

(
n∑

i=1

y2i

)1/2
2

.

Taking the square root of this inequality, we get the result. �


