


Chapter 3

Continuous Functions

In this chapter, we define continuous functions and study their properties.

3.1. Continuity

According to the definition introduced by Cauchy, and developed by Weierstrass,
continuous functions are functions that take nearby values at nearby points.

Definition 3.1. Let f : A → R, where A ⊂ R, and suppose that c ∈ A. Then f is
continuous at c if for every ϵ > 0 there exists a δ > 0 such that

|x− c| < δ and x ∈ A implies that |f(x)− f(c)| < ϵ.

A function f : A → R is continuous on a set B ⊂ A if it is continuous at every
point in B, and continuous if it is continuous at every point of its domain A.

The definition of continuity at a point may be stated in terms of neighborhoods
as follows.

Definition 3.2. A function f : A → R, where A ⊂ R, is continuous at c ∈ A if for
every neighborhood V of f(c) there is a neighborhood U of c such that

x ∈ A ∩ U implies that f(x) ∈ V .

The ϵ-δ definition corresponds to the case when V is an ϵ-neighborhood of f(c)
and U is a δ-neighborhood of c. We leave it as an exercise to prove that these
definitions are equivalent.

Note that c must belong to the domain A of f in order to define the continuity
of f at c. If c is an isolated point of A, then the continuity condition holds auto-
matically since, for sufficiently small δ > 0, the only point x ∈ A with |x − c| < δ
is x = c, and then 0 = |f(x) − f(c)| < ϵ. Thus, a function is continuous at every
isolated point of its domain, and isolated points are not of much interest.
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22 3. Continuous Functions

If c ∈ A is an accumulation point of A, then continuity of f at c is equivalent
to the condition that

lim
x→c

f(x) = f(c),

meaning that the limit of f as x → c exists and is equal to the value of f at c.

Example 3.3. If f : (a, b) → R is defined on an open interval, then f is continuous
on (a, b) if and only if

lim
x→c

f(x) = f(c) for every a < c < b

since every point of (a, b) is an accumulation point.

Example 3.4. If f : [a, b] → R is defined on a closed, bounded interval, then f is
continuous on [a, b] if and only if

lim
x→c

f(x) = f(c) for every a < c < b,

lim
x→a+

f(x) = f(a), lim
x→b−

f(x) = f(b).

Example 3.5. Suppose that

A =

{
0, 1,

1

2
,
1

3
, . . . ,

1

n
, . . .

}
and f : A → R is defined by

f(0) = y0, f

(
1

n

)
= yn

for some values y0, yn ∈ R. Then 1/n is an isolated point of A for every n ∈ N,
so f is continuous at 1/n for every choice of yn. The remaining point 0 ∈ A is an
accumulation point of A, and the condition for f to be continuous at 0 is that

lim
n→∞

yn = y0.

As for limits, we can give an equivalent sequential definition of continuity, which
follows immediately from Theorem 2.4.

Theorem 3.6. If f : A → R and c ∈ A is an accumulation point of A, then f is
continuous at c if and only if

lim
n→∞

f(xn) = f(c)

for every sequence (xn) in A such that xn → c as n → ∞.

In particular, f is discontinuous at c ∈ A if there is sequence (xn) in the domain
A of f such that xn → c but f(xn) ̸→ f(c).

Let’s consider some examples of continuous and discontinuous functions to
illustrate the definition.

Example 3.7. The function f : [0,∞) → R defined by f(x) =
√
x is continuous

on [0,∞). To prove that f is continuous at c > 0, we note that for 0 ≤ x < ∞,

|f(x)− f(c)| =
∣∣√x−

√
c
∣∣ = ∣∣∣∣ x− c√

x+
√
c

∣∣∣∣ ≤ 1√
c
|x− c|,
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so given ϵ > 0, we can choose δ =
√
cϵ > 0 in the definition of continuity. To prove

that f is continuous at 0, we note that if 0 ≤ x < δ where δ = ϵ2 > 0, then

|f(x)− f(0)| =
√
x < ϵ.

Example 3.8. The function sin : R → R is continuous on R. To prove this, we use
the trigonometric identity for the difference of sines and the inequality | sinx| ≤ |x|:

| sinx− sin c| =
∣∣∣∣2 cos(x+ c

2

)
sin

(
x− c

2

)∣∣∣∣
≤ 2

∣∣∣∣sin(x− c

2

)∣∣∣∣
≤ |x− c|.

It follows that we can take δ = ϵ in the definition of continuity for every c ∈ R.

Example 3.9. The sign function sgn : R → R, defined by

sgnx =


1 if x > 0,

0 if x = 0,

−1 if x < 0,

is not continuous at 0 since limx→0 sgnx does not exist (see Example 2.6). The left
and right limits of sgn at 0,

lim
x→0−

f(x) = −1, lim
x→0+

f(x) = 1,

do exist, but they are unequal. We say that f has a jump discontinuity at 0.

Example 3.10. The function f : R → R defined by

f(x) =

{
1/x if x ̸= 0,

0 if x = 0,

is not continuous at 0 since limx→0 f(x) does not exist (see Example 2.7). Neither
the left or right limits of f at 0 exist either, and we say that f has an essential
discontinuity at 0.

Example 3.11. The function f : R → R, defined by

f(x) =

{
sin(1/x) if x ̸= 0,

0 if x = 0.

is continuous at c ̸= 0 (see Example 3.20 below) but discontinuous at 0 because
limx→0 f(x) does not exist (see Example 2.8).

Example 3.12. The function f : R → R defined by

f(x) =

{
x sin(1/x) if x ̸= 0,

0 if x = 0.

is continuous at every point of R. (See Figure 1. The continuity at c ̸= 0 is proved
in Example 3.21 below. To prove continuity at 0, note that for x ̸= 0,

|f(x)− f(0)| = |x sin(1/x)| ≤ |x|,
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Figure 1. A plot of the function y = x sin(1/x) and a detail near the origin
with the lines y = ±x shown in red.

so f(x) → f(0) as x → 0. If we had defined f(0) to be any value other than
0, then f would not be continuous at 0. In that case, f would have a removable
discontinuity at 0.

Example 3.13. The Dirichlet function f : R → R defined by

f(x) =

{
1 if x ∈ Q,

0 if x /∈ Q

is discontinuous at every c ∈ R. If c /∈ Q, choose a sequence (xn) of rational
numbers such that xn → c (possible since Q is dense in R). Then xn → c and
f(xn) → 1 but f(c) = 0. If c ∈ Q, choose a sequence (xn) of irrational numbers
such that xn → c; for example if c = p/q, we can take

xn =
p

q
+

√
2

n
,

since xn ∈ Q would imply that
√
2 ∈ Q. Then xn → c and f(xn) → 0 but

f(c) = 1. In fact, taking a rational sequence (xn) and an irrational sequence (x̃n)
that converge to c, we see that limx→c f(x) does not exist for any c ∈ R.

Example 3.14. The Thomae function f : R → R defined by

f(x) =

{
1/q if x = p/q where p and q > 0 are relatively prime,

0 if x /∈ Q or x = 0

is continuous at 0 and every irrational number and discontinuous at every nonzero
rational number. See Figure 2 for a plot.

We can give a rough classification of a discontinuity of a function f : A → R at
an accumulation point c ∈ A as follows.

(1) Removable discontinuity : limx→c f(x) = L exists but L ̸= f(c), in which case
we can make f continuous at c by redefining f(c) = L (see Example 3.12).

(2) Jump discontinuity : limx→c f(x) doesn’t exist, but both the left and right
limits limx→c− f(x), limx→c+ f(x) exist and are different (see Example 3.9).
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Figure 2. A plot of the Thomae function on [0, 1]

(3) Essential discontinuity : limx→c f(x) doesn’t exist and at least one of the left
or right limits limx→c− f(x), limx→c+ f(x) doesn’t exist (see Examples 3.10,
3.11, 3.13).

3.2. Properties of continuous functions

The basic properties of continuous functions follow from those of limits.

Theorem 3.15. If f, g : A → R are continuous at c ∈ A and k ∈ R, then kf , f+g,
and fg are continuous at c. Moreover, if g(c) ̸= 0 then f/g is continuous at c.

Proof. This result follows immediately Theorem 2.22. �

A polynomial function is a function P : R → R of the form

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

where a0, a1, a2, . . . , an are real coefficients. A rational function R is a ratio of
polynomials P , Q

R(x) =
P (x)

Q(x)
.

The domain of R is the set of points in R such that Q ̸= 0.

Corollary 3.16. Every polynomial function is continuous on R and every rational
function is continuous on its domain.

Proof. The constant function f(x) = 1 and the identity function g(x) = x are
continuous on R. Repeated application of Theorem 3.15 for scalar multiples, sums,
and products implies that every polynomial is continuous on R. It also follows that
a rational function R = P/Q is continuous at every point where Q ̸= 0. �
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Example 3.17. The function f : R → R given by

f(x) =
x+ 3x3 + 5x5

1 + x2 + x4

is continuous on R since it is a rational function whose denominator never vanishes.

In addition to forming sums, products and quotients, another way to build up
more complicated functions from simpler functions is by composition.

We recall that if f : A → R and g : B → R where f(A) ⊂ B, meaning that the
domain of g contains the range of f , then we define the composition g ◦ f : A → R
by

(g ◦ f)(x) = g (f(x)) .

The next theorem states that the composition of continuous functions is continuous.
Note carefully the points at which we assume f and g are continuous.

Theorem 3.18. Let f : A → R and g : B → R where f(A) ⊂ B. If f is continuous
at c ∈ A and g is continuous at f(c) ∈ B, then g ◦ f : A → R is continuous at c.

Proof. Let ϵ > 0 be given. Since g is continuous at f(c), there exists η > 0 such
that

|y − f(c)| < η and y ∈ B implies that |g(y)− g (f(c))| < ϵ.

Next, since f is continuous at c, there exists δ > 0 such that

|x− c| < δ and x ∈ A implies that |f(x)− f(c)| < η.

Combing these inequalities, we get that

|x− c| < δ and x ∈ A implies that |g (f(x))− g (f(c))| < ϵ,

which proves that g ◦ f is continuous at c. �

Corollary 3.19. Let f : A → R and g : B → R where f(A) ⊂ B. If f is continuous
on A and g is continuous on f(A), then g ◦ f is continuous on A.

Example 3.20. The function

f(x) =

{
sin(1/x) if x ̸= 0,

0 if x = 0.

is continuous on R\{0}, since it is the composition of x 7→ 1/x, which is continuous
on R \ {0}, and y 7→ sin y, which is continuous on R.

Example 3.21. The function

f(x) =

{
x sin(1/x) if x ̸= 0,

0 if x = 0.

is continuous on R \ {0} since it is a product of functions that are continuous on
R \ {0}. As shown in Example 3.12, f is also continuous at 0, so f is continuous
on R.
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3.3. Uniform continuity

Uniform continuity is a subtle but powerful strengthening of continuity.

Definition 3.22. Let f : A → R, where A ⊂ R. Then f is uniformly continuous
on A if for every ϵ > 0 there exists a δ > 0 such that

|x− y| < δ and x, y ∈ A implies that |f(x)− f(y)| < ϵ.

The key point of this definition is that δ depends only on ϵ, not on x, y. A
uniformly continuous function on A is continuous at every point of A, but the
converse is not true, as we explain next.

If a function is continuous on A, then given ϵ > 0 there exists δ(c) > 0 for every
c ∈ A such that

|x− c| < δ(c) and x ∈ A implies that |f(x)− f(c)| < ϵ.

In general, δ(c) depends on both ϵ and c, but we don’t show the ϵ-dependence
explicitly since we’re thinking of ϵ as fixed. If

inf
c∈A

δ(c) = 0

however we choose δ(c), then no δ0 > 0 depending only on ϵ works simultaneously
for all c ∈ A. In that case, the function is continuous on A but not uniformly
continuous.

Before giving examples, we state a sequential condition for uniform continuity
to fail.

Proposition 3.23. A function f : A → R is not uniformly continuous on A if and
only if there exists ϵ0 > 0 and sequences (xn), (yn) in A such that

lim
n→∞

|xn − yn| = 0 and |f(xn)− f(yn)| ≥ ϵ0 for all n ∈ N.

Proof. If f is not uniformly continuous, then there exists ϵ0 > 0 such that for every
δ > 0 there are points x, y ∈ A with |x − y| < δ and |f(x) − f(y)| ≥ ϵ0. Choosing
xn, yn ∈ A to be any such points for δ = 1/n, we get the required sequences.

Conversely, if the sequential condition holds, then for every δ > 0 there exists
n ∈ N such that |xn−yn| < δ and |f(xn)− f(yn)| ≥ ϵ0. It follows that the uniform
continuity condition in Definition 3.22 cannot hold for any δ > 0 if ϵ = ϵ0, so f is
not uniformly continuous. �

Example 3.24. Example 3.8 shows that the sine function is uniformly continuous
on R, since we can take δ = ϵ for every x, y ∈ R.

Example 3.25. Define f : [0, 1] → R by f(x) = x2. Then f is uniformly continuous
on [0, 1]. To prove this, note that for all x, y ∈ [0, 1] we have∣∣x2 − y2

∣∣ = |x+ y| |x− y| ≤ 2|x− y|,

so we can take δ = ϵ/2 in the definition of uniform continuity. Similarly, f(x) = x2

is uniformly continuous on any bounded set.
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Example 3.26. The function f(x) = x2 is continuous but not uniformly continuous
on R. We have already proved that f is continuous on R (it’s a polynomial). To
prove that f is not uniformly continuous, let

xn = n, yn = n+
1

n
.

Then

lim
n→∞

|xn − yn| = lim
n→∞

1

n
= 0,

but

|f(xn)− f(yn)| =
(
n+

1

n

)2

− n2 = 2 +
1

n2
≥ 2 for every n ∈ N.

It follows from Proposition 3.23 that f is not uniformly continuous on R. The
problem here is that, for given ϵ > 0, we need to make δ(c) smaller as c gets larger
to prove the continuity of f at c, and δ(c) → 0 as c → ∞.

Example 3.27. The function f : (0, 1] → R defined by

f(x) =
1

x

is continuous but not uniformly continuous on (0, 1]. We have already proved that
f is continuous on (0, 1] (it’s a rational function whose denominator x is nonzero in
(0, 1]). To prove that f is not uniformly continuous, define xn, yn ∈ (0, 1] for n ∈ N
by

xn =
1

n
, yn =

1

n+ 1
.

Then xn → 0, yn → 0, and |xn − yn| → 0 as n → ∞, but

|f(xn)− f(yn)| = (n+ 1)− n = 1 for every n ∈ N.

It follows from Proposition 3.23 that f is not uniformly continuous on (0, 1]. The
problem here is that, for given ϵ > 0, we need to make δ(c) smaller as c gets closer
to 0 to prove the continuity of f at c, and δ(c) → 0 as c → 0+.

The non-uniformly continuous functions in the last two examples were un-
bounded. However, even bounded continuous functions can fail to be uniformly
continuous if they oscillate arbitrarily quickly.

Example 3.28. Define f : (0, 1] → R by

f(x) = sin

(
1

x

)
Then f is continuous on (0, 1] but it isn’t uniformly continuous on (0, 1]. To prove
this, define xn, yn ∈ (0, 1] for n ∈ N by

xn =
1

2nπ
, yn =

1

2nπ + π/2
.

Then xn → 0, yn → 0, and |xn − yn| → 0 as n → ∞, but

|f(xn)− f(yn)| = sin
(
2nπ +

π

2

)
− sin 2nπ = 1 for all n ∈ N.
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It isn’t a coincidence that these examples of non-uniformly continuous functions
have a domain that is either unbounded or not closed. We will prove in Section 3.5
that a continuous function on a closed, bounded set is uniformly continuous.

3.4. Continuous functions and open sets

Let f : A → R be a function. Recall that if B ⊂ A, the set

f(B) = {y ∈ R : y = f(x) for some x ∈ B}
is called the image of B under f , and if C ⊂ R, the set

f−1(C) = {x ∈ A : f(x) ∈ C}
is called the inverse image or preimage of C under f . Note that f−1(C) is a well-
defined set even if the function f does not have an inverse.

Example 3.29. Suppose f : R → R is defined by f(x) = x2. If I = (1, 4), then

f(I) = (1, 16), f−1(I) = (−2,−1) ∪ (1, 2).

Note that we get two intervals in the preimage because f is two-to-one on f−1(I).
If J = (−1, 1), then

f(J) = [0, 1), f−1(J) = (−1, 1).

In the previous example, the preimages of the open sets I, J under the continu-
ous function f are open, but the image of J under f isn’t open. Thus, a continuous
function needn’t map open sets to open sets. As we will show, however, the inverse
image of an open set under a continuous function is always open. This property is
the topological definition of a continuous function; it is a global definition in the
sense that it implies that the function is continuous at every point of its domain.

Recall from Section 1.2 that a subset B of a set A ⊂ R is relatively open in
A, or open in A, if B = A ∩ U where U is open in R. Moreover, as stated in
Proposition 1.22, B is relatively open in A if and only if every point x ∈ B has a
relative neighborhood C = A ∩ V such that C ⊂ B, where V is a neighborhood of
x in R.

Theorem 3.30. A function f : A → R is continuous on A if and only if f−1(V ) is
open in A for every set V that is open in R.

Proof. First assume that f is continuous on A, and suppose that c ∈ f−1(V ).
Then f(c) ∈ V and since V is open it contains an ϵ-neighborhood

Vϵ (f(c)) = (f(c)− ϵ, f(c) + ϵ)

of f(c). Since f is continuous at c, there is a δ-neighborhood

Uδ(c) = (c− δ, c+ δ)

of c such that

f (A ∩ Uδ(c)) ⊂ Vϵ (f(c)) .

This statement just says that if |x − c| < δ and x ∈ A, then |f(x) − f(c)| < ϵ. It
follows that

A ∩ Uδ(c) ⊂ f−1(V ),
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meaning that f−1(V ) contains a relative neighborhood of c. Therefore f−1(V ) is
relatively open in A.

Conversely, assume that f−1(V ) is open in A for every open V in R, and let
c ∈ A. Then the preimage of the ϵ-neighborhood (f(c)− ϵ, f(c)+ ϵ) is open in A, so
it contains a relative δ-neighborhood A∩(c−δ, c+δ). It follows that |f(x)−f(c)| < ϵ
if |x− c| < δ and x ∈ A, which means that f is continuous at c. �

3.5. Continuous functions on compact sets

Continuous functions on compact sets have especially nice properties. For example,
they are bounded and attain their maximum and minimum values, and they are
uniformly continuous. Since a closed, bounded interval is compact, these results
apply, in particular, to continuous functions f : [a, b] → R.

First we prove that the continuous image of a compact set is compact.

Theorem 3.31. If f : K → R is continuous and K ⊂ R is compact, then f(K) is
compact.

Proof. We show that f(K) is sequentially compact. Let (yn) be a sequence in
f(K). Then yn = f(xn) for some xn ∈ K. Since K is compact, the sequence (xn)
has a convergent subsequence (xni) such that

lim
i→∞

xni = x

where x ∈ K. Since f is continuous on K,

lim
i→∞

f (xni) = f(x).

Writing y = f(x), we have y ∈ f(K) and

lim
i→∞

yni = y.

Therefore every sequence (yn) in f(K) has a convergent subsequence whose limit
belongs to f(K), so f(K) is compact.

Let us also give an alternative proof based on the Heine-Borel property. Sup-
pose that {Vi : i ∈ I} is an open cover of f(K). Since f is continuous, Theorem 3.30
implies that f−1(Vi) is open in K, so {f−1(Vi) : i ∈ I} is an open cover of K. Since
K is compact, there is a finite subcover{

f−1(Vi1), f
−1(Vi2), . . . , f

−1(ViN )
}

of K, and it follows that

{Vi1 , Vi2 , . . . , ViN }

is a finite subcover of the original open cover of f(K). This proves that f(K) is
compact. �

Note that compactness is essential here; it is not true, in general, that a con-
tinuous function maps closed sets to closed sets.
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Example 3.32. Define f : [0,∞) → R by

f(x) =
1

1 + x2
.

Then [0,∞) is closed but f ([0,∞)) = (0, 1] is not.

The following result is the most important property of continuous functions on
compact sets.

Theorem 3.33 (Weierstrass extreme value). If f : K → R is continuous and
K ⊂ R is compact, then f is bounded on K and f attains its maximum and
minimum values on K.

Proof. Since f(K) is compact, Theorem 1.40 implies that it is bounded, which
means that f is bounded on K. Proposition 1.41 implies that the maximum M
and minimum m of f(K) belong to f(K). Therefore there are points x, y ∈ K such
that f(x) = M , f(y) = m, and f attains its maximum and minimum on K. �
Example 3.34. Define f : [0, 1] → R by

f(x) =

{
1/x if 0 < x ≤ 1,

0 if x = 0.

Then f is unbounded on [0, 1] and has no maximum value (f does, however, have
a minimum value of 0 attained at x = 0). In this example, [0, 1] is compact but f
is discontinuous at 0, which shows that a discontinuous function on a compact set
needn’t be bounded.

Example 3.35. Define f : (0, 1] → R by f(x) = 1/x. Then f is unbounded on
(0, 1] with no maximum value (f does, however, have a minimum value of 1 attained
at x = 1). In this example, f is continuous but the half-open interval (0, 1] isn’t
compact, which shows that a continuous function on a non-compact set needn’t be
bounded.

Example 3.36. Define f : (0, 1) → R by f(x) = x. Then

inf
x∈(0,1)

f(x) = 0, sup
x∈(0,1)

f(x) = 1

but f(x) ̸= 0, f(x) ̸= 1 for any 0 < x < 1. Thus, even if a continuous function on
a non-compact set is bounded, it needn’t attain its supremum or infimum.

Example 3.37. Define f : [0, 2/π] → R by

f(x) =

{
x+ x sin(1/x) if 0 < x ≤ 2/π,

0 if x = 0.

(See Figure 3.) Then f is continuous on the compact interval [0, 2/π], so by The-
orem 3.33 it attains its maximum and minimum. For 0 ≤ x ≤ 2/π, we have
0 ≤ f(x) ≤ 1/π since | sin 1/x| ≤ 1. Thus, the minimum value of f is 0, attained
at x = 0. It is also attained at infinitely many other interior points in the interval,

xn =
1

2nπ + 3π/2
, n = 0, 1, 2, 3, . . . ,

where sin(1/xn) = −1. The maximum value of f is 1/π, attained at x = 2/π.
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Figure 3. A plot of the function y = x + x sin(1/x) on [0, 2/π] and a detail

near the origin.

Finally, we prove that continuous functions on compact sets are uniformly
continuous

Theorem 3.38. If f : K → R is continuous and K ⊂ R is compact, then f is
uniformly continuous on K.

Proof. Suppose for contradiction that f is not uniformly continuous on K. Then
from Proposition 3.23 there exists ϵ0 > 0 and sequences (xn), (yn) in K such that

lim
n→∞

|xn − yn| = 0 and |f(xn)− f(yn)| ≥ ϵ0 for every n ∈ N.

Since K is compact, there is a convergent subsequence (xni) of (xn) such that

lim
i→∞

xni = x ∈ K.

Moreover, since (xn − yn) → 0 as n → ∞, it follows that

lim
i→∞

yni = lim
i→∞

[xni − (xni − yni)] = lim
i→∞

xni − lim
i→∞

(xni − yni) = x,

so (yni) also converges to x. Then, since f is continuous on K,

lim
i→∞

|f(xni
)− f(yni

)| =
∣∣∣ lim
i→∞

f(xni
)− lim

i→∞
f(yni

)
∣∣∣ = |f(x)− f(x)| = 0,

but this contradicts the non-uniform continuity condition

|f(xni)− f(yni)| ≥ ϵ0.

Therefore f is uniformly continuous. �

Example 3.39. The function f : [0, 2/π] → R defined in Example 3.37 is uniformly
continuous on [0, 2/π] since it is is continuous and [0, 2/π] is compact.

3.6. The intermediate value theorem

The intermediate value theorem states that a continuous function on an interval
takes on all values between any two of its values. We first prove a special case.



3.6. The intermediate value theorem 33

Theorem 3.40. Suppose that f : [a, b] → R is a continuous function on a closed,
bounded interval. If f(a) < 0 and f(b) > 0, or f(a) > 0 and f(b) < 0, then there
is a point a < c < b such that f(c) = 0.

Proof. Assume for definiteness that f(a) < 0 and f(b) > 0. (If f(a) > 0 and
f(b) < 0, consider −f instead of f .) The set

E = {x ∈ [a, b] : f(x) < 0}

is nonempty, since a ∈ E, and E is bounded from above by b. Let

c = supE ∈ [a, b],

which exists by the completeness of R. We claim that f(c) = 0.

Suppose for contradiction that f(c) ̸= 0. Since f is continuous at c, there exists
δ > 0 such that

|x− c| < δ and x ∈ [a, b] implies that |f(x)− f(c)| < 1

2
|f(c)|.

If f(c) < 0, then c ̸= b and

f(x) = f(c) + f(x)− f(c) < f(c)− 1

2
f(c)

for all x ∈ [a, b] such that |x− c| < δ, so f(x) < 1
2f(c) < 0. It follows that there are

points x ∈ E with x > c, which contradicts the fact that c is an upper bound of E.

If f(c) > 0, then c ̸= a and

f(x) = f(c) + f(x)− f(c) > f(c)− 1

2
f(c)

for all x ∈ [a, b] such that |x − c| < δ, so f(x) > 1
2f(c) > 0. It follows that there

exists η > 0 such that c− η ≥ a and

f(x) > 0 for c− η ≤ x ≤ c.

In that case, c − η < c is an upper bound for E, since c is an upper bound and
f(x) > 0 for c − η ≤ x ≤ c, which contradicts the fact that c is the least upper
bound. This proves that f(c) = 0. Finally, c ̸= a, b since f is nonzero at the
endpoints, so a < c < b. �

We give some examples to show that all of the hypotheses in this theorem are
necessary.

Example 3.41. Let K = [−2,−1] ∪ [1, 2] and define f : K → R by

f(x) =

{
−1 if −2 ≤ x ≤ −1

1 if 1 ≤ x ≤ 2

Then f(−2) < 0 and f(2) > 0, but f doesn’t vanish at any point in its domain.
Thus, in general, Theorem 3.40 fails if the domain of f is not a connected interval
[a, b].
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Example 3.42. Define f : [−1, 1] → R by

f(x) =

{
−1 if −1 ≤ x < 0

1 if 0 ≤ x ≤ 1

Then f(−1) < 0 and f(1) > 0, but f doesn’t vanish at any point in its domain.
Here, f is defined on an interval but it is discontinuous at 0. Thus, in general,
Theorem 3.40 fails for discontinuous functions.

Example 3.43. Define the continuous function f : [1, 2] → R by

f(x) = x2 − 2.

Then f(1) < 0 and f(2) > 0, so Theorem 3.40 implies that there exists 1 < c < 2
such that c2 = 2. Moreover, since x2 − 2 is strictly increasing on [0,∞), there is a

unique such positive number, so we have proved the existence of
√
2.

We can get more accurate approximations to
√
2 by repeatedly bisecting the

interval [1, 2]. For example f(3/2) = 1/4 > 0 so 1 <
√
2 < 3/2, and f(5/4) < 0

so 5/4 <
√
2 < 3/2, and so on. This bisection method is a simple, but useful,

algorithm for computing numerical approximations of solutions of f(x) = 0 where
f is a continuous function.

Note that we used the existence of a supremum in the proof of Theorem 3.40. If
we restrict f(x) = x2−2 to rational numbers, f : A → Q where A = [1, 2]∩Q, then

f is continuous on A, f(1) < 0 and f(2) > 0, but f(c) ̸= 0 for any c ∈ A since
√
2

is irrational. This shows that the completeness of R is essential for Theorem 3.40
to hold. (Thus, in a sense, the theorem actually describes the completeness of the
continuum R rather than the continuity of f !)

The general statement of the Intermediate Value Theorem follows immediately
from this special case.

Theorem 3.44 (Intermediate value theorem). Suppose that f : [a, b] → R is
a continuous function on a closed, bounded interval. Then for every d strictly
between f(a) and f(b) there is a point a < c < b such that f(c) = d.

Proof. Suppose, for definiteness, that f(a) < f(b) and f(a) < d < f(b). (If
f(a) > f(b) and f(b) < d < f(a), apply the same proof to −f , and if f(a) = f(b)
there is nothing to prove.) Let g(x) = f(x) − d. Then g(a) < 0 and g(b) > 0, so
Theorem 3.40 implies that g(c) = 0 for some a < c < b, meaning that f(c) = d. �

As one consequence of our previous results, we prove that a continuous function
maps compact intervals to compact intervals.

Theorem 3.45. Suppose that f : [a, b] → R is a continuous function on a closed,
bounded interval. Then f([a, b]) = [m,M ] is a closed, bounded interval.

Proof. Theorem 3.33 implies that m ≤ f(x) ≤ M for all x ∈ [a, b], where m and
M are the maximum and minimum values of f , so f([a, b]) ⊂ [m,M ]. Moreover,
there are points c, d ∈ [a, b] such that f(c) = m, f(d) = M .

Let J = [c, d] if c ≤ d or J = [d, c] if d < c. Then J ⊂ [a, b], and Theorem 3.44
implies that f takes on all values in [m,M ] on J . It follows that f([a, b]) ⊃ [m,M ],
so f([a, b]) = [m,M ]. �
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First we give an example to illustrate the theorem.

Example 3.46. Define f : [−1, 1] → R by

f(x) = x− x3.

Then, using calculus to compute the maximum and minimum of f , we find that

f ([−1, 1]) = [−M,M ], M =
2

3
√
3
.

This example illustrates that f ([a, b]) ̸= [f(a), f(b)] unless f is increasing.

Next we give some examples to show that the continuity of f and the con-
nectedness and compactness of the interval [a, b] are essential for Theorem 3.45 to
hold.

Example 3.47. Let sgn : [−1, 1] → R be the sign function defined in Example 2.6.
Then f is a discontinuous function on a compact interval [−1, 1], but the range
f([−1, 1]) = {−1, 0, 1} consists of three isolated points and is not an interval.

Example 3.48. In Example 3.41, the function f : K → R is continuous on a
compact set K but f(K) = {−1, 1} consists of two isolated points and is not an
interval.

Example 3.49. The continuous function f : [0,∞) → R in Example 3.32 maps
the unbounded, closed interval [0,∞) to a half-open interval (0, 1].

The last example shows that a continuous function may map a closed but
unbounded interval to an interval which isn’t closed (or open). Nevertheless, it
follows from the fact that a continuous function maps compact intervals to compact
intervals that it maps intervals to intervals (where the intervals may be open, closed,
half-open, bounded, or unbounded). We omit a detailed proof.

3.7. Monotonic functions

Monotonic functions have continuity properties that are not shared by general func-
tions.

Definition 3.50. Let I ⊂ R be an interval. A function f : I → R is increasing if

f(x1) ≤ f(x2) if x1, x2 ∈ I and x1 < x2,

strictly increasing if

f(x1) < f(x2) if x1, x2 ∈ I and x1 < x2,

decreasing if

f(x1) ≥ f(x2) if x1, x2 ∈ I and x1 < x2,

and strictly decreasing if

f(x1) > f(x2) if x1, x2 ∈ I and x1 < x2.

An increasing or decreasing function is called a monotonic function, and a strictly
increasing or strictly decreasing function is called a strictly monotonic function.
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A commonly used alternative (and, unfortunately, incompatible) terminology
is “nondecreasing” for “increasing,” “increasing” for “strictly increasing,” “nonin-
creasing” for “decreasing,” and “decreasing” for “strictly decreasing.” According to
our terminology, a constant function is both increasing and decreasing. Monotonic
functions are also referred to as monotone functions.

Theorem 3.51. If f : I → R is monotonic on an interval I, then the left and right
limits of f ,

lim
x→c−

f(x), lim
x→c+

f(x),

exist at every interior point c of I.

Proof. Assume for definiteness that f is increasing. (If f is decreasing, we can
apply the same argument to −f which is increasing). We will prove that

lim
x→c−

f(x) = supE, E = {f(x) ∈ R : x ∈ I and x < c} .

The set E is nonempty since c in an interior point of I, so there exists x ∈ I
with x < c, and E bounded from above by f(c) since f is increasing. It follows
that L = supE ∈ R exists. (Note that L may be strictly less than f(c)!)

Suppose that ϵ > 0 is given. Since L is a least upper bound of E, there exists
y0 ∈ E such that L − ϵ < y0 ≤ L, and therefore x0 ∈ I with x0 < c such that
f(x0) = y0. Let δ = c − x0 > 0. If c − δ < x < c, then x0 < x < c and therefore
f(x0) ≤ f(x) ≤ L since f is increasing and L is an upper bound of E. It follows
that

L− ϵ < f(x) ≤ L if c− δ < x < c,

which proves that limx→c− f(x) = L.

A similar argument, or the same argument applied to g(x) = −f(−x), shows
that

lim
x→c+

f(x) = inf {f(x) ∈ R : x ∈ I and x > c} .

We leave the details as an exercise. �

Similarly, if I = [a, b] is a closed interval and f is monotonic on I, then the
left limit limx→b− f(x) exists at the right endpoint, although it may not equal f(b),
and the right limit limx→a+ f(x) exists at the left endpoint, although it may not
equal f(a).

Corollary 3.52. Every discontinuity of a monotonic function f : I → R at an
interior point of the interval I is a jump discontinuity.

Proof. If c is an interior point of I, then the left and right limits of f at c exist by
the previous theorem. Moreover, assuming for definiteness that f is increasing, we
have

f(x) ≤ f(c) ≤ f(y) for all x, y ∈ I with x < c < y,

and since limits preserve inequalities

lim
x→c−

f(x) ≤ f(c) ≤ lim
x→c+

f(x).
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If the left and right limits are equal, then the limit exists and is equal to the left
and right limits, so

lim
x→c

f(x) = f(c),

meaning that f is continuous at c. In particular, a monotonic function cannot have
a removable discontinuity at an interior point of its domain (although it can have
one at an endpoint of a closed interval). If the left and right limits are not equal,
then f has a jump discontinuity at c, so f cannot have an essential discontinuity
either. �

One can show that a monotonic function has, at most, a countable number
of discontinuities, and it may have a countably infinite number, but we omit the
proof. By contrast, the non-monotonic Dirichlet function has uncountably many
discontinuities at every point of R.


