
Real Analysis
Math 125A, Fall 2012

Final Solutions

1. (a) Suppose that f : [0, 1] → R is continuous on the closed, bounded
interval [0, 1] and f(x) > 0 for every 0 ≤ x ≤ 1. Prove that the reciprocal
function 1/f : [0, 1] → R is bounded on [0, 1].

(b) Does this result remain true if: (i) f : [0, 1] → R is not continuous on
[0, 1]; (ii) f : (0, 1) → R is continuous on the open interval (0, 1)?

Solution.

• (a) Let
m = inf

x∈[0,1]
f(x).

Since f > 0 on [0, 1], we have m ≥ 0. Since f is a continuous function
on a compact set, it attains its infimum at some point in [0, 1], which
implies that m > 0. Therefore f ≥ m > 0 and 0 < 1/f ≤ 1/m is
bounded on [0, 1].

• (b) The result does not remain true in either case, since f need not
attain its infimum. A counter-example for (i) is

f(x) =

{
x if 0 < x ≤ 1,

1 if x = 0.

A counter-example for (ii) is f(x) = x for 0 < x < 1.
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2. (a) Define uniform continuity on R for a function f : R → R.
(b) Suppose that f, g : R → R are uniformly continuous on R. (i) Prove that
f + g is uniformly continuous on R. (ii) Give an example to show that fg
need not be uniformly continuous on R.

Solution.

• (a) A function f : R → R is uniformly continuous if for every ϵ > 0
there exists δ > 0 such that |f(x)− f(y)| < ϵ for all x, y ∈ R such that
|x− y| < δ.

• (b.i) Let ϵ > 0. Choose δ1 > 0 such that

|f(x)− f(y)| < ϵ

2
for all x, y ∈ R such that |x− y| < δ1

and δ2 > 0 such that

|g(x)− g(y)| < ϵ

2
for all x, y ∈ R such that |x− y| < δ2.

Let δ = min(δ1, δ2) > 0. Then |x− y| < δ implies that

|(f + g)(x)− (f + g)(y)| ≤ |f(x)− f(y)|+ |g(x)− g(y)| < ϵ,

which proves that f + g is uniformly continuous on R.

• (b.ii) An example is f(x) = g(x) = x. Then f , g are uniformly contin-
uous on R (take δ = ϵ) but (fg)(x) = x2 is not.

• To prove that x2 is not uniformly continuous, let δ > 0 and choose

x =
1

δ
+

δ

2
, y =

1

δ
.

Then |x− y| = δ/2 < δ, but

|x2 − y2| = 1 +
δ2

4
> 1,

so the definition of uniform continuity fails for ϵ ≥ 1. (We can show
similarly that it fails for all ϵ > 0.)
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3. Suppose that a function f : R → R is differentiable at zero and

f

(
1

n

)
= 0 for all n ∈ N.

Prove that: (a) f(0) = 0; (b) f ′(0) = 0.

Solution.

• (a) Since f is differentiable at 0, it is continuous at 0. The sequential
definition of continuity then implies that

f(0) = lim
n→∞

f

(
1

n

)
= 0.

• (b) Since f is differentiable at 0, the limit

f ′(0) = lim
x→0

f(x)− f(0)

x

exists, so we can evaluate it on any sequence xn → 0. Using (a) and
taking xn = 1/n, we get that

f ′(0) = lim
n→∞

nf

(
1

n

)
= 0.
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4. Suppose that f, g, h : R → R are functions such that:

(a) f(x) ≤ g(x) ≤ h(x) for all x ∈ R, and f(0) = h(0);
(b) f , h are differentiable at 0, and f ′(0) = h′(0).

Does it follow that g is differentiable at 0?

Solution.

• Yes, it does follow that g is differentiable at 0.

• Condition(a) implies that f(0) = g(0) = h(0) and therefore also that

f(x)− f(0) ≤ g(x)− g(0) ≤ h(x)− h(0).

For x > 0, we have

f(x)− f(0)

x
≤ g(x)− g(0)

x
≤ h(x)− h(0)

x
,

and since

lim
x→0+

f(x)− f(0)

x
= f ′(0) = h′(0) = lim

x→0+

h(x)− h(0)

x
,

the “sandwich” theorem implies that

lim
x→0+

g(x)− g(0)

x
= f ′(0).

Similarly, for x < 0,

f(x)− f(0)

x
≥ g(x)− g(0)

x
≥ h(x)− h(0)

x
,

and the “sandwich” theorem implies that

lim
x→0−

g(x)− g(0)

x
= f ′(0).

Since the left and right derivatives of g exist and are equal, it follows
that g is differentiable at 0 and f ′(0) = g′(0) = h′(0).
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5. (a) Determine the Taylor polynomial Pn(x) of degree n centered at 0 for
the function ex.

(b) Give an expression for the remainder Rn(x) in Taylor’s theorem such that

ex = Pn(x) +Rn(x).

(c) Prove that ex ≥ 1 + x for all x ∈ R, with equality if and only if x = 0.

(d) Prove that eπ > πe. Hint. Make a good choice of x in (c).

Solution.

• (a) The kth derivative of ex is ex, which is equal to 1 at x = 0, so the
kth Taylor coefficient of f(x) = ex at zero is

ak =
f (k)(0)

k!
=

1

k!
,

and

Pn(x) =
n∑

k=0

1

k!
xk = 1 + x+

1

2!
x2 + · · ·+ 1

n!
xn.

• (b) The expression for the Lagrange remainder is

Rn(x) =
1

(n+ 1)!
f (n+1)(ξ)xn+1 =

1

(n+ 1)!
eξ xn+1

for some ξ strictly between 0 and x.

• (c) For n = 1, we get

ex = 1 + x+
1

2
eξx2.

Since eξ > 0, it follows that ex ≥ 1 + x, with equality if and only if
x = 0.

• (d) Take

x =
π

e
− 1

in the inequality from (c). This gives

eπ/e−1 > 1 +
π

e
− 1 or

eπ/e

e
>

π

e
.

Multiply this inequality by e and take the eth power, to get eπ > πe.
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6. Suppose that (fn) is a sequence of continuous functions fn : R → R, and
(xn) is a sequence in R such that xn → 0 as n → ∞. Prove or disprove the
following statements.

(a) If fn → f uniformly on R, then fn(xn) → f(0) as n → ∞.

(b) If fn → f pointwise on R, then fn(xn) → f(0) as n → ∞.

Solution.

• (a) This statement is true. To prove it, we first observe that f is con-
tinuous since the uniform limit of continuous functions is continuous.

• Let ϵ > 0 be given. We write

|fn(xn)− f(0)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(0)|

and estimate each of the terms of the right-hand side.

• Since fn → f uniformly, there exists N1 ∈ N such that

|fn(x)− f(x)| < ϵ

2
for all x ∈ R if n > N1.

• Since f is continuous at 0, there exists δ > 0 such that

|f(x)− f(0)| < ϵ

2
if |x| < δ,

and since xn → 0 there exists N2 ∈ N such that |xn| < δ if n > N2.
Therefore

|f(xn)− f(0)| < ϵ

2
if n > N2,

• Let N = max(N1, N2). If n > N , then it follows that

|fn(xn)− f(0)| < ϵ

2
+

ϵ

2
= ϵ,

which proves the result.

• (b) This statement is false. As a counter-example, let

fn(x) =

{
1− n|x| if |x| < 1/n,

0 if |x| ≥ 1/n,
xn =

2

n
.
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Then fn is continuous and fn → f pointwise, where

f(x) =

{
1 if x = 0,

0 if x ̸= 0.

Moreover xn → 0. However, we have fn(xn) = 0 for every n and
f(0) = 1, so fn(xn) ̸→ f(0).
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7. Consider the power series

f(x) = 1 +
∞∑
n=1

anx
3n = 1 +

x3

2 · 3
+

x6

2 · 3 · 5 · 6
+

x9

2 · 3 · 5 · 6 · 8 · 9
+ . . . ,

an =
1

2 · 3 · 5 · 6 . . . (3n− 4) · (3n− 3) · (3n− 1) · 3n
.

(a) For which x ∈ R does the series converge?

(b) Prove that f ′′(x) = xf(x).

Solution.

• (a) We compute

r = lim
n→∞

∣∣∣∣an+1x
3(n+1)

anx3n

∣∣∣∣
= |x|3 lim

n→∞

1

(3n+ 2)(3n+ 3)

= 0.

The ratio test implies that the power series converges for every x ∈ R.
(Its radius of convergence is R = ∞.)

• (b) The differentiation theorem for power series implies that f is in-
finitely differentiable on R, and its derivatives are the sum of the term-
by-term differentiated power series. Moreover, the power series for the
derivatives of f also converge on R. Thus, using the identities

3 · 2a1 = 1, 3n(3n− 1)an = an−1 for n ≥ 2,

we get that

f ′′(x) =
∞∑
n=1

3n(3n− 1)anx
3n−2

= x

{
1 +

∞∑
n=2

an−1x
3n−3

}

= x

{
1 +

∞∑
n=1

anx
3n

}
= xf(x)
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Figure 1: Graph of the Airy function f(x) = 1 +
∑∞

n=1 anx
3n.

Remark. Solutions of the ODE y′′ = xy are called Airy functions. For x
large and positive, they behave like exponential functions, and for x large and
negative, they behave like algebraically-decaying trigonometric functions.

The Airy functions describe a transition from oscillatory to exponential be-
havior, and can’t be written in terms of elementary functions. They arise
in many physical applications. In optics, they describe the electromagnetic
field of a light wave near a boundary between light and shadow; and in quan-
tum mechanics, they describe the wavefunction of a particle near a boundary
between classically allowed and forbidden regions. (Here, the relevant Airy
functions are the ones that decay as x → ∞, rather than grow like f .)

The graph of the function in the problem is shown in Figure 1. It is worth
noting that this graph was obtained by using MATLAB’s built in routine for
Airy functions, not by summing the power series explicitly. If x is large and
negative, the power series consists of large terms with alternating signs, and
these terms almost cancel. With a machine round-off error of approximately
2−16, this cancelation makes the numerical values of the sum of the power
series completely inaccurate when x . −5.

The moral is that a power series may not be as useful as it looks away from
its central point if its rate of convergence becomes very slow.
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8. (a) Define a metric on a set X.

(b) Consider the following functions defined for x, y ∈ R by:

d1(x, y) = (x− y)2, d2(x, y) = |x2 − y2|, d3(x, y) = |x− 2y|.

For each function, determine whether or not it is a metric on R.

Solution.

• (a) A metric d on a set X is a function d : X ×X → R such that for
all x, y, z ∈ X:

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).

• (b) None of these are metrics.

• The function d1 is positive and symmetric, but it doesn’t satisfy the
triangle inequality e.g.

d1(1, 0) + d1(0,−1) = 1 + 1 = 2 < 4 = d1(1,−1).

• The function d2 fails only because d2(x, y) = 0 implies that x = ±y, not
x = y e.g. d(1,−1) = 0. However, d2 satisfies the triangle inequality,
since

d2(x, y) =
∣∣x2 − z2 + z2 − y2

∣∣ ≤ ∣∣x2 − z2
∣∣+∣∣z2 − y2

∣∣ = d2(x, z)+d2(z, y),

and it would define a metric on [0,∞).

• Apart from being non-negative, the function d3 is about as poor an
excuse for a metric as you can find: it isn’t symmetric; d3(x, y) = 0
doesn’t imply that x = y e.g. d(2, 1) = 0; and d3 doesn’t satisfy the
triangle inequality e.g.

d3(4, 2) + d3(2, 1) = 0 + 0 < 2 = d3(4, 1).
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