
Real Analysis

Math 125A, Fall 2012

Sample Final Questions

1. Define f : R → R by

f(x) =
x3

1 + x2
.

Show that f is continuous on R. Is f uniformly continuous on R?

Solution.

• To simplify the inequalities a bit, we write

x3

1 + x2
= x− x

1 + x2
.

For x, y ∈ R, we have

|f(x)− f(y)| =
∣

∣

∣

∣

x− y − x

1 + x2
+

y

1 + y2

∣

∣

∣

∣

≤ |x− y|+
∣

∣

∣

∣

x

1 + x2
− y

1 + y2

∣

∣

∣

∣

.

• Using the inequality 2|xy| ≤ x2 + y2, we get
∣

∣

∣

∣

x

1 + x2
− y

1 + y2

∣

∣

∣

∣

=

∣

∣

∣

∣

x− y + xy2 − x2y

(1 + x2)(1 + y2)

∣

∣

∣

∣

≤
[

1 + |xy|
(1 + x2)(1 + y2)

]

|x− y|

≤ 1

2

[

1 + x2 + 1 + y2

(1 + x2)(1 + y2)

]

|x− y|

≤ 1

2

(

1

1 + y2
+

1

1 + x2

)

|x− y|

≤ |x− y|

• It follows that

|f(x)− f(y)| ≤ 2|x− y| for all x, y ∈ R.

Therefore f is Lipschitz continuous on R, which implies that it is uni-
formly continuous (take δ = ǫ/2).
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2. Does there exist a differentiable function f : R → R such that f ′(0) = 0
but f ′(x) ≥ 1 for all x 6= 0?

Solution.

• No such function exists.

• We have

f ′(0) = lim
x→0

[

f(x)− f(0)

x

]

.

The mean value theorem implies that for for every x 6= 0, there is some
ξ strictly between 0 and x (so ξ 6= 0) such that

f(x)− f(0)

x
= f ′(ξ) ≥ 1.

• Since limits preserve inequalities, it follows that

lim
x→0

[

f(x)− f(0)

x

]

≥ 1,

so we cannot have f ′(0) = 0.
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3. (a) Write out the Taylor polynomial P2(x) of order two at x = 0 for the
function

√
1 + x. and give an expression for the remainder R2(x) in Taylor’s

formula √
1 + x = P2(x) +R2(x) − 1 < x < ∞.

(b) Show that the limit

lim
x→0

[

1 + x/2−
√
1 + x

x2

]

exists and find its value.

Solution.

• (a) The function and its derivatives are given by

f(x) =
√
1 + x, f(0) = 1,

f ′(x) =
1

2
(1 + x)−1/2, f ′(0) =

1

2
,

f ′′(x) = −1

4
(1 + x)−3/2, f ′′(0) = −1

4
,

f ′′′(x) =
3

8
(1 + x)−5/2.

• The Taylor polynomial and remainder are

P2(x) =
2

∑

k=0

1

k!
f (k)(0)xk, R2(x) =

1

3!
f ′′′(ξ)x3,

where ξ is between 0 and x, which gives

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
(1 + ξ)−5/2x3

(b) For this part, we only need the Taylor polynomial of order one,

√
1 + x = 1 +

1

2
x− 1

8
(1 + ξ)−3/2x2

where ξ is between 0 and x. Since ξ → 0 as x → 0, it follows that

lim
x→0

[

1 + x/2−
√
1 + x

x2

]

=
1

8
lim
ξ→0

(1 + ξ)−3/2 =
1

8
.
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4. (a) Suppose fn : A → R is uniformly continuous on A for every n ∈ N

and fn → f uniformly on A. Prove that f is uniformly continuous on A.

(b) Does the result in (a) remain true if fn → f pointwise instead of uni-
formly?

Solution.

• (a) Let ǫ > 0. Since fn → f converges uniformly on A there exists
N ∈ N such that

|fn(x)− f(x)| < ǫ

3
for all x ∈ A and n > N.

Choose some n > N . Since fn is uniformly continuous, there exists
δ > 0 such that

|fn(x)− fn(y)| <
ǫ

3
for all x, y ∈ A with |x− y| < δ.

Then, for all x, y ∈ A with |x− y| < δ, we have

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(x)| < ǫ,

which implies that f is uniformly continuous on A.

• (b) The result does not remain true if fn → f pointwise. For example,
consider fn : [0, 1] → R defined by fn(x) = xn. Then fn is uniformly
continuous on [0, 1] because it is a continuous function on a compact
interval, but fn → f pointwise where

f(x) =

{

0 if 0 ≤ x < 1,

1 if x = 1.

The limit f is not even continuous on [0, 1].
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5. Define fn : [0,∞) → R by

fn(x) =
sin(nx)

1 + nx
.

(a) Show that fn converges pointwise on [0,∞) and find the pointwise limit
f .

(b) Show that fn → f uniformly on [a,∞) for every a > 0.

(c) Show that fn does not converge uniformly to f on [0,∞).

Solution.

• (a) If x > 0, then

|fn(x)| ≤
1

1 + nx
→ 0 as n → ∞

so fn(x) → 0. Also, fn(0) = 0 for every n, so fn(0) → 0. Thus, fn → 0
pointwise on [0,∞).

• (b) We have

|fn(x)| ≤
1

1 + na
<

1

na
for all a ≤ x < ∞,

so given ǫ > 0 take N = 1/a and then |fn(x)| < ǫ for all n > N ,
meaning that fn → 0 uniformly on [a,∞).

• (c) If (fn) converges uniformly on [0,∞), then it must converge to the
pointwise-limit 0. Let xn = π/(2n). Then

fn(xn) =
1

1 + π/2
.

Therefore, if 0 < ǫ0 ≤ 1/(1 + π/2), there exists x ∈ [0,∞) such that

fn(x) ≥ ǫ0,

which means that fn does not converge uniformly to 0 on [0,∞).
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Figure 1: Plot of the function fn(x) = sin(nx)/(1 + nx) on [0, 1] for n = 20
(green), n = 100 (red), and n = 500 (blue).

Remark. The non-uniform convergence of the sequence near x = 0 is illus-
trated in the figure.

We can also write the proof in terms of the sup-norm. Let

‖f‖a = sup
x∈[a,∞)

|f(x)|

denote the sup-norm of f on [a,∞). If a > 0, then

‖fn‖a ≤
1

na
→ 0 as n → ∞,

so fn → 0 uniformly on [a,∞). If a = 0, then

‖fn‖0 ≥
1

1 + π/2
for every n ∈ N,

so (fn) does not converge uniformly to 0 on [0,∞).
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6. Suppose that

f(x) =
∞
∑

n=1

sinnx

n3
, g(x) =

∞
∑

n=1

cosnx

n2
.

(a) Prove that f, g : R → R are continuous.

(b) Prove that f : R → R is differentiable and f ′ = g.

Solution.

• (a) Since

∣

∣

∣

∣

sinnx

n3

∣

∣

∣

∣

≤ 1

n3
,

∞
∑

n=1

1

n3
< ∞

∣

∣

∣

cosnx

n2

∣

∣

∣
≤ 1

n2
,

∞
∑

n=1

1

n2
< ∞,

the WeierstrassM-test implies that both series converge uniformly (and
absolutely) on R.

• Each term in the series is continuous, and the uniform limit of contin-
uous functions is continuous, so f , g are continuous on R.

• (b) The series for g is the term-by-term derivative of the series for f .
Since the series for g converges uniformly, the theorem for the differen-
tiation of sequences implies that f is differentiable and f ′ = g.
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7. Let P = {2, 3, 5, 7, 11, . . .} be the set of prime numbers.

(a) Find the radius of convergence R of the power series

f(x) =
∑

p∈P

xp = x2 + x3 + x5 + x7 + x11 + . . .

(b) Show that

0 ≤ f(x) ≤ x2

1− x
for all 0 ≤ x < 1.

Solution.

• (a) We write the series as

f(x) =

∞
∑

n=2

anx
n

where

an =

{

1 if n is prime,

0 if n isn’t prime.

• Then
|anxn| ≤ |x|n for every n = 2, 3, 4, . . . .

Therefore, if |x| < 1 the series converges by comparison with the con-
vergent geometric series

∑

|x|n. Furthermore, if |x| > 1, the terms in
the series do not approach 0. So the radius of convergence of the series
is R = 1.

• (b) As in (a), and using the sum of the geometric series, we have for
0 ≤ x < 1 that

0 ≤
∑

p∈P

xp ≤
∞
∑

n=2

xn = x2

∞
∑

n=0

xn =
x2

1− x
,

which proves the result.
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8. Let (X, d) be a metric space.

(a) Define the open ball Br(x) of radius r > 0 and center x ∈ X .

(b) Define an open set A ⊂ X .

(c) Show that the open ball Br(x) ⊂ X is an open set.

Solution.

• (a) The open ball is defined by

Br(x) = {y ∈ X : d(x, y) < r} .

• (b) A set A ⊂ X is open if for every x ∈ A there exists r > 0 such that
Br(x) ⊂ A.

• (c) Suppose that y ∈ Br(x). We have to show that Br(x) contains an
open ball Bs(y) for some s > 0. Choose

s = r − d(x, y) > 0.

(Draw a picture!) If z ∈ Bs(y), then by the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + s = r,

meaning that z ∈ Br(x). Thus, Bs(y) ⊂ Br(x), which proves the result.
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