Solutions to Sample Questions
Midterm 1: Math 125A, Fall 2012

1. (a) Suppose that f: (0,1) — R is uniformly continuous on (0,1). If (z,)
is a Cauchy sequence in (0, 1) and y, = f(x,), prove that (y,) is a Cauchy
sequence in R.

(b) Give a counter-example to show that the result in (a) need not be true
if f:(0,1) — R is only assumed to be continuous.

Solution.

e (a) Let € > 0 be given. Since f is uniformly continuous on (0, 1), there
exists 0 > 0 such that

|z —y| <0 and z,y € (0,1) implies that |f(z) — f(y)| <e.
Since (z,,) is a Cauchy sequence, there exists NV € N such that
m,n > N implies that |z, — z,| <.
It follows that
m,n > N implies that |f(z,,) — f(z,)| <,
which shows that (f(z,)) is a Cauchy sequence.

e (b) Suppose that f(x) = 1/z for € (0,1) and z,, = 1/n for n € N.
Then f is continuous on (0, 1) since it is a rational function with nonzero
denominator. The sequence (x,,) is Cauchy since it converges to 0 and
every convergent sequence is Cauchy (or give a direct proof). However,
Yn = f(x,) =n and

Yn — ym| =1 for every m,n € N with m # n,

s0 (y,) is not Cauchy.



Remark. Since every Cauchy sequence converges, it follows from this result
that we can extend a uniformly continuous function f : (0,1) - R to a
uniformly continuous function f : [0,1] — R by defining

7(0) = lim f(x,)

n—00

where (z,,) is any sequence in (0, 1) such that z,, — 0 as n — oo, and

f() = lim f(z,)
n—oo
where (z,) is any sequence in (0,1) with z,, — 1 as n — co. (You have to
check that the values f(0) and f(1) are independent of the choice of sequences
to show that f is well defined.) However, we cannot extend a non-uniformly
continuous function on (0,1), such as f(z) = 1/, to a continuous function
on [0, 1].



2. (a) State the -6 definition for a function f: R — R to be continuous at
ceR.

(b) Define the floor function f: R — R by
f(z) = the largest integer n € Z such that n < z.
For example, f(3.14) =3, f(7) =7, f(—3.14) = —4. Determine, with proof,

where f is continuous and where it is discontinuous.

Solution.

e (a) A function f : R — R is continuous at ¢ € R if for every € > 0
there exists > 0 such that

|z — ¢| < 0 implies that |f(x) — f(c)| < e.

e (b) The floor function is discontinuous at every integer ¢ € Z and
continuous at every c ¢ Z.
e If c € Z, define sequences (z,,), (y,) by
1 1
Tp =C— —, yn:C+_-
n n

Then x,, — ¢ and y, — ¢ as n — oo, but for every n € N

f(:L‘n)ZC—l, f(yn):c

so f(zn,) — ¢—1 and f(y,) — ¢ converge to different limits. The
sequential definition of continuity implies that f is discontinuous at c.
(It has a jump discontinuity at ¢ € Z.)

e Suppose that ¢ ¢ Z. Then n < ¢ < n + 1 for some integer n € Z, and
we can define 6 > 0 by

d=min(c—n,n+1—c).

Since |z — ¢| < § implies that n <z <n+ 1 and f(x) = n for all such
xr, we have

|z — ¢| < 0 implies that |f(x) — f(c)] = 0.

Therefore we can use this 6 > 0 for every ¢ > 0 in the definition of
continuity, and f is continuous at c.



3. Suppose that f: R — R is a continuous function such that

lim f(x) =0, lim f(z) = 0.

T——00 T—00

(a) Give a precise statement of what these limits mean.

(b) Prove that f is bounded on R and attains either a maximum or minimum
value.

(c) Give examples to show that f may: (i) attain its maximum but not its
infimum; (ii) attain both its maximum and minimum.

Solution.

e (a) The statement lim,_,  f(z) = 0 means that for every € > 0 there
exists a € R (sufficiently negative) such that

x < a implies that |f(x)| <,

and lim, o, f(x) = 0 means that for every ¢ > 0 there exists b € R
(sufficiently positive) such that

x > b implies that |f(x)| < e.

e (b) If f =0 is identically zero, then the result follows immediately. If
not, choose ¢ € R such that f(c) # 0. Taking e = |f(c)| > 0 in the
limit definitions, we find that there exist a,b € R such that

|f(z)| < |f(c) for all x < a and = > b, (1)
where a < ¢ <b (since f(z) # f(c) if 2 < a or x > b).

e Since f is continuous on the compact interval [a,b] it is bounded on
[a, b] and attains its maximum and minimum values on [a, b]. It follows
from (1) that f is bounded on R. Moreover, if f(c) > 0, then

max{f(z): x € [a,b]} > f(c)

so f attains its global maximum on R at some point in [a, b]. Similarly,

if f(c) <0, then
min{f(z) : x € [a,b]} < —f(c)

so f attains its global minimum on R at some point in [a, b].



e (c) The function, f: R — R defined by

B 1
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f()

attains its maximum value, f(0) = 1, but not its infimum 0 on R.

e The function g : R — R defined by

x
attains both its maximum value, ¢g(1) = 1/2, and minimum value,

g(—=1)=—1/2, on R.



