As illustrated in Figure 1, we choose two constant vectors \(a, b \in \mathbb{R}^3 \) that are linearly independent from \(\gamma'(t_0) \), which is possible since \(\gamma'(t_0) \neq 0 \). (For example, we can use the normal and binormal vectors to the curve \(\gamma \) at \(t_0 \).) We then define \(F : I \times \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) by

\[
F(t, u, v) = \gamma(t) + ua + vb.
\]

That is, \(F(t, u, v) \) is the point in \(\mathbb{R}^3 \) that is obtained by going \(u \) in the \(a \)-direction and \(v \) in the \(b \)-direction from \(\gamma(t) \). In particular, \(F(t, 0, 0) = \gamma(t) \).

The function \(F \) is \(C^1 \) since \(\gamma \) is \(C^1 \) and

\[
\frac{\partial F}{\partial t}(t, u, v) = \gamma'(t), \quad \frac{\partial F}{\partial u}(t, u, v) = a, \quad \frac{\partial F}{\partial v}(t, u, v) = b.
\]

Moreover, the differential matrix of \(F \) is

\[
[dF(t, u, v)] = \begin{bmatrix}
\gamma'(t) & a & b
\end{bmatrix},
\]

where \(\gamma'(t), a, b \) are interpreted as column vectors. The differential \(dF(t_0, 0, 0) \) has rank 3 and is invertible, since \(\{\gamma'(t_0), a, b\} \) are linearly independent.

The inverse function theorem implies that there exist neighborhoods \(U \) of \((t_0, 0, 0) \) and \(V \) of \(\gamma(t_0) \) such that \(F : U \rightarrow V \) has a \(C^1 \)-inverse \(F^{-1} : V \rightarrow U \). We write \(F^{-1} = (e, f, g) \) where \(e, f, g : V \rightarrow \mathbb{R} \) are \(C^1 \) and

\[
t = e(x, y, z), \quad u = f(x, y, z), \quad v = g(x, y, z).
\]

If \((x, y, z) \in V \), then \((x, y, z) = \gamma(t) \) if and only if \(F^{-1}(x, y, z) = (t, 0, 0) \). Thus, in \(V \), the curve \(\gamma \) is the solution of the equations

\[
f(x, y, z) = 0, \quad g(x, y, z) = 0.
\]

Geometrically, the curve is the intersection of the two surfaces \(f(x, y, z) = 0 \) and \(g(x, y, z) = 0 \).
Figure 1: The curve γ and the map F.