
Real Analysis

Math 125B, Spring 2013

Solutions: Final

1. Prove that
1

2
≤

∫ 1

0

2x√
x2013 + 2x+ 1

dx ≤ 1.

Solution.

• For 0 ≤ x ≤ 1, we have

1 ≤
√
x2013 + 2x+ 1 ≤ 2,

so

x ≤ 2x√
x2013 + 2x+ 1

≤ 2x.

By the monotonicity of the integral,

1

2
=

∫ 1

0

x dx ≤
∫ 1

0

2x√
x2013 + 2x+ 1

dx ≤
∫ 1

0

2x dx = 1.
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2. Prove or disprove: if E is a subset of R2, then the closure of the interior
of E is necessarily the same as the closure of E.

Solution.

• This statement is false.

• For example, if E = {0} consists of a single point, then E◦ = ∅ and
E◦ = ∅, but E = {0}.

• Or, for another example, if E = Q2, then E◦ = ∅ and E◦ = ∅, but
E = R2.
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3. Evaluate the limit

lim
n→∞

n
∑

k=1

k

n2 + k2
.

Solution.

• Consider the integral
∫ 1

0

f(x) dx, f(x) =
x

1 + x2
.

The function f is integrable on [0, 1] since it’s continuous (or, alterna-
tively, since it’s monotone).

• The function f is increasing on [0, 1] since

f ′(x) =
1− x2

(1 + x2)2
≥ 0.

Therefore, in an upper Riemann sum U(f ;P ) we evaluate f at the right
endpoints and in a lower Riemann sum L(f ;P ), we evaluate f at the
left endpoints.

• Let P be the partition of [0, 1] into n intervals of equal length 1/n with
endpoints xk = k/n, where k = 0, 1, . . . , n.

• For this partition,

U(f ;P ) =
1

n

n
∑

k=1

k/n

1 + (k/n)2
=

n
∑

k=1

k

n2 + k2
,

L(f ;P ) =
1

n

n
∑

k=1

(k − 1)/n

1 + ((k − 1)/n)2
=

n
∑

k=1

k

n2 + k2
− 1

2n
.

• Since L(f ;P ) ≤
∫ 1

0
f ≤ U(f ;P ), it follows that

∫ 1

0

x

1 + x2
dx ≤

n
∑

k=1

k

n2 + k2
≤

∫ 1

0

x

1 + x2
dx+

1

2n
,

and the “squeeze” theorem implies that

lim
n→∞

n
∑

k=1

k

n2 + k2
=

∫ 1

0

x

1 + x2
dx =

[

1

2
ln
(

1 + x2
)

]1

0

=
1

2
ln 2.
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4. Suppose that f : [0, π] → R is a continuously differentiable function.
Prove that

lim
n→∞

∫ π

0

f(x) sin(nx) dx = 0.

Hint. Integrate by parts.

Solution.

• Since both f and sinnx are continuously differentiable on [0, π], the
integration by parts formula applies, and
∫ π

0

f(x) sin(nx) dx =

[− cos(nx)

n
· f(x)

]π

0

+
1

n

∫ π

0

f ′(x) cos(nx) dx

=
f(0) + (−1)n+1f(π)

n
+

1

n

∫ π

0

f ′(x) cos(nx) dx.

• The limit as n → ∞ of the constant term proportional to 1/n is zero.

• For the integral term, either observe that

1

n
f ′(x) cos(nx) → 0 uniformly on [0, 1]

since f ′ is continuous and therefore bounded, and use the fact that we
can exchange the order of uniform limits and integration, or estimate
the integral directly:

∣

∣

∣

∣

1

n

∫ π

0

f ′(x) cos(nx) dx

∣

∣

∣

∣

≤ 1

n

∫ 1

0

|f ′(x)| dx

≤ 1

n
sup
[0,1]

|f ′| → 0 as n → ∞.

Remark. This result says that the Fourier sine coefficients

bn =
2

π

∫ π

0

f(x) sin(nx) dx

of a continuously differentiable function f approach zero as n → ∞. It’s
a special case of the Riemann-Lebesgue lemma. The general result for a
Lebesgue integrable function f such that

∫ π

0

|f(x)| dx < ∞

follows by approximating f with smooth functions and using the proof above.
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5. Let p > 0. Define the following improper Riemann integral as a limit of
Riemann integrals:

∫

∞

2

1

x(ln x)p
dx.

For what values of p does this integral converge? Hint. Use the substitution
u = lnx.

Solution.

• The improper integral is defined by

∫

∞

2

1

x(ln x)p
dx = lim

b→∞

∫ b

2

1

x(ln x)p
dx.

The Riemann integral on the right-hand side exists since the integrand
is continuous on [2, b].

• The substitution formula with u = ln x and du = dx/x gives

∫ b

2

1

x(ln x)p
dx =

∫ ln b

ln 2

1

up
du.

=

[

u1−p

1− p

]ln b

ln 2

=
(ln b)1−p − (ln 2)1−p

1− p

where we assume that p 6= 1.

• Since ln b → ∞ as b → ∞, this integral diverges if 0 < p < 1, and
converges if p > 1 to

∫

∞

2

1

x(ln x)p
dx =

1

(p− 1)(ln 2)p−1
.

• The integral also diverges (very, very slowly) if p = 1 since

∫ b

2

1

x ln x
dx =

∫ ln b

ln 2

1

u
du = ln ln b− ln ln 2 → ∞.
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6. Suppose that f : [a, b] → R is a nonzero, Riemann integrable function
such that 1/f : [a, b] → R is bounded. Prove that 1/f is Riemann integrable.

Solution.

• Suppose that
1

|f(x)| ≤ M for a ≤ x ≤ b.

• Then for all x, y ∈ [a, b], we have

∣

∣

∣

∣

1

f(x)
− 1

f(y)

∣

∣

∣

∣

=
|f(x)− f(y)|
|f(x)f(y)| ≤ M2|f(x)− f(y)|.

This inequality implies that (see Proposition 2.19 in the class notes on
sups and infs) for every subset I ⊂ [a, b] we have

sup
I

1

f
− inf

I

1

f
≤ M2

(

sup
I

f − inf
I
f

)

.

• For every partition P = {I1, I2, . . . , In} of [a, b], we have

U

(

1

f
;P

)

− L

(

1

f
;P

)

=

n
∑

k=1

(

sup
Ik

1

f
− inf

Ik

1

f

)

|Ik|

≤ M2
n

∑

k=1

(

sup
Ik

f − inf
Ik

f

)

|Ik|.

Therefore, 1/f satisfies the Cauchy criterion for integrability if f does,
and it follows that 1/f is integrable if f is nonzero and integrable and
1/f is bounded.
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7. Define f = (f1, f2) : R
2 → R2 by

f1(x1, x2) = ex1 cosx2, f2(x1, x2) = ex1 sin x2.

(a) Why is f differentiable on R2? Compute the differential matrix of f .

(b) Evaluate the directional derivative D(3/5,4/5)f(0, π/2) of f at P = (0, π/2)
in the direction e = (3/5, 4/5). Which component f1, f2 is increasing at P
in the direction e?

(c) What does the implicit function theorem say about the existence of local
inverses of f? Does f has a global inverse f−1 : R2 \ {0} → R2?

Solution.

• (a) The functions f1, f2 have continuous partial derivatives on R2, so
f is differentiable on R2. The differential matrix is

[df ] =

(

∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

)

=

(

ex1 cosx2 −ex1 sin x2

ex1 sin x2 ex1 cosx2

)

.

• (b) The differential matrix of f at (0, π/2) is

[df(0, π/2)] =

(

0 −1
1 0

)

so the directional derivative is

D(3/5,4/5)f(0, π/2) =

(

0 −1
1 0

)(

3/5
4/5

)

=

(

−4/5
3/5

)

.

The component f2 is increasing in the direction e since its directional
derivative is positive.

• (c) The derivative of f has determinant

det df = ex1 cos2 x2 + ex1 sin2 x2 = ex1 > 0

so df(x1, x2) is invertible at every (x1, x2) ∈ R2, and f is C1. The
inverse function theorem implies that there are open neighborhoods
U of (x1, x2) and V of (f1(x1, x2), f2(x1, x2)) such that f : U → V is
one-to-one and onto with C1-inverse f−1 : V ⊂ R2 → U ⊂ R2.
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• Although f is locally invertible at every point is is not globally invert-
ible since it is not one-to-one:

f(x1, x2 + 2nπ) = f(x1, x2)

for every n ∈ Z.

Remark. This function correspond to the complex exponential function
f : C → C given by f(z) = ez. The local inverse is a branch of the complex
logarithm f−1(z) = log z, but the logarithm can’t be extended to a single-
valued, differentiable function on C.
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8. Suppose that 0 < a < b and 0 < δ < π/2. Let A be the region

A =
{

(x, y) ∈ R2 : a2 ≤ x2 + y2 ≤ b2 and 0 ≤ tan−1(y/x) ≤ 2π − δ
}

,

and consider the integral

I =

∫

A

e−(x2+y2) dxdy.

Make the change of coordinates

x = r cos θ, y = r sin θ

in this integral and evaluate it. Justify your steps.

Solution.

• The change of coordinates is a C1-diffeomorphism in an open neigh-
borhood U of A that doesn’t contain the origin e.g.,

U =
{

(x, y) ∈ R2 : a2 − ǫ < x2 + y2 < b2 + ǫ,

and −ǫ < tan−1(y/x) < 2π − δ + ǫ}

for sufficiently small ǫ > 0, so we can apply the change of variables
theorem.

• The Jacobian determinant is
∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

= r

so formally dxdy = rdrdθ and
∫

A

e−(x2+y2) dxdy =

∫

R

e−r2 rdrdθ

where A is the image of the rectangle

R = {(r, θ) : a ≤ r ≤ b, 0 ≤ θ ≤ 2π − δ} .

• Since it’s continuous, the function re−r2 is integrable on the rectangle,
as are its iterated integrals. Fubini’s theorem implies that

∫

R

e−r2 rdrdθ =

∫ 2π−δ

0

(
∫ b

a

re−r2 dr

)

dθ.
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• Making the substitution u = r2, du = 2r dr, we get

∫ b

a

re−r2 dr =
1

2

∫ b2

a2
e−u du =

1

2

[

−e−u
]b2

a2
=

1

2

(

e−a2 − e−b2
)

.

Thus,

∫

A

e−(x2+y2) dxdy =
1

2

∫ 2π−δ

0

(

e−a2 − e−b2
)

dθ

=
1

2
(2π − δ)

(

e−a2 − e−b2
)

.

Remark. By considering the improper integral with a → 0+, b → ∞, and
δ → 0+, we get that

∫

R2

e−(x2+y2) =

(
∫

∞

−∞

e−x2

dx

)2

=

∫ 2π

0

∫

∞

0

re−r2 dr = π.

This is the classic trick (apparently due to Laplace) for evaluating the definite
Gaussian integral

∫

∞

−∞

e−x2

dx =
√
π.
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