1. Prove that
\[\frac{1}{2} \leq \int_0^1 \frac{2x}{\sqrt{x^{2013} + 2x + 1}} \, dx \leq 1. \]

Solution.

- For \(0 \leq x \leq 1 \), we have
 \[1 \leq \sqrt{x^{2013} + 2x + 1} \leq 2, \]
 so
 \[x \leq \frac{2x}{\sqrt{x^{2013} + 2x + 1}} \leq 2x. \]

By the monotonicity of the integral,
\[
\frac{1}{2} = \int_0^1 x \, dx \leq \int_0^1 \frac{2x}{\sqrt{x^{2013} + 2x + 1}} \, dx \leq \int_0^1 2x \, dx = 1.
\]
2. Prove or disprove: if E is a subset of \mathbb{R}^2, then the closure of the interior of E is necessarily the same as the closure of E.

Solution.

- This statement is false.
- For example, if $E = \{0\}$ consists of a single point, then $E^\circ = \emptyset$ and $\overline{E^\circ} = \emptyset$, but $\overline{E} = \{0\}$.
- Or, for another example, if $E = \mathbb{Q}^2$, then $E^\circ = \emptyset$ and $\overline{E^\circ} = \emptyset$, but $\overline{E} = \mathbb{R}^2$.

2
3. Evaluate the limit
\[
\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + k^2}.
\]

Solution.

- Consider the integral
 \[
 \int_{0}^{1} f(x) \, dx, \quad f(x) = \frac{x}{1 + x^2}.
 \]
The function \(f \) is integrable on \([0, 1]\) since it’s continuous (or, alternatively, since it’s monotone).

- The function \(f \) is increasing on \([0, 1]\) since
 \[
 f'(x) = \frac{1-x^2}{(1+x^2)^2} \geq 0.
 \]
Therefore, in an upper Riemann sum \(U(f; P) \) we evaluate \(f \) at the right endpoints and in a lower Riemann sum \(L(f; P) \), we evaluate \(f \) at the left endpoints.

- Let \(P \) be the partition of \([0, 1]\) into \(n \) intervals of equal length \(1/n \) with endpoints \(x_k = k/n \), where \(k = 0, 1, \ldots, n \).

- For this partition,
 \[
 U(f; P) = \frac{1}{n} \sum_{k=1}^{n} \frac{k/n}{1 + (k/n)^2} = \sum_{k=1}^{n} \frac{k}{n^2 + k^2},
 \]
 \[
 L(f; P) = \frac{1}{n} \sum_{k=1}^{n} \frac{(k-1)/n}{1 + ((k-1)/n)^2} = \sum_{k=1}^{n} \frac{k}{n^2 + k^2} - \frac{1}{2n}.
 \]

- Since \(L(f; P) \leq \int_{0}^{1} f \leq U(f; P) \), it follows that
 \[
 \int_{0}^{1} \frac{x}{1+x^2} \, dx \leq \sum_{k=1}^{n} \frac{k}{n^2 + k^2} \leq \int_{0}^{1} \frac{x}{1+x^2} \, dx + \frac{1}{2n},
 \]
and the “squeeze” theorem implies that
\[
\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + k^2} = \int_{0}^{1} \frac{x}{1+x^2} \, dx = \left[\frac{1}{2} \ln (1+x^2) \right]_{0}^{1} = \frac{1}{2} \ln 2.
\]
4. Suppose that $f : [0, \pi] \to \mathbb{R}$ is a continuously differentiable function. Prove that
\[
\lim_{n \to \infty} \int_{0}^{\pi} f(x) \sin(nx) \, dx = 0.
\]
HINT. Integrate by parts.

Solution.
- Since both f and $\sin nx$ are continuously differentiable on $[0, \pi]$, the integration by parts formula applies, and
\[
\int_{0}^{\pi} f(x) \sin(nx) \, dx = \left[-\frac{\cos(nx)}{n} \cdot f(x) \right]_{0}^{\pi} + \frac{1}{n} \int_{0}^{\pi} f'(x) \cos(nx) \, dx
\]
\[
= \frac{f(0)}{n} + (-1)^{n+1} \frac{f(\pi)}{n} + \frac{1}{n} \int_{0}^{\pi} f'(x) \cos(nx) \, dx.
\]
- The limit as $n \to \infty$ of the constant term proportional to $1/n$ is zero.
- For the integral term, either observe that
\[
\frac{1}{n} f'(x) \cos(nx) \to 0 \quad \text{uniformly on } [0, 1]
\]
since f' is continuous and therefore bounded, and use the fact that we can exchange the order of uniform limits and integration, or estimate the integral directly:
\[
\left| \frac{1}{n} \int_{0}^{\pi} f'(x) \cos(nx) \, dx \right| \leq \frac{1}{n} \int_{0}^{1} |f'(x)| \, dx
\]
\[
\leq \frac{1}{n} \sup_{[0,1]} |f'| \to 0 \quad \text{as } n \to \infty.
\]

Remark. This result says that the Fourier sine coefficients
\[
b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin(nx) \, dx
\]
of a continuously differentiable function f approach zero as $n \to \infty$. It’s a special case of the Riemann-Lebesgue lemma. The general result for a Lebesgue integrable function f such that
\[
\int_{0}^{\pi} |f(x)| \, dx < \infty
\]
follows by approximating f with smooth functions and using the proof above.
5. Let \(p > 0 \). Define the following improper Riemann integral as a limit of Riemann integrals:

\[
\int_{2}^{\infty} \frac{1}{x(\ln x)^p} \, dx.
\]

For what values of \(p \) does this integral converge? HINT. Use the substitution \(u = \ln x \).

Solution.

- The improper integral is defined by

\[
\int_{2}^{\infty} \frac{1}{x(\ln x)^p} \, dx = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x(\ln x)^p} \, dx.
\]

The Riemann integral on the right-hand side exists since the integrand is continuous on \([2, b]\).

- The substitution formula with \(u = \ln x \) and \(du = dx/x \) gives

\[
\int_{2}^{b} \frac{1}{x(\ln x)^p} \, dx = \int_{2}^{ln b} \frac{1}{u^p} \, du,
\]

\[
= \left[\frac{u^{1-p}}{1-p} \right]_{ln 2}^{ln b}
\]

\[
= \frac{(ln b)^{1-p} - (ln 2)^{1-p}}{1-p}
\]

where we assume that \(p \neq 1 \).

- Since \(\ln b \to \infty \) as \(b \to \infty \), this integral diverges if \(0 < p < 1 \), and converges if \(p > 1 \) to

\[
\int_{2}^{\infty} \frac{1}{x(\ln x)^p} \, dx = \frac{1}{(p-1)(\ln 2)^{p-1}}.
\]

- The integral also diverges (very, very slowly) if \(p = 1 \) since

\[
\int_{2}^{b} \frac{1}{x \ln x} \, dx = \int_{\ln 2}^{\ln b} \frac{1}{u} \, du = \ln \ln b - \ln \ln 2 \to \infty.
\]
6. Suppose that $f : [a, b] \to \mathbb{R}$ is a nonzero, Riemann integrable function such that $1/f : [a, b] \to \mathbb{R}$ is bounded. Prove that $1/f$ is Riemann integrable.

Solution.

- Suppose that
 \[\frac{1}{|f(x)|} \leq M \quad \text{for } a \leq x \leq b. \]

- Then for all $x, y \in [a, b]$, we have
 \[\left| \frac{1}{f(x)} - \frac{1}{f(y)} \right| = \frac{|f(x) - f(y)|}{|f(x)f(y)|} \leq M^2 |f(x) - f(y)|. \]

 This inequality implies that (see Proposition 2.19 in the class notes on sups and infs) for every subset $I \subset [a, b]$ we have
 \[\sup_I \frac{1}{f} - \inf_I \frac{1}{f} \leq M^2 \left(\sup_I f - \inf_I f \right). \]

- For every partition $P = \{ I_1, I_2, \ldots, I_n \}$ of $[a, b]$, we have
 \[U \left(\frac{1}{f}; P \right) - L \left(\frac{1}{f}; P \right) = \sum_{k=1}^{n} \left(\sup_{I_k} \frac{1}{f} - \inf_{I_k} \frac{1}{f} \right) |I_k| \]
 \[\leq M^2 \sum_{k=1}^{n} \left(\sup_{I_k} f - \inf_{I_k} f \right) |I_k|. \]

 Therefore, $1/f$ satisfies the Cauchy criterion for integrability if f does, and it follows that $1/f$ is integrable if f is nonzero and integrable and $1/f$ is bounded.
7. Define \(f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2 \) by
\[
f_1(x_1, x_2) = e^{x_1} \cos x_2, \quad f_2(x_1, x_2) = e^{x_1} \sin x_2.
\]
(a) Why is \(f \) differentiable on \(\mathbb{R}^2 \)? Compute the differential matrix of \(f \).
(b) Evaluate the directional derivative \(D_{(3/5, 4/5)} f(0, \pi/2) \) of \(f \) at \(P = (0, \pi/2) \) in the direction \(e = (3/5, 4/5) \). Which component \(f_1, f_2 \) is increasing at \(P \) in the direction \(e \)?
(c) What does the implicit function theorem say about the existence of local inverses of \(f \)? Does \(f \) has a global inverse \(f^{-1} : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \)?

Solution.

- (a) The functions \(f_1, f_2 \) have continuous partial derivatives on \(\mathbb{R}^2 \), so \(f \) is differentiable on \(\mathbb{R}^2 \). The differential matrix is
\[
[df] = \begin{pmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2}
\end{pmatrix}
= \begin{pmatrix}
e^{x_1} \cos x_2 & -e^{x_1} \sin x_2 \\
e^{x_1} \sin x_2 & e^{x_1} \cos x_2
\end{pmatrix}.
\]

- (b) The differential matrix of \(f \) at \((0, \pi/2)\) is
\[
[df(0, \pi/2)] = \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\]
so the directional derivative is
\[
D_{(3/5, 4/5)} f(0, \pi/2) = \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
3/5 \\
4/5
\end{pmatrix}
= \begin{pmatrix}
-4/5 \\
3/5
\end{pmatrix}.
\]
The component \(f_2 \) is increasing in the direction \(e \) since its directional derivative is positive.

- (c) The derivative of \(f \) has determinant
\[
\det df = e^{x_1} \cos^2 x_2 + e^{x_1} \sin^2 x_2 = e^{x_1} > 0
\]
so \(df(x_1, x_2) \) is invertible at every \((x_1, x_2) \in \mathbb{R}^2\), and \(f \) is \(C^1 \). The inverse function theorem implies that there are open neighborhoods \(U \) of \((x_1, x_2)\) and \(V \) of \((f_1(x_1, x_2), f_2(x_1, x_2))\) such that \(f : U \to V \) is one-to-one and onto with \(C^1 \)-inverse \(f^{-1} : V \subset \mathbb{R}^2 \to U \subset \mathbb{R}^2 \).
• Although f is locally invertible at every point is is not globally invertible since it is not one-to-one:

$$f(x_1, x_2 + 2n\pi) = f(x_1, x_2)$$

for every $n \in \mathbb{Z}$.

Remark. This function correspond to the complex exponential function $f : \mathbb{C} \to \mathbb{C}$ given by $f(z) = e^z$. The local inverse is a branch of the complex logarithm $f^{-1}(z) = \log z$, but the logarithm can’t be extended to a single-valued, differentiable function on \mathbb{C}.

8. Suppose that 0 < a < b and 0 < δ < π/2. Let A be the region

\[A = \{(x, y) \in \mathbb{R}^2 : a^2 \leq x^2 + y^2 \leq b^2 \text{ and } 0 \leq \tan^{-1}(y/x) \leq 2\pi - \delta\}, \]

and consider the integral

\[I = \int_A e^{-(x^2+y^2)} \, dx \, dy. \]

Make the change of coordinates

\[x = r \cos \theta, \quad y = r \sin \theta \]

in this integral and evaluate it. Justify your steps.

Solution.

• The change of coordinates is a C^1-diffeomorphism in an open neighborhood U of A that doesn’t contain the origin e.g.,

\[U = \{(x, y) \in \mathbb{R}^2 : a^2 - \epsilon < x^2 + y^2 < b^2 + \epsilon, \]

\[\text{and } -\epsilon < \tan^{-1}(y/x) < 2\pi - \delta + \epsilon \} \]

for sufficiently small $\epsilon > 0$, so we can apply the change of variables theorem.

• The Jacobian determinant is

\[\begin{vmatrix}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{vmatrix} = r \]

so formally $dx \, dy = r \, dr \, d\theta$ and

\[\int_A e^{-(x^2+y^2)} \, dx \, dy = \int_R e^{-r^2} \, r \, dr \, d\theta \]

where A is the image of the rectangle

\[R = \{(r, \theta) : a \leq r \leq b, \quad 0 \leq \theta \leq 2\pi - \delta\}. \]

• Since it’s continuous, the function re^{-r^2} is integrable on the rectangle, as are its iterated integrals. Fubini’s theorem implies that

\[\int_R e^{-r^2} \, r \, dr \, d\theta = \int_0^{2\pi-\delta} \left(\int_a^b re^{-r^2} \, dr \right) \, d\theta. \]
Making the substitution $u = r^2$, $du = 2r dr$, we get
\[\int_a^b re^{-r^2} dr = \frac{1}{2} \int_{a^2}^{b^2} e^{-u} du = \frac{1}{2} \left[-e^{-u}\right]_{a^2}^{b^2} = \frac{1}{2} \left(e^{-a^2} - e^{-b^2}\right). \]

Thus,
\[\int_A e^{-(x^2+y^2)} dxdy = \frac{1}{2} \int_0^{2\pi-\delta} \left(e^{-a^2} - e^{-b^2}\right) d\theta \]
\[= \frac{1}{2} (2\pi - \delta) \left(e^{-a^2} - e^{-b^2}\right). \]

Remark. By considering the improper integral with $a \to 0^+$, $b \to \infty$, and $\delta \to 0^+$, we get that
\[\int_{\mathbb{R}^2} e^{-(x^2+y^2)} = \left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_0^{2\pi} \int_0^{\infty} re^{-r^2} dr = \pi. \]

This is the classic trick (apparently due to Laplace) for evaluating the definite Gaussian integral
\[\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}. \]