Midterm 2: Sample question solutions
Math 125B: Winter 2013

1. Suppose that f : R3® — R? is defined by
f(x,y,2) = (1752 + yz,sin(xyz) + z) )

a) Why is f differentiable on R3®? Compute the Jacobian matrix of f at
x,y,z) = (—1,0,1).

(
(
(b) Are there any directions in which the directional derivative of f at
(—1,0,1) is zero? If so, find them.

Solution.

e (a) The partial derivatives of the component functions of f exist and
are continuous on R3, so f is differentiable on R3.

e Explicitly, we write f = (fi, fo) where fi, fo : R — R are given by

fl(xayaz) :$2+y2, fg([[’,y,Z) :sm(a:yz)—i—z

The partial derivatives are

0f1 i afl o afl .
0:10 ([L’,y,Z) —21’, ay (.T,y,Z) _Za aZ ([L’,y,Z) _y>
oy _ Oy,

am (‘I?y72) —yZCOS(ZEyZ), ay (ZE,y,Z) = Iz COS(‘IyZ)a
Ofs

D2,y 2) = wycos(ayz) + 1
and the Jacobian matrix of f is

df] = dfi/0x Of1/0y 0f1/0z
 \ 0fa/0x Ofy/0y Ofy]0z

e In particular,

8f1 afl

ofi
—(-1,0,1) = -2 —(—=1,0,1) =1 —(—1,0,1) =
ax ( ?07 ) ? ay ( 70? ) Y az ( ?07 ) 07
8f2 afZ af3
—(—1,0,1) = —(—1,0,1) = -1 —(—1,0,1) = 1.
ax ( 707 ) 07 ay ( 707 ) Y az ( 707 )



Therefore, the Jacobian matrix of f at (—1,0,1) is
-2 1 0

e (b) The directional derivative of f at (—1,0, 1) in the direction h is
th(_]-7 0, ]-) = df(_]-7 0, 1)h

If h = (a,b,c), then the directional derivative has components
2 1 0 “ —2a+b
[th(_17071)]: ( 0 -1 1 ) l; - ( —b+e )

e This is zero if b = 2a and ¢ = b, or h = k(1,2,2) where k is an arbi-
trary constant. Thus, normalizing A to unit vector, with a convenient
choice of sign, the directional derivative of f at (—1,0,1) is zero in the
direction

1
h=-(1,2,2).
$(1,2,2)



2. Suppose that f: R — R3 and g : R* — R are defined by

ft) = (t, 1%, 1%), g(z,y,2) = 2%,

and h = go f : R — R is their composition.
(a) Use the chain rule to compute A/(1).
(b) Find h(t) and compute h'(1) directly.

Solution.

e (a) Note that f is differentiable on R, since each of its component
functions is differentiable, and ¢ is differentiable on R? since its partial
derivatives exist and are continuous.

e The Jacobian matrix of f at t =1 is

1 1
dr)) = | 2 =| 2
3t2 _ 3

e We have f(1) = (1,1,1), and the Jacobian matrix of g at (1,1,1) is

[dg(f(1))] = ( 2ze¥® x?zev* a?yeY” )}(%y’z):(l’l’l) =(2 e e).
e By the chain rule, h = g o f is differentiable on R and
1
W) =[dg(f)df(D)]=(2e e e )| 2 | =2e+2e+3e="Te.
3

e We have .
h(t) = g(t,t*, %) = t?e".

Thus, by the product and chain rules from one-variable calculus,

= Te.

t=1

R'(1) = <2t e 42 5t4et5>




3. Define f : R? — R by

4/3 o if
LU i,

Where is f is differentiable?

Solution.
e The function f is differentiable at every point of R?.

e By the chain and product rules, the partial derivatives of f,

O (0 ) = 50 sin(y ) — g~ cos(y o)
ey = o cos(y ),

exist and are continuous in the open set
U={(r,y) e R*: 2 # 0}
Therefore f is differentiable in U.

e We claim that the partial derivatives of f also exist if x = 0 and are
equal to 0.

e For the partial derivative with respect to x, we have

4/3 o
— lim h*?sin(y/h)
h—0 h
BT 1/3
= }lg%h sin(y/h)
— O7

where we use the ‘squeeze’ theorem and the inequality

A2 sin(y/h)] < |h|'°.



e Since f(0,y) = 0 for every y € R, for the partial derivative with respect
to y, we have

of d

2, 0¥ =, [(0y) =0,

o [t follows that if f is differentiable at (0,y), then its derivative

[df (0,y)] = (0f/0x(0,y),0f /9y (0,y))

must be zero. We prove that this is indeed the case from the definition
of the derivative.

e Consider the difference between f and its affine approximation at (0, y):

To prove that f is differentiable at (0,y) with derivative df(0,y), we
need to show that
fim PR
(h,k)—(0,0) || (h, k)|

e Supposing that [df(0,y)] = (0,0) and using the fact that f(0,y) = 0,
we get r(h, k) = f(h,y+ k). Therefore,

[r(h, k)| < |R[*?,
since either h = 0 and r(h, k) =0, or h # 0 and
[ (h, k)| = [n* sin((y + k) /)| < |h]*°.
It follows that

(R, k)| |
< <
IR, )L = (R + K2)12

W3 =0  as (hk)— (0,0).

e This proves that f is differentiable at (0, y) with derivative df (0,y) = 0.

Remark. Note that df/dy is continuous, but df/dz is not continuous at
(0,y), except when y = 0. This function is differentiable even though it has a
discontinuous partial derivative, so while the continuity of partial derivatives
is a sufficient condition for differentiability, it isn’t a necessary one.



4. Suppose that f: R™ — R™ is differentiable at x € R". If A : R™ — RP is
a linear map, prove from the definition of the derivative that Af : R* — R?
is differentiable at = and find its derivative. (You can assume that ||Ah| <
M]|h|| for some constant M. See p. 212 of the text)

Solution.
e From the definition of the derivative,
flx+h)= f(x)+df(x)h +r(h)

where the derivative df (z) : R® — R™ is a linear map and r(h) = o(h)
as h — 0, meaning that

po Il
h—0 HhH

e [t follows from the linearity of A that
Af(x+h) = Af(x)+ Adf (x)h + Ar(h),

and Adf(z) : R" — RP is a linear map (i.e., df(z) followed by A).
Moreover, Ar(h) = o(h) as h — 0 since
[Ar(h)|

_ Il

< — 0 as h — 0.
Il Il

e This proves that Af is differentiable at x with derivative

d(Af)(x) = Adf (z).

Remark. This problem is a special case of the chain rule where one of the
functions is linear, so the function and its derivative are equal.



5. The mean value theorem from one-variable calculus states that if a func-
tion f : [a,b] — R is continuous on the closed interval [a, b] and differentiable
in the open interval (a,b), then there is a point @ < ¢ < b such that

f(b) = fla) = (b—a)f'(c).

Does this theorem remain true for a vector-valued function f : [a,b] — R??

Solution.

e It doesn’t remain true. The reason is that if f = (f1, f2), we may need
to use different points ¢q, ¢ to satisfy the mean value theorem for the
real-valued component functions fi, fs : [a,b] — R.

e To give an explicit counter-example, define f : [0,1] — R? by

fl@)=(z(1—x),2*(1—2)), fl)=2(1-2), fl)=2"(1-2).
Then f is continuous on [0, 1] and differentiable in (0, 1), since each
component function is, and f(0) = f(1) = (0,0). However, f](c;) =0
if and only if ¢; = 1/2, while f5(c2) = 0 at an interior point if and only
if ¢ = 2/3. Thus, there is no point 0 < ¢ < 1 such that f’(c) = (0,0).

Optional remark. Frequently, we use the mean value theorem for a real-
valued function in the following way: if |f'(z)] < M for a < x < b, then
|f(b) — f(a)] < M|b— al|. Although the mean value theorem itself fails for
vector-valued functions, there is a useful generalization of this estimate that
can often be used instead. If f : R®™ — R™ is continuously differentiable, and
a,b € R™ then the chain rule implies that for ¢ € R,

CFatt(b— ) = df (at (b~ a)) (b —a).

Suppose that ||df (a +t(b—a)) || < M for 0 <t <1, where ||A|| > 0 denotes
the norm of a linear map A : R® — R™ (i.e., the smallest constant such that
|AR|| < ||AJl||R|| for all A € R™). Then the fundamental theorem of calculus
implies that

f(b)—f(a)=/0 Crat - a) dt:/o df (a + t(b — ) (b— a) dt,

and this gives the estimate

1F(6) = f(a)l S/O ldf (a+t(b—a)) (b —a)l[dt < M|[b—a.



