
Midterm 2: Sample question solutions

Math 125B: Winter 2013

1. Suppose that f : R3 → R
2 is defined by

f(x, y, z) =
(

x2 + yz, sin(xyz) + z
)

.

(a) Why is f differentiable on R
3? Compute the Jacobian matrix of f at

(x, y, z) = (−1, 0, 1).

(b) Are there any directions in which the directional derivative of f at
(−1, 0, 1) is zero? If so, find them.

Solution.

• (a) The partial derivatives of the component functions of f exist and
are continuous on R

3, so f is differentiable on R
3.

• Explicitly, we write f = (f1, f2) where f1, f2 : R
3 → R are given by

f1(x, y, z) = x2 + yz, f2(x, y, z) = sin(xyz) + z.

The partial derivatives are

∂f1
∂x

(x, y, z) = 2x,
∂f1
∂y

(x, y, z) = z,
∂f1
∂z

(x, y, z) = y,

∂f2
∂x

(x, y, z) = yz cos(xyz),
∂f2
∂y

(x, y, z) = xz cos(xyz),

∂f3
∂z

(x, y, z) = xy cos(xyz) + 1,

and the Jacobian matrix of f is

[df ] =

(

∂f1/∂x ∂f1/∂y ∂f1/∂z
∂f2/∂x ∂f2/∂y ∂f2/∂z

)

• In particular,

∂f1
∂x

(−1, 0, 1) = −2,
∂f1
∂y

(−1, 0, 1) = 1,
∂f1
∂z

(−1, 0, 1) = 0,

∂f2
∂x

(−1, 0, 1) = 0,
∂f2
∂y

(−1, 0, 1) = −1,
∂f3
∂z

(−1, 0, 1) = 1.



Therefore, the Jacobian matrix of f at (−1, 0, 1) is

[df(−1, 0, 0)] =

(

−2 1 0
0 −1 1

)

• (b) The directional derivative of f at (−1, 0, 1) in the direction h is

Dhf(−1, 0, 1) = df(−1, 0, 1)h.

If h = (a, b, c), then the directional derivative has components

[Dhf(−1, 0, 1)] =

(

−2 1 0
0 −1 1

)





a
b
c



 =

(

−2a + b
−b+ c

)

• This is zero if b = 2a and c = b, or h = k(1, 2, 2) where k is an arbi-
trary constant. Thus, normalizing h to unit vector, with a convenient
choice of sign, the directional derivative of f at (−1, 0, 1) is zero in the
direction

h =
1

3
(1, 2, 2).



2. Suppose that f : R → R
3 and g : R3 → R are defined by

f(t) = (t, t2, t3), g(x, y, z) = x2eyz,

and h = g ◦ f : R → R is their composition.

(a) Use the chain rule to compute h′(1).

(b) Find h(t) and compute h′(1) directly.

Solution.

• (a) Note that f is differentiable on R, since each of its component
functions is differentiable, and g is differentiable on R

3 since its partial
derivatives exist and are continuous.

• The Jacobian matrix of f at t = 1 is

[df(1)] =





1
2t
3t2





∣

∣

∣

∣

∣

∣

t=1

=





1
2
3



 .

• We have f(1) = (1, 1, 1), and the Jacobian matrix of g at (1, 1, 1) is

[dg(f(1))] =
(

2xeyz x2zeyz x2yeyz
)∣

∣

(x,y,z)=(1,1,1)
=

(

2e e e
)

.

• By the chain rule, h = g ◦ f is differentiable on R and

h′(1) = [dg(f(1))][df(1)] =
(

2e e e
)





1
2
3



 = 2e+ 2e+ 3e = 7e.

• We have
h(t) = g(t, t2, t3) = t2et

5

.

Thus, by the product and chain rules from one-variable calculus,

h′(1) =
(

2t · et
5

+ t2 · 5t4et
5

)∣

∣

∣

t=1
= 7e.



3. Define f : R2 → R by

f(x, y) =

{

x4/3 sin(y/x) if x 6= 0,

0 if x = 0.

Where is f is differentiable?

Solution.

• The function f is differentiable at every point of R2.

• By the chain and product rules, the partial derivatives of f ,

∂f

∂x
(x, y) =

4

3
x1/3 sin(y/x)− yx−2/3 cos(y/x),

∂f

∂y
(x, y) = x1/3 cos(y/x),

exist and are continuous in the open set

U = {(x, y) ∈ R
2 : x 6= 0}.

Therefore f is differentiable in U .

• We claim that the partial derivatives of f also exist if x = 0 and are
equal to 0.

• For the partial derivative with respect to x, we have

∂f

∂x
(0, y) = lim

h→0

f(h, y)− f(0, y)

h

= lim
h→0

h4/3 sin(y/h)

h

= lim
h→0

h1/3 sin(y/h)

= 0,

where we use the ‘squeeze’ theorem and the inequality

|h1/3 sin(y/h)| ≤ |h|1/3.



• Since f(0, y) = 0 for every y ∈ R, for the partial derivative with respect
to y, we have

∂f

∂y
(0, y) =

d

dy
f(0, y) = 0.

.

• It follows that if f is differentiable at (0, y), then its derivative

[df(0, y)] = (∂f/∂x(0, y), ∂f/∂y(0, y))

must be zero. We prove that this is indeed the case from the definition
of the derivative.

• Consider the difference between f and its affine approximation at (0, y):

r(h, k) = f(h, y + k)− f(0, y)− df(0, y) · (h, k).

To prove that f is differentiable at (0, y) with derivative df(0, y), we
need to show that

lim
(h,k)→(0,0)

|r(h, k)|

‖(h, k)‖
= 0.

• Supposing that [df(0, y)] = (0, 0) and using the fact that f(0, y) = 0,
we get r(h, k) = f(h, y + k). Therefore,

|r(h, k)| ≤ |h|4/3,

since either h = 0 and r(h, k) = 0, or h 6= 0 and

|r(h, k)| =
∣

∣h4/3 sin((y + k)/h)
∣

∣ ≤ |h|4/3.

It follows that

|r(h, k)|

‖(h, k)‖
≤

|h|4/3

(h2 + k2)1/2
≤ |h|1/3 → 0 as (h, k) → (0, 0).

• This proves that f is differentiable at (0, y) with derivative df(0, y) = 0.

Remark. Note that ∂f/∂y is continuous, but ∂f/∂x is not continuous at
(0, y), except when y = 0. This function is differentiable even though it has a
discontinuous partial derivative, so while the continuity of partial derivatives
is a sufficient condition for differentiability, it isn’t a necessary one.



4. Suppose that f : Rn → R
m is differentiable at x ∈ R

n. If A : Rm → R
p is

a linear map, prove from the definition of the derivative that Af : Rn → R
p

is differentiable at x and find its derivative. (You can assume that ‖Ah‖ ≤
M‖h‖ for some constant M . See p. 212 of the text)

Solution.

• From the definition of the derivative,

f(x+ h) = f(x) + df(x)h+ r(h)

where the derivative df(x) : Rn → R
m is a linear map and r(h) = o(h)

as h → 0, meaning that

lim
h→0

‖r(h)‖

‖h‖
= 0.

• It follows from the linearity of A that

Af(x+ h) = Af(x) + Adf(x)h+ Ar(h),

and Adf(x) : Rn → R
p is a linear map (i.e., df(x) followed by A).

Moreover, Ar(h) = o(h) as h → 0 since

‖Ar(h)‖

‖h‖
≤ M

‖r(h)‖

‖h‖
→ 0 as h → 0.

• This proves that Af is differentiable at x with derivative

d(Af)(x) = Adf(x).

Remark. This problem is a special case of the chain rule where one of the
functions is linear, so the function and its derivative are equal.



5. The mean value theorem from one-variable calculus states that if a func-
tion f : [a, b] → R is continuous on the closed interval [a, b] and differentiable
in the open interval (a, b), then there is a point a < c < b such that

f(b)− f(a) = (b− a)f ′(c).

Does this theorem remain true for a vector-valued function f : [a, b] → R
2?

Solution.

• It doesn’t remain true. The reason is that if f = (f1, f2), we may need
to use different points c1, c2 to satisfy the mean value theorem for the
real-valued component functions f1, f2 : [a, b] → R.

• To give an explicit counter-example, define f : [0, 1] → R
2 by

f(x) =
(

x(1 − x), x2(1− x)
)

, f1(x) = x(1− x), f2(x) = x2(1− x).

Then f is continuous on [0, 1] and differentiable in (0, 1), since each
component function is, and f(0) = f(1) = (0, 0). However, f ′

1(c1) = 0
if and only if c1 = 1/2, while f ′

2(c2) = 0 at an interior point if and only
if c2 = 2/3. Thus, there is no point 0 < c < 1 such that f ′(c) = (0, 0).

Optional remark. Frequently, we use the mean value theorem for a real-
valued function in the following way: if |f ′(x)| ≤ M for a < x < b, then
|f(b) − f(a)| ≤ M |b − a|. Although the mean value theorem itself fails for
vector-valued functions, there is a useful generalization of this estimate that
can often be used instead. If f : Rn → R

m is continuously differentiable, and
a, b ∈ R

n, then the chain rule implies that for t ∈ R,

d

dt
f (a+ t(b− a)) = df (a+ t(b− a)) (b− a).

Suppose that ‖df (a+ t(b− a)) ‖ ≤ M for 0 ≤ t ≤ 1, where ‖A‖ ≥ 0 denotes
the norm of a linear map A : Rn → R

m (i.e., the smallest constant such that
‖Ah‖ ≤ ‖A‖‖h‖ for all h ∈ R

n). Then the fundamental theorem of calculus
implies that

f(b)− f(a) =

∫ 1

0

d

dt
f (a+ t(b− a)) dt =

∫ 1

0

df (a+ t(b− a)) (b− a) dt,

and this gives the estimate

‖f(b)− f(a)‖ ≤

∫ 1

0

‖df (a+ t(b− a)) (b− a)‖ dt ≤ M‖b− a‖.


