The \(\lim \inf \) and \(\lim \sup \) and Cauchy sequences

1 \hspace{1em} \textbf{The \(\lim \sup \) and \(\lim \inf \)}

We begin by stating explicitly some immediate properties of the sup and inf, which we use below.

Proposition 1. (a) If \(A \subset \mathbb{R} \) is a nonempty set, then \(\inf A \leq \sup A \). (b) If \(A \subset B \), then \(\sup A \leq \sup B \) and \(\inf A \geq \inf B \).

Proof. (a) If \(x \in A \), then \(\inf A \leq x \leq \sup A \), so the result follows. (b) If \(A \subset B \), then \(\sup B \) is an upper bound of \(A \), so \(\sup A \leq \sup B \). Similarly, \(\inf B \) is a lower bound of \(A \), so \(\inf A \geq \inf B \).

Suppose that \((x_n) \) is a bounded sequence, meaning that there exist \(m, M \in \mathbb{R} \) such that

\[m \leq x_n \leq M \quad \text{for all} \quad n \in \mathbb{N}. \]

Let \(T_n \subset \mathbb{R} \) be the set of terms of the tail of the sequence starting at \(x_n \),

\[T_n = \{ x_k : k \geq n \}. \]

Then \(T_n \) is bounded from above by \(M \) and bounded from below by \(m \), so

\[y_n = \sup T_n, \quad z_n = \inf T_n \]

exist, and

\[m \leq z_n \leq y_n \leq M. \quad (1) \]

Moreover, \(T_{n+1} \subset T_n \), so \(y_{n+1} \leq y_n \) and \(z_{n+1} \geq z_n \). It follows that \((y_n) \) is a decreasing sequence that is bounded from below by \(m \), and \((z_n) \) is an increasing sequence that is bounded from above by \(M \), so both sequences converge. Their limits define the \(\lim \sup \) and \(\lim \inf \) of the original sequence.

Definition 2. Let \((x_n) \) be a bounded sequence. Then

\[\lim \sup x_n = \lim_{n \to \infty} \left[\sup \{ x_k : k \geq n \} \right], \quad \lim \inf x_n = \lim_{n \to \infty} \left[\inf \{ x_k : k \geq n \} \right]. \]

That is,

\[\lim \sup x_n = \lim y_n, \quad \lim \inf x_n = \lim z_n. \]

It follows from (1) and the order properties of limits that

\[\lim \inf x_n \leq \lim \sup x_n. \quad (2) \]
Theorem 3. A sequence \((x_n)\) converges to \(x \in \mathbb{R}\) if and only if
\[
\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = x.
\]

Proof. Suppose that the \(\limsup\) and \(\liminf\) of \((x_n)\) are both equal to \(x \in \mathbb{R}\). Then \(y_n \to x\) and \(z_n \to x\). The definition of \(y_n\) and \(z_n\) implies that \(z_n \leq x_n \leq y_n\) for every \(n \in \mathbb{N}\), so the “squeeze” theorem implies that \(x_n \to x\).

Conversely, suppose that \(x_n \to x\). Given any \(\epsilon > 0\), there exists \(N \in \mathbb{N}\) such that
\[
x - \epsilon < x_n < x + \epsilon \quad \text{for every } n > N.
\]

It follows that
\[
x - \epsilon \leq \inf \{x_k : k \geq n\} \leq \sup \{x_k : k \geq n\} \leq x + \epsilon \quad \text{for every } n > N,
\]
which shows that
\[
|y_n - x| \leq \epsilon, \quad |z_n - x| \leq \epsilon \quad \text{for every } n > N.
\]

Hence, \(y_n \to x\) and \(z_n \to x\), so \(\limsup x_n = \liminf x_n = x\). \(\square\)

2 Cauchy sequences

A Cauchy sequence is a sequence whose terms eventually get arbitrarily close together.

Definition 4. A sequence \((x_n)\) of real numbers is a Cauchy sequence if for every \(\epsilon > 0\) there exists \(N \in \mathbb{N}\) such that
\[
|x_m - x_n| < \epsilon \quad \text{for all } m, n > N.
\]

Every convergent sequence is Cauchy, and the completeness of \(\mathbb{R}\) implies that every Cauchy sequence converges.

Theorem 5. A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proof. First suppose that \((x_n)\) converges to a limit \(x \in \mathbb{R}\). Then for every \(\epsilon > 0\) there exists \(N \in \mathbb{N}\) such that
\[
|x_n - x| < \frac{\epsilon}{2} \quad \text{for all } n > N.
\]

It follows that if \(m, n > N\), then
\[
|x_m - x_n| \leq |x_m - x| + |x - x_n| < \epsilon,
\]
which implies that \((x_n)\) is Cauchy. (This direction doesn’t use the completeness of \(\mathbb{R}\); for example, it holds equally well for sequence of rational numbers that converge in \(\mathbb{Q}\).)
Conversely, suppose that \((x_n)\) is Cauchy. Then there is \(N_1 \in \mathbb{N}\) such that
\[
|x_m - x_n| < 1 \quad \text{for all } m, n > N_1.
\]
It follows that if \(n > N_1\), then
\[
|x_n| \leq |x_n - x_{N_1+1}| + |x_{N_1+1}| \leq 1 + |x_{N_1+1}|.
\]
Hence the sequence is bounded with
\[
|x_n| \leq \max\{|x_1|, |x_2|, \ldots, |x_{N_1}|, 1 + |x_{N_1+1}|\}.
\]
Since the sequence is bounded, its lim sup and lim inf exist. We claim they are equal. Given \(\epsilon > 0\), choose \(N \in \mathbb{N}\) such that the Cauchy condition in Definition 4 holds. Then
\[
x_n - \epsilon < x_m < x_n + \epsilon \quad \text{for all } m \geq n > N.
\]
It follows that for all \(n > N\) we have
\[
x_n - \epsilon \leq \inf\{x_m : m \geq n\}, \quad \sup\{x_m : m \geq n\} \leq x_n + \epsilon,
\]
which implies that
\[
\sup\{x_m : m \geq n\} - \epsilon \leq \inf\{x_m : m \geq n\} + \epsilon.
\]
Taking the limit as \(n \to \infty\), we get that
\[
\limsup_{n \to \infty} x_n - \epsilon \leq \liminf_{n \to \infty} x_n + \epsilon,
\]
and since \(\epsilon > 0\) is arbitrary, we have
\[
\limsup_{n \to \infty} x_n \leq \liminf_{n \to \infty} x_n.
\]
In view of (2), it follows that \(\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n\), so the sequence converges by Theorem 3. \(\square\)