Sample Questions: Solutions Midterm II Math 127B. Winter, 2005

- 1. For each of the following statements, say if it is true or false. (No explanation is required.)
- (a) If f is differentiable and f' > 0, then f is strictly increasing.
- (b) If f is strictly increasing and differentiable, then f' > 0.
- (c) If f is the sum of a convergent Taylor series in an open interval containing the origin, then f is infinitely differentiable.
- (d) If f is infinitely differentiable in an open interval containing the origin, then the Taylor series of f converges.
- (e) There exists 0 < x < 1 such that $e^x \sin 1 = \cos x (e 1)$.

Solution.

- (a) True. (Follows from the mean value theorem.)
- (b) False. (For example, $f(x) = x^3$.)
- (c) True. (Power series can be differentiated term-by-term inside their interval of convergence.)
- (d) False. (For example, we saw in class that

$$f(x) = \sum_{n=1}^{\infty} e^{-n} \cos(n^2 x)$$

is infinitely differentiable on \mathbb{R} , but its Taylor series (at 0) diverges.)

• (e) True. (Apply the generalized mean value theorem to e^x and $\sin x$ on [0, 1].)

2. Define the derivative. Consider

$$f(x) = \begin{cases} |x|^a & \text{for } x \text{ irrational,} \\ 0 & \text{for } x \text{ rational.} \end{cases}$$

For what values of a > 0 is f differentiable at 0? Is f differentiable at $x \neq 0$?

Solution.

• A function $f:(a,b)\to\mathbb{R}$ is differentiable at $x_0\in(a,b)$ with derivative $f'(x_0)$ if the following limit exists

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

• This function is differentiable at 0 if and only if a > 1. This follows because

$$\frac{f(x) - f(0)}{x - 0} = 0 \quad \text{if } x \text{ is rational and nonzero,}$$

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|^a}{x} \quad \text{if } x \text{ is irrational,}$$

and

$$\lim_{x \to 0} \frac{|x|^a}{x} = 0$$

if and only if a > 1.

• The function f is discontinuous at every $x \neq 0$, therefore it is not differentiable at any $x \neq 0$.

3. State Taylor's theorem. Prove that

$$\log(1+x) < x$$

for all x > 0.

Solution.

• If $f:(a,b) \to \mathbb{R}$ is an *n*-times differentiable function on an open interval (a,b) containing the origin, then for any $x \in (a,b)$ there exists a y between 0 and x such that

$$f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k = \frac{f^{(n)}(y)}{n!} x^n.$$

• First proof. The function $f(x) = \log(1+x)$ is infinitely differentiable in $(-1, \infty)$, and

$$f'(x) = \frac{1}{1+x}, \quad f''(x) = -\frac{1}{(1+x)^2}.$$

Since f(0) = 0 and f'(0) = 1, the Taylor polynomial of f of degree 1 is x. If x > 0, then using Taylor's theorem with n = 2 we find that there exists 0 < y < x such that

$$f(x) - x = -\frac{1}{2!(1+y)^2}x^2 < 0,$$

SO

$$\log(1+x) < x.$$

• Second proof. For any x > 0, the function $g(x) = x - \log(1+x)$ is continuous on the closed interval [0, x] and differentiable in the open interval (0, x). By the mean value theorem, there exists 0 < y < x such that

$$g(x) - g(0) = g'(y)(x - 0).$$

Since g(0) = 0 and

$$g'(y) = 1 - \frac{1}{1+y} > 0$$
 for $y > 0$,

we conclude that

$$g(x) > 0$$
 for $x > 0$

which proves the result.

4. Carefully state a version of L'Hospital's rule that applies to the following limit. Use it to prove that the limit exists, and find its value:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}.$$

Solution.

• Suppose that f, g are functions that are differentiable in an open interval containing x_0 , with g'(x) nonzero in the interval, and

$$\lim_{x \to x_0} f(x) = 0, \qquad \lim_{x \to x_0} g(x) = 0.$$

If the limit

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = L$$

exists, then so does the limit

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = L.$$

• The functions $f(x) = \sin x$ and g(x) = 2x satisfy the hypotheses of L'Hospital's theorem on any interval containing the origin, and

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2}$$

since $\cos x$ is continuous at x=0. Hence

$$\lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2}$$

Applying L'Hospital's theorem again to the functions $F(x) = 1 - \cos x$ and $G(x) = x^2$, which also satisfy its hypotheses, with

$$\lim_{x \to 0} \frac{F'(x)}{G'(x)} = \frac{1}{2}$$

we conclude that

$$\lim_{x \to 0} \frac{F(x)}{G(x)} = \frac{1}{2},$$

which proves the result.

5. Define the hyperbolic sine

$$\sinh x = \frac{e^x - e^{-x}}{2}.$$

Prove that $\sinh x$ is strictly increasing on \mathbb{R} and hence has an inverse. Prove that the inverse is differentiable and compute its derivative.

Solution.

• The functions

$$\cosh x = \frac{e^x + e^{-x}}{2}, \qquad \sinh x = \frac{e^x - e^{-x}}{2},$$

satisfy the following easily verified identities:

$$(\cosh x)' = \sinh x$$
, $(\sinh x)' = \cosh x$,
 $\cosh^2 x - \sinh^2 x = 1$.

- Since $(\sinh x)' = \cosh x > 0$ on \mathbb{R} , the function $\sinh x$ is strictly increasing, and therefore invertible on its range. Moreover, since $e^x \to \infty$ and $e^{-x} \to 0$ as $x \to \infty$, we have $\sinh x \to \infty$ as $x \to \infty$; similarly $\sinh x \to -\infty$ as $x \to -\infty$. Thus, the range of $\sinh : \mathbb{R} \to \mathbb{R}$ is all of \mathbb{R} , and $\sinh^{-1} : \mathbb{R} \to \mathbb{R}$
- Since $\sinh x$ is differentiable on \mathbb{R} and $(\sinh x)' \neq 0$, the inverse function is differentiable on \mathbb{R} , and

$$(\sinh^{-1})'(\sinh x) = \frac{1}{(\sinh x)'} = \frac{1}{\cosh x}.$$

Setting $y = \sinh x$, and writing

$$\cosh x = \sqrt{1 + \sinh^2 x} = \sqrt{1 + y^2},$$

we conclude that

$$(\sinh^{-1})'(y) = \frac{1}{\sqrt{1+y^2}}.$$

6. A function f has a jump discontinuity at x_0 if both the left and right limits

$$\lim_{x \to x_0^+} f(x), \qquad \lim_{x \to x_0^-} f(x)$$

exist but have different values. Suppose that $f:(a,b)\to\mathbb{R}$ is differentiable in (a,b). Prove that f' does not have a jump discontinuity in (a,b).

Solution.

• Suppose, for contradiction, that the limits

$$L_{\pm} = \lim_{x \to x_0^{\pm}} f'(x)$$

exist and are distinct. Let

$$\epsilon = \frac{L_+ - L_-}{3}.$$

Then there exists $\delta > 0$ such that

$$|f'(x) - L_+| < \epsilon$$
 for $x_0 < x < x_0 + \delta$

and

$$|f'(x) - L_-| < \epsilon$$
 for $x_0 - \delta < x < x_0$.

For definiteness, suppose that $L_+ > L_-$ (otherwise, we can consider -f instead of f). It follows that f'(x) cannot take values in the interval $[L_- + \epsilon, L_+ - \epsilon]$ of width $\epsilon > 0$ when $0 < |x - x_0| < \delta$. Since $f'(x) > L_+ - \epsilon$ for $x > x_0$ and $f'(x) < L_- + \epsilon$ for $x < x_0$, this contradicts the intermediate value property of the derivative, whatever the value of $f'(x_0)$.