ADVANCED CALCULUS Math 127B, Winter 2005 Solutions: Midterm 2

- 1. [10%] For each of the following statements, say if it is true or false. (No explanation is required.)
- (a) If f is differentiable at an interior point x of its domain and f'(x) = 0, then f has a local maximum or minimum at x.
- (b) If f has a local maximum or minimum at an interior point x of its domain and f is differentiable at x, then f'(x) = 0.
- (c) If f is differentiable in an open interval, then f is continuous in the interval.
- (d) If f is differentiable in an open interval, then f' is continuous in the interval.

Solution.

- (a) False. (Counter-example: $f(x) = x^3$ at x = 0.)
- (b) True. (Follows from limit definition of the derivative.)
- (c) True. (Differentiable implies continuous.)
- (d) False. (Counter-example: the function $f(x) = x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0 is differentiable on \mathbb{R} , but the derivative is discontinuous at x = 0.)

2. [15%] State the mean value theorem. Prove that

$$|\sin x - \sin y| \le |x - y|$$
 for all $x, y \in \mathbb{R}$.

Solution.

• Mean Value Theorem: If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable in (a,b), then there exists a < x < b such that

$$f(b) - f(a) = f'(x)(b - a).$$

• If $x \neq y$, then, since $(\sin x)' = \cos x$, the mean value theorem implies that there exists z between x and y such that

$$\sin x - \sin y = \cos z(x - y).$$

Since $|\cos z| \le 1$, it follows that

$$|\sin x - \sin y| = |\cos z| |x - y| \le |x - y|.$$

If x = y, then the inequality is obviously true.

3. [15%] Use L'Hospital's rule to evaluate the following limit:

$$\lim_{x \to 0^+} \frac{\log(-\log x)}{\log x}$$

Justify your steps.

Solution.

• The function $\log x$ in the denominator is differentiable in x > 0 with nonzero derivative and approaches $-\infty$ as $x \to 0^+$. The function $\log(-\log x)$ in the numerator is differentiable in 0 < x < 1 and approaches ∞ as $x \to 0^+$. Thus the hypotheses of L'Hospital's theorem are satisfied, and

$$\lim_{x \to 0^{+}} \frac{\log(-\log x)}{\log x} = \lim_{x \to 0^{+}} \frac{[\log(-\log x)]'}{[\log x]'}$$

$$= \lim_{x \to 0^{+}} \frac{1/(-\log x)(-1/x)}{(1/x)}$$

$$= \lim_{x \to 0^{+}} \frac{1}{\log x}$$

$$= 0.$$

4. [20%] Let

$$f(x) = \begin{cases} x \sin(1/x^3) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases}$$
$$g(x) = \begin{cases} x^3 \sin(1/x) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

- (a) Is f(x) differentiable at x = 0? If so, what is f'(0)?
- (b) Is g(x) differentiable at x = 0? If so, what is g'(0)?

Solution.

• (a) f is not differentiable at 0 because the limit of

$$\frac{f(x) - f(0)}{x - 0} = \frac{x\sin(1/x^3) - 0}{x - 0} = \sin(1/x^3)$$

does not exist as $x \to 0$.

• (b) g is differentiable at 0, with g'(0) = 0, because the limit of

$$\frac{g(x) - g(0)}{x - 0} = \frac{x^3 \sin(1/x) - 0}{x - 0} = x^2 \sin(1/x)$$

as $x \to 0$ exists and is equal to zero (since

$$|x^2\sin(1/x)| \le |x|^2 \to 0$$

as $x \to 0$).

- 5. [20%] (a) Consider the sine function $\sin x$ defined on the open interval $-\pi/2 < x < \pi/2$. Show that this function is strictly increasing and hence invertible. What is the domain of the inverse function?
- (b) Prove that the inverse function is differentiable, and compute its derivative.

Solution.

- We have $(\sin x)' = \cos x > 0$ for $-\pi/2 < x < \pi/2$, so $\sin x$ is strictly increasing on $(-\pi/2, \pi/2)$, since a differentiable function with strictly positive derivative is strictly increasing. The domain of the inverse function is the range of $\sin x$, or (-1, 1).
- Since $\sin x$ is differentiable and the derivative of $\sin x$ is nonzero in the domain considered, the inverse function is differentiable. The derivative is given by

$$(\sin^{-1})'(\sin x) = \frac{1}{(\sin x)'}$$
$$= \frac{1}{\cos x}.$$

Writing $y = \sin x$, and using

$$\cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - y^2},$$

(we take the positive square root because $\cos x > 0$ for $-\pi/2 < x < \pi/2$), we get that

$$(\sin^{-1})'(y) = \frac{1}{\sqrt{1 - y^2}}$$

6. [20%] (a) Let $f(x) = \log(1+x)$ for x > -1. Use a proof by induction to show that for $n \ge 1$

$$f^{(n)}(x) = \frac{(-1)^{n+1}(n-1)!}{(1+x)^n}.$$

(b) Write out the Taylor series of f (at x = 0).

(c) Assume that x > 0. Give an expression for the remainder $R_n(x)$ between f(x) and its Taylor polynomial of degree n-1 involving an intermediate point 0 < y < x.

(d) Prove that the Taylor series converges to f(x) if $0 < x \le 1$.

Solution.

• (a) The formula holds for n = 1, since

$$f'(x) = \frac{1}{1+x}.$$

Now suppose the formula holds for $n \in \mathbb{N}$. Then

$$f^{(n+1)}(x) = \frac{d}{dx} f^{(n)}(x)$$

$$= \frac{d}{dx} \left[\frac{(-1)^{n+1} (n-1)!}{(1+x)^n} \right]$$

$$= (-1)^{n+1} (n-1)! \left[\frac{-n}{(1+x)^{n+1}} \right]$$

$$= \frac{(-1)^{n+2} n!}{(1+x)^{n+1}},$$

so the formula holds for n+1. The result follows by induction.

• (b) We have f(0) = 0 and $f^{(n)}(0) = (-1)^{n+1}(n-1)!$. Hence the Taylor series of f at 0 is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$$
$$= x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4 + \dots$$

• (c) There exists 0 < y < x such that

$$R_n(x) = \frac{(-1)^{n+1}x^n}{n(1+y)^n}.$$

• (d) If $0 < x \le 1$, then $0 < y \le 1$, and therefore

$$|R_n(x)| = \frac{x^n}{n(1+y)^n} \le \frac{1}{n}.$$

It follows that $R_n(x) \to 0$ as $n \to \infty$, so the Taylor series converges to $\log(1+x)$.