1. Define \(f_n : [0, \infty) \to \mathbb{R} \) by
\[
f_n(x) = \frac{1}{1 + x^n}.
\]
(a) Find the pointwise limit of \((f_n)\) on \([0, \infty)\).
(b) Does the sequence converge uniformly on \([0, \infty)\)? Justify your answer.

2. (a) Find all points \(x \in \mathbb{R} \) where the following power series converges:
\[
f(x) = -\sum_{n=0}^{\infty} \frac{(-1)^n}{n2^n} x^n.
\]
(b) Show that there exists a constant \(C \) such that
\[
f(x) = \ln(2 + x) + C \quad \text{for} \ |x| < R,
\]
where \(R \) is the radius of convergence of the power series for \(f \) in (a).

3. (a) Define what it means for a function \(f : \mathbb{R} \to \mathbb{R} \) to be differentiable at \(c \in \mathbb{R} \).
(b) If \(f : \mathbb{R} \to \mathbb{R} \) is differentiable at \(c \), prove that
\[
f'(c) = \lim_{h \to 0} \frac{f(c + h) - f(c - h)}{2h}.
\]

4. Let \(a > 0 \). Give a definition of the following improper Riemann integral as a limit of Riemann integrals:
\[
\int_{2}^{\infty} \frac{1}{x(\log x)^a} \, dx.
\]
For what values of \(a \) does this integral converge?
5. In each case, give an example of a function \(f : [0, 1] \to \mathbb{R} \) with the stated property, or explain why such a function doesn’t exist.

(a) \(f \) is unbounded and Riemann integrable.
(b) \(f \) is bounded and not Riemann integrable.
(c) \(f \) is discontinuous and Riemann integrable.
(d) \(f \) is continuous and not Riemann integrable.

6. Suppose that \(f : [0, \pi] \to \mathbb{R} \) is a continuously differentiable function. Prove that
\[
\lim_{n \to \infty} \int_0^\pi f(x) \sin(nx) \, dx = 0.
\]
HINT. Integrate by parts.

7. (a) Find the Taylor series of \(e^{-x} \) (at \(x = 0 \)).
(b) Give an expression for the remainder \(R_n(x) \) between \(e^{-x} \) and its Taylor polynomial of degree \(n - 1 \) involving an intermediate point \(\xi \) between 0 and \(x \).
(c) Prove from your expression in (b) that the Taylor series for \(e^{-x} \) converges to \(e^{-x} \) for every \(x \in \mathbb{R} \).

8. Define \(f : \mathbb{R} \to \mathbb{R} \) by
\[
f(x) = \begin{cases}
 x^2 [\sin(1/x) - 2] & \text{for } x \neq 0, \\
 0 & \text{for } x = 0.
\end{cases}
\]

(a) Prove that \(f(x) \) has a strict maximum at \(x = 0 \) (i.e. \(f(0) > f(x) \) for all \(x \neq 0 \)).
(b) Prove that \(f \) is differentiable on \(\mathbb{R} \). What is \(f'(0) \)?
(c) Prove that \(f \) is not increasing on the interval \((-\epsilon, 0)\) and \(f \) is not decreasing on the interval \((0, \epsilon)\) for any \(\epsilon > 0 \).