Math 127B, Spring 2019
Set 5: Solutions

6.4.2 (a) True. \(S_n = \sum_{k=1}^{n} g_k \) converges uniformly to the sum \(S \) and the difference of two uniformly convergent sequences converges uniformly, so \(g_n = S_n - S_{n-1} \) converges uniformly to \(S - S = 0 \).

(b) True. Since

\[0 \leq \sum_{k=n+1}^{m} f_k \leq \sum_{k=n+1}^{m} g_k, \]

the series \(\sum f_n \) satisfies the Cauchy condition for uniform convergence.

(c) False. For example, let \(f_n : \mathbb{R} \to \mathbb{R} \) be the constant function

\[f_n(x) = \frac{(-1)^{n+1}}{n}. \]

Then \(\sum f_n \) converges uniformly on \(\mathbb{R} \), since \(\sum (-1)^{n+1}/n \) converges, but \(|f_n| = 1/n \) and \(\sum 1/n \) diverges.

6.4.4 If \(|x| < 1 \), then

\[0 \leq \frac{x^{2n}}{1 + x^{2n}} \leq x^{2n}, \]

so the series converges pointwise by comparison with a convergent geometric series. The M-test implies that the convergence is uniform on \(|x| \leq r \) for every \(0 < r < 1 \), so the sum is continuous on \([-r, r]\), and hence on

\[(-1, 1) = \bigcup_{0 < r < 1} [-r, r]. \]

If \(|x| \geq 1 \), then

\[\lim_{n \to \infty} \frac{x^{2n}}{1 + x^{2n}} \neq 0, \]

so the series diverges pointwise.

6.4.10 Since \(|u_n(x)| \leq 1/2^n \) for every \(x \in \mathbb{R} \) and \(\sum 1/2^n \) converges, the M-test implies that \(\sum u_n \) converges uniformly on \(\mathbb{R} \). Each \(u_n \) is continuous at every irrational number, so the sum is continuous at every irrational number, since uniform convergence preserves continuity. If \(x < y \), then

\[h(x) = \sum_{r_n < x} \frac{1}{2^n} < \sum_{r_n < y} \frac{1}{2^n} = h(y), \]

1
so $h : \mathbb{R} \to \mathbb{R}$ is strictly monotone increasing, with $h(x) \to 0$ as $x \to -\infty$ and $h(x) \to 1$ as $x \to \infty$.

6.5.2 (a) The power series

$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

converges for every $x \in \mathbb{R}$.

(b) Not possible, since the power series always converges when $x = 0$ and all terms with $n \geq 1$ are zero.

(c) The power series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$$

has radius of convergence $R = 1$ and converges absolutely for $x = \pm 1$.

6.5.5 See Theorem 10.20 in the lecture notes.

6.5.7 See Theorems 10.5–10.6 in the lecture notes.