1. Show that

\[d(x, y) = \frac{|x - y|}{1 + |x - y|} \]

is a metric on \(\mathbb{R} \). Is \(\mathbb{R} \) complete with respect to this metric?

Solution.

- The properties that \(d(x, y) = d(y, x) \), and \(d(x, y) \geq 0 \), with \(d(x, y) = 0 \) if and only if \(x = y \), are obvious. The only nontrivial part in the proof that \(d \) is a metric is the triangle inequality.

- Define \(f : [0, \infty) \to \mathbb{R} \) by

\[f(t) = \frac{t}{1 + t}. \]

Then

\[d(x, y) = f(|x - y|). \]

- The function \(f \) is monotonic increasing, since it is differentiable and

\[f'(t) = \frac{1}{(1 + t)^2} > 0. \]

Hence, if \(0 \leq u \leq v \), then \(f(u) \leq f(v) \).

- Suppose that \(s, t \geq 0 \). Then

\[
\begin{align*}
 f(s + t) &= \frac{s + t}{1 + s + t} \\
 &= \frac{s}{1 + s + t} + \frac{t}{1 + s + t} \\
 &\leq \frac{s}{1 + s} + \frac{t}{1 + t} \\
 &\leq f(s) + f(t).
\end{align*}
\]
• Suppose that $x, y, z \in \mathbb{R}$. Let

\[u = |x - y|, \quad v = |x - z| + |z - y|, \quad s = |x - z|, \quad t = |z - y|. \]

Then $u \leq v$, by the triangle inequality on \mathbb{R} with the Euclidean metric, and $v = s + t$. It then follows from the definition of d and the properties of f proved above that

\[
\begin{align*}
 d(x, y) &= f(u) \\
 &\leq f(v) \\
 &\leq f(s + t) \\
 &\leq f(s) + f(t) \\
 &\leq d(x, z) + d(z, y).
\end{align*}
\]

Thus, d satisfies the triangle inequality, so it defines a metric on \mathbb{R}.

• Note that, with respect to the metric d, the distance between any two points in \mathbb{R} is less than 1.

• The metric space (\mathbb{R}, d) is complete. To prove this, we establish upper and lower bounds of $d(x, y)$ in terms of the Euclidean metric $e(x, y) = |x - y|$, and then deduce the completeness of (\mathbb{R}, d) from the completeness of (\mathbb{R}, e).

• In one direction, we have

\[
 d(x, y) = \frac{|x - y|}{1 + |x - y|} \leq |x - y|.
\]

• In the other direction, note that since f is monotone increasing and $f(1/2) = 2/3$, we have

\[
 d(x, y) \leq 2/3 \text{ if and only if } |x - y| \leq 1/2.
\]

Thus, if $d(x, y) \leq 2/3$ then

\[
\begin{align*}
 d(x, y) &= \frac{|x - y|}{1 + |x - y|} \\
 &\geq \frac{|x - y|}{1 + 1/2} \\
 &\geq \frac{2}{3} |x - y|.
\end{align*}
\]
Now suppose that \(\{x_n\} \) is a Cauchy sequence in \(\mathbb{R} \) with respect to the metric \(d \). Given \(\epsilon > 0 \), let

\[
\epsilon' = \min \left(\frac{2}{3}, \frac{2}{3} \epsilon \right) > 0.
\]

Since \(\{x_n\} \) is Cauchy, we can choose \(N \) such that

\[
d(x_n, x_m) < \epsilon' \quad \text{for all } n, m > N.
\]

Then, for all \(n, m > N \), we have \(d(x_n, x_m) < 2/3 \), and it follows that

\[
|x_n - x_m| \leq \frac{3}{2} d(x_n, x_m) < \frac{3}{2} \epsilon' \leq \epsilon.
\]

This proves that \(\{x_n\} \) is a Cauchy sequence in \((\mathbb{R}, e)\). Since \((\mathbb{R}, e)\) is complete, there exists \(x \in \mathbb{R} \) such that \(|x_n - x| \to 0 \) as \(n \to \infty \).

Since \(d(x_n, x) \leq |x_n - x| \), we see that \(d(x_n, x) \to 0 \) as \(n \to \infty \). Thus, there exists \(x \in \mathbb{R} \) such that \(x_n \to x \) as \(n \to \infty \) with respect to \(d \), so \((\mathbb{R}, d)\) is complete.

2. Does the equation

\[
x^5 + y^5 + xy + 4 = 0
\]

define an implicit function \(x = g(y) \) locally near the point \((x, y) = (-2, 2)\)? Explain your answer.

Solution.

- The equation is of the form \(f(x, y) = 0 \) where \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) is given by

\[
f(x, y) = x^5 + y^5 + xy + 4.
\]

This function is continuously differentiable in \(\mathbb{R} \times \mathbb{R} \) since its partial derivatives exist and are continuous everywhere.

- The partial derivative \(D_x f(x, y) = 5x^4 + y \) is nonsingular at \((x, y) = (-2, 2)\), so the implicit function theorem implies that the equation defines an implicit function \(g : J \to I \), where \(J, I \) are open sets containing \(-2, -2\) respectively, and for each \(y \in J \), \(x = g(y) \) is the unique solution of \(f(x, y) = 0 \) that lies in \(I \).
3. Suppose that $1/2 \leq a \leq 3/2$. Define a function $\phi : \mathbb{R} \rightarrow \mathbb{R}$ by

$$\phi(x) = x + \frac{1}{2} (a - x^2)$$

Find a closed bounded interval $I \subset \mathbb{R}$ containing 1 such that $\phi : I \rightarrow I$ is a contraction. If $x_0 \in I$, what do the iterates

$$x_{n+1} = x_n + \frac{1}{2} (a - x_n^2)$$

converge to as $n \rightarrow \infty$?

Solution.

- Check that if $I = [1/2, 3/2]$, then $\phi : I \rightarrow I$ maps I into itself.
- Check that $|\phi'(x)| \leq 1/2$ for $x \in I$, so that ϕ is a contraction on I.
- Conclude that ϕ has a unique fixed point \bar{x} in I, which must equal \sqrt{a}. Hence the iterates x_n converge to \sqrt{a} as $n \rightarrow \infty$.

4. Use the change of variables formula to transform

$$\int_0^\infty \int_0^\infty e^{-x^2-y^2} \, dx \, dy$$

into an integral with respect to polar coordinates (r, θ), where

$$x = r \cos \theta, \quad y = r \sin \theta.$$

Deduce the value of

$$\int_0^\infty e^{-x^2} \, dx$$

Justify your steps.

Solution.

- We will just give the formal computation. Note that, given the theorems shown in class, justification is required for the use of integrals over $[0, \infty)$, and in the change of variables formula, because the transformation between polar and cartesian coordinates is not one-to-one at the origin, and the Jacobian vanishes there. To resolve these problems, consider integrals over an annulus $\epsilon^2 \leq x^2 + y^2 \leq a^2$, then let $a \rightarrow \infty$ and $\epsilon \rightarrow 0$.

• Fubini’s theorem implies that
\[
\int_0^\infty \int_0^\infty e^{-x^2-y^2} \, dx \, dy = \left(\int_0^\infty e^{-x^2} \, dx \right) \left(\int_0^\infty e^{-y^2} \, dy \right) = \left(\int_0^\infty e^{-x^2} \, dx \right)^2.
\]

• The Jacobian of the transformation from polar to Cartesian coordinates is
\[
J = \begin{vmatrix}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{vmatrix} = r.
\]

• By the change of variables theorem, followed by Fubini’s theorem,
\[
\int_0^\infty \int_0^\infty e^{-x^2-y^2} \, dx \, dy = \int_0^{\pi/2} \int_0^\infty e^{-r^2} \, r \, dr \, d\theta
= \frac{\pi}{2} \left[-\frac{1}{2} e^{-r^2} \right]_0^\infty
= \frac{\pi}{4}.
\]

• Since these integrals are equal, it follows that
\[
\int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}.
\]