6. The quotient rule (Theorem 5.3 (c) in Rudin) implies that the partial derivatives of \(f \) exist at \((x, y) \neq (0, 0)\), with

\[
D_1 f(x, y) = \frac{y(y^2 - x^2)}{(x^2 + y^2)^2},
\]
\[
D_2 f(x, y) = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}.
\]

Since \(f(x, 0) = f(0, y) = 0 \) for all \(x, y \in \mathbb{R} \), the partial derivatives of \(f \) exist at \((0, 0)\), with

\[
D_1 f(0, 0) = D_2 f(0, 0) = 0.
\]

Remark. Note that although the partial derivatives of \(f \) exist for all \((x, y) \in \mathbb{R}^2\), they are not continuous at \((0, 0)\); for example, if \(y \neq 0 \) then \(D_1 f(0, y) = 1/y \), so \(D_1 f \) is unbounded in any neighborhood of the origin.

8. For \(h \in \mathbb{R}^n \), there is an open interval \(I \subset \mathbb{R} \) containing the origin such that \(x + th \in E \) for \(t \in I \). Define \(g : I \to \mathbb{R} \) by

\[
g(t) = f(x + th).
\]

Since \(f \) is differentiable at \(x \), \(g \) is differentiable at 0 and

\[
g'(0) = f'(x)h.
\]

Since \(f \) has a local maximum at \(x \), \(g \) has a local maximum at 0, and therefore \(g'(0) = 0 \) (by Theorem 5.8 in Rudin). It follows that \(f'(x)h = 0 \) for every \(h \in \mathbb{R}^n \), meaning that \(f'(x) = 0 \).

9. Choose \(a \in E \), and define

\[
U = \{x \in E : f(x) = f(a)\},
\]
\[
V = \{x \in E : f(x) \neq f(a)\}.
\]

Then \(E \) is the disjoint union of \(U \) and \(V \), and \(U \) is nonempty. We claim that \(U, V \) are open subsets of \(E \) (or \(\mathbb{R}^n \)). The connectedness of \(E \) then implies that \(V \) is empty, so \(f \) is constant on \(E \).
The set V is open since f is continuous (implied by its differentiability) and the inverse image of an open set by a continuous function is open.

To show that U is open, suppose $x \in U$. Since E is open in \mathbb{R}^n, there exists $\epsilon > 0$ such that $B_\epsilon(x) \subset E$, where

$$B_\epsilon(x) = \{y \in \mathbb{R}^n : |y - x| < \epsilon\}.$$

The open ball $B_\epsilon(x)$ is convex. Since f' is zero on E, the Corollary to Theorem 9.19 of Rudin implies that f is constant on $B_\epsilon(x)$, and hence equal to $f(a)$ (since $f(x) = f(a)$). It follows that $B_\epsilon(x) \subset U$, so U is open.

Remark. If the domain E is convex, we can prove this result directly as in the proof of Theorem 9.19 of Rudin. For general open sets E, we have to do a little bit of point set topology. We have used the standard definition that a topological space is connected if it is not the disjoint union of two nonempty open sets. Rudin’s Definition 2.45 seems to be equivalent to this one, but weird.