
Complex Analysis
Math 185A, Winter 2010

Final: Solutions

1. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y)
is defined by the determinant

J =
∂(u, v)

∂(x, y)
=

∣∣∣∣ ux uy
vx vy

∣∣∣∣ .
If f(z) = u(x, y) + iv(x, y) is an analytic function of z = x+ iy, prove that

J(x, y) = |f ′(z)|2 .

Solution.

• Since f is analytic,

f ′ = ux + ivx = vy − iuy

and u, v satisfy the Cauchy-Riemann equations

ux = vy, vx = −uy.

• It follows that

J =

∣∣∣∣ ux uy
vx vy

∣∣∣∣
= uxvy − uyvx
= u2x + v2x

= |f ′|2 .

Remark. Note that the Jacobian is strictly positive when f ′ 6= 0, corre-
sponding to the fact that a conformal map f is locally one-to-one. Also, J
is always nonnegative which corresponds to the fact that analytic functions
preserve orientations.
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2. [25 pts] Define

f(z) = z +
1

z
.

(a) Find the image of the unit circle |z| = 1 under f .

(b) On what open sets Ω ⊂ C is f : Ω→ C a conformal map?

Solution.

• (a) If |z| = 1 then z = eiθ for some θ ∈ [0, 2π). Then

z +
1

z
= eiθ + e−iθ = 2 cos θ.

So f maps the unit circle to the interval [−2, 2] on the real axis.

• (b) The function f is analytic except at z = 0. Its derivative is then

f ′(z) = 1− 1

z2

which is nonzero unless z = ±1. Therefore f is conformal on any open
set Ω ⊂ C that does not contain any of the points {−1, 0, 1}.

Remark. Note that f has a simple zero at z = ±1, so it doubles the
angle between curves at those points, where it ‘flattens’ the circle |z| = 1 to
the interval [−2, 2]. This mapping is used in fluid mechanics to obtain the
potential flow of an ideal fluid past a cylinder of radius one, which f maps
to uniform flow past a flat plate of length four.
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3. [25 pts] Let γ : [0, π] → C with γ(t) = 2eit be the positively oriented
semicircle in the upper half plane with center the origin and radius 2. Prove
that ∣∣∣∣∫

γ

ez

z2 + 1
dz

∣∣∣∣ ≤ 2πe2

3
.

(Do not try to evaluate the integral exactly.)

Solution.

• By the basic estimate for the modulus of a contour integral,∣∣∣∣∫
γ

ez

z2 + 1
dz

∣∣∣∣ ≤ max
z∈γ

∣∣∣∣ ez

z2 + 1

∣∣∣∣ · length(γ)

≤ max
z∈γ

∣∣∣∣ ez

z2 + 1

∣∣∣∣ · 2π.
• If z = x+ iy, then |ez| = ex. Since x ≤ 2 on γ, we have

|ez| ≤ e2 for z ∈ γ.

• By the reverse triangle inequality∣∣z2 + 1
∣∣ ≥ |z|2 − 1 ≥ 3

for z ∈ γ, so ∣∣∣∣ 1

z2 + 1

∣∣∣∣ ≤ 1

3
.

• It follows that

max
z∈γ

∣∣∣∣ ez

z2 + 1

∣∣∣∣ ≤ e2

3

and ∣∣∣∣∫
γ

ez

z2 + 1
dz

∣∣∣∣ ≤ 2πe2

3
.
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4. [25 pts] Suppose that a, b, z ∈ C are such that az + b 6= 0 and |z| = 1.
Prove that ∣∣∣∣ b̄z + ā

az + b

∣∣∣∣ = 1.

Solution.

• Since |z| = 1, we have z = 1/z̄ and

b̄z + ā =
āz̄ + b̄

z̄
.

• It follows that ∣∣∣∣ b̄z + ā

az + b

∣∣∣∣ =
1

|z̄|

∣∣āz̄ + b̄
∣∣

|az + b|
.

• If w = az + b, then w̄ = āz̄ + b̄. Using the fact that |w̄| = |w| and
|z̄| = 1, we get ∣∣∣∣ b̄z + ā

az + b

∣∣∣∣ = 1.
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5. [30 pts] Find the radius of convergence of the following power series:

(a)
∞∑
n=1

3n

n
zn; (b)

∞∑
n=0

2n

n!
z3n; (c)

∞∑
n=0

n!zn!.

Solution.

• (a) By the ratio test, the radius of convergence is given by

R = lim
n→∞

3n/n

3n+1/(n+ 1)
= lim

n→∞

1 + 1/n

3
=

1

3
.

The series therefore converges in |z| < 1/3 and diverges in |z| > 1/3.

• (b) Let w = z3. Then the series becomes

∞∑
n=0

2n

n!
wn

By the ratio test, the radius of convergence in w is given by

R = lim
n→∞

2n/n!

2n+1/(n+ 1)!
= lim

n→∞

n+ 1

2
=∞.

So the radius of convergence in z is also ∞. The series converges for
every z ∈ C.

• (c) Writing out the terms explicitly, we get

∞∑
n=0

n!zn! = 1 + z + 2!z2 + 3!z6 + 4!z24 + . . . .

If |z| ≤ r < 1, then the absolutely values of terms of this series are
bounded by terms in series

∑∞
m=0mr

m, which is absolutely convergent
by the ratio test. Therefore, the series converges in |z| < 1. If |z| > 1
then n!zn! does not approach zero as n→∞, so the series diverges. It
follows that the radius of convergence is R = 1.
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6. [30 pts] For z 6= 0, let

f(z) = z5e1/z
2

.

(a) Find the Laurent expansion of f at z = 0. (b) What is the residue of
f at z = 0? (c) Where does the Laurent series converge? (d) What type of
isolated singularity does f have at 0?

Solution.

• (a) Using the power series expansion for ew, with w = 1/z2, we get

z5e1/z
2

= z5
(

1 +
1

z2
+

1

2!

1

z4
+

1

3!

1

z6
+ · · ·+ 1

n!

1

z2n
+ . . .

)
= · · ·+ 1

n!

1

z2n−5
+ . . .

1

3!

1

z
+

1

2!
z + z3 + z5

=
2∑

n=−∞

1

(2− n)!
z2n+1.

• (b) The coefficient of 1/z is 1/3! = 1/6, so

Res (f ; 0) =
1

6
.

• (c) The power series expansion of e1/z
2

converges for all z 6= 0, so the
Laurent series converges for all z ∈ C \ {0}.

• (d) The singularity is an essential singularity since there are infinitely
many terms with negative exponents in the Laurent expansion.
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7. [40 pts] From elementary calculus, we know that∫ ∞
−∞

1

1 + x2
dx = lim

R→∞

∫ R

−R

1

1 + x2
dx = lim

R→∞

[
tan−1 x

]R
−R = π.

Use contour integration and the method of residues to evaluate this integral
and show that you get the same result.

Solution.

• Let γR = ρR+σR be the positively oriented semicircle in the upper half
plane with center the origin and radius R, where ρR : [−R,R] → C is
given by ρR(t) = t and σR : [0, π]→ C is given by σR(t) = Reit.

• The function

f(z) =
1

1 + z2

is analytic except at z = ±i, where it has simple poles (since 1 + z2 has
simple zeros). For R > 1, the pole at z = i lies inside the simple closed
curve γR, and the residue theorem implies that∫

γR

1

1 + z2
dz = 2πiRes(f ; i).

• The residue of f at i is given by

Res(f ; i) = lim
z→i

z − i
1 + z2

= lim
z→i

1

z + i
=

1

2i
.

Thus, ∫
γR

1

1 + z2
dz = π. (1)

• We have ∫
γR

1

1 + z2
dz =

∫
ρR

1

1 + z2
dz +

∫
σR

1

1 + z2
dz

=

∫ R

−R

1

1 + x2
dx+

∫
σR

1

1 + z2
dz.

(2)
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• Using the basic estimate for contour integrals, and the reverse triangle
inequality, we have for R > 1 that∫

σR

1

1 + z2
dz ≤ max

z∈σR

∣∣∣∣ 1

1 + z2

∣∣∣∣ · length(σR)

≤ πR

R2 − 1

→ 0 as R→∞.

• Using (1) in (2) and taking the limit of the result as R → ∞, we find
that ∫ ∞

−∞

1

1 + x2
dx = π.

8



Extra Credit Problem. Suppose that f : C → C is doubly-periodic with
periods 1 and i, meaning that

f(z + 1) = f(z), f(z + i) = f(z) for all z ∈ C.

Let D = {x+ iy ∈ C : 0 < x < 1, 0 < y < 1} denote the open unit square
and γ the boundary of D (see picture). It follows that f(z +m+ in) = f(z)
for all integers m,n ∈ Z, and f is determined on C by its values on D and γ.

(a) Prove that the only entire (i.e. analytic on C) doubly-periodic functions
are the constant functions.

(b) Prove that there are no doubly-periodic functions that have a single
simple pole with nonzero residue in D and are analytic elsewhere in D and
on γ. Hint. Consider the contour integral of f along γ.

(c) If f has two poles at z1, z2 ∈ D and is analytic elsewhere in D and on γ,
what can you say about the residues of f at z1, z2?

Solution.

• (a) If f is entire, then it is continuous on the compact set D and
therefore bounded. By periodicity, f is bounded on C and therefore by
Liouville’s theorem, f is constant.

• (b) Let γ = γb + γr + γt + γl, where the four contours on the right-
hand side are the bottom, right, top, and left sides of the unit square,
respectively, with orientations corresponding to the positive (counter-
clockwise) orientation of γ.

• Since f is periodic with period 1, its values on γb are equal to its values
on γt; and since f is periodic with period i, its values on γl are equal
to its values on on γr.

• The sides γb and γt have opposite orientations, as do γl and γr. It
follows that∫

γt

f dz = −
∫
γb

f dz,

∫
γr

f dz = −
∫
γl

f dz.

Therefore∫
γ

f dz =

∫
γb

f dz +

∫
γr

f dz +

∫
γt

f dz +

∫
γl

f dz = 0.
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• If f had a single simple pole at z0 ∈ D, whose residue is necessar-
ily nonzero (otherwise the singularity is removable), then the residue
theorem would imply that∫

γ

f dz = 2πiRes(f ; z0) 6= 0.

This contradicts the fact that, as we have just shown, the contour
integral must be zero by the double-periodicity of f .

• (c) If f has two poles at z1, z2 ∈ D, then by the residue theorem∫
γ

f dz = 2πi [Res(f ; z1) + Res(f ; z2)] .

Since this integral is zero, we must have

Res(f ; z2) = −Res(f ; z1).

Remark. More generally, one can consider doubly-periodic functions with
periods 1 and τ ∈ C, where without loss of generality we can assume Im τ > 0.
Meromorphic, doubly-periodic are called elliptic functions. By identifying the
opposite sides of a period paralleogram

D = {s+ tτ : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1}

we may think of elliptic functions as meromorphic functions on a torus, or
equivalently as holomorphic functions from the torus to the sphere. As indi-
cated above, any such non-constant elliptic function must have at least two
simple poles in a period, or one double pole. In that case, the elliptic func-
tion is a two-to-one mapping of the torus onto the sphere, which ‘wraps’ the
torus twice around the sphere.

Perhaps the simplest elliptic function (from which all other elliptic func-
tions can be constructed) is the Weierstrass ℘-function. This has a double
pole at z = 0 which is extended by periodicity, in a way that gives a conver-
gent series, to get

℘(z; τ) =
1

z2
+

∑
m,n ∈ Z

(m,n) 6= (0, 0)

[
1

(z −m− nτ)2
− 1

(m+ nτ)2

]
.
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