
Complex Analysis
Math 185A, Winter 2010

Midterm: Solutions

1. If a, b are complex numbers such that |a| < 1, |b| < 1, prove that∣∣∣∣ a− b1− āb

∣∣∣∣ < 1.

Solution.

• We have∣∣∣∣ a− b1− āb

∣∣∣∣2 =
(a− b)(ā− b̄)

(1− āb)(1− ab̄)
=
|a|2 − (ab̄+ āb) + |b|2

1− (ab̄+ āb) + |a|2|b|2
. (1)

• If x, y < 1, then

0 < (1− x)(1− y) = 1− (x+ y) + xy.

It follows that
x+ y < 1 + xy.

• Using this inequality with x = |a|2 < 1 and y = |b|2 < 1, we get

|a|2 − (ab̄+ āb) + |b|2 < 1− (ab̄+ āb) + |a|2|b|2.

• Since 1− (ab̄+ āb) + |a|2|b|2 = |1− āb|2 > 0, division of this inequality
by the right hand side gives

|a|2 − (ab̄+ āb) + |b|2

1− (ab̄+ āb) + |a|2|b|2
< 1.

Using this in (1) proves the result.
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2. Let T ⊂ C be the interior of the triangle with vertices at 0, 1, 1 + i shown
in the figure. Find the image of T under the map w = z2 and draw a picture.
Which angles of the triangle are preserved by the mapping?

Solution.

• The line segment from 0 to 1, z = t where 0 ≤ t ≤ 1, maps to the same
line segment from 0 to 1, w = s where 0 ≤ s ≤ 1 and s = t2.

• The line segment from 0 to 1 + i, z = teiπ/4 where 0 ≤ t ≤
√

2, maps
to the line segment from 0 to 2i, w = seiπ/2 = is where 0 ≤ s ≤ 2 and
s = t2.

• The line segment from 1 to i + i, z = 1 + it with 0 ≤ t ≤ 1 maps to
w = 1 − t2 + 2it. Writing w = u + iv and eliminating t, we find that
this is a segment of the parabola 4u = 4− v2 from the vertex w = 0 to
the intercept with the positive imaginary axis at w = 2i.

• The map takes the interior T of the triangle to the interior S of the
region bounded by the line segments from 0 to 1 and 0 to 2i and the
parabola from 1 to 2i. For example, eiπ/6 ∈ T maps to eiπ/3 ∈ S.

• The map is conformal except at the origin, since z 7→ z2 is analytic
with nonzero derivative except at z = 0. The map therefor preserves
the angles of the triangle at z = 1 and z = 1 + i, but doubles the angle
at z = 0.
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3. (a) State the Cauchy-Riemann equations satisfied by the real and imagi-
nary parts of an analytic function f(z) = u(x, y) + iv(x, y).

(b) Prove that there are two values of the constant c ∈ R such that

u(x, y) = ecy cosx

is the real part of an analytic function. Find the analytic function f(z) in
each case.

Solution.

• (a) The Cauchy-Riemann equations are

ux = vy, uy = −vx.

• (b) The real part of an analytic function is harmonic, so we must have

uxx + vyy = −ecy cosx+ c2ecy cosx =
(
c2 − 1

)
ecy cosx = 0.

Hence, f is only analytic if c = ±1.

• If c = 1, the harmonic conjugate v of u satisfies

vx = −ey cosx, vy = −ey sinx.

Integrating these equations, we get

v = −ey sinx+ q(y), v = −ey sinx+ p(x)

where p(x), q(y) are real-valued functions of integration. It follows that
p(x) = q(y) = k where k is an arbitrary real constant, and therefore

f(z) = ey cosx− iey sinx+ ik = e−i(x+iy) + ik.

Hence,
f(z) = e−iz + ik,

where k ∈ R is an arbitrary constant of integration.

• Similarly, if c = −1, then the harmonic conjugate v of u satisfies

vx = e−y cosx, vy = −e−y sinx,

and v = e−y sinx+ k. It follows that f(z) = ei(x+iy) + ik or

f(z) = eiz + ik.

• Alternatively, one can verify directly that these analytic functions have
the correct real parts.
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4. Let γ be the positively oriented circle with radius 1 and center i. Stating
clearly any theorems you use, evaluate the following contour integrals:

(a)

∫
γ

z̄ dz; (b)

∫
γ

1

z2 + 2
dz; (c)

∫
γ

1

z2 − 2
dz.

Solution.

• (a) Since z̄ is not an analytic function of z, we evaluate the contour inte-
gral directly. A parametrization of the curve is given by γ : [0, 2π]→ C
where

γ(t) = i+ eit.

It follows that ∫
γ

z̄ dz =

∫ 2π

0

(i+ eit) ieit dt

=

∫ 2π

0

(
eit + i

)
dt

=

[
1

i
eit + it

]2π
0

= 2πi.

• (b) We write the integral as∫
γ

1

z2 + 2
dz =

∫
γ

f(z)

z −
√

2i
dz, f(z) =

1

z +
√

2i
.

The function f is analytic inside and on γ, so Cauchy’s integral formula
implies that

1

2πi

∫
γ

f(z)

z −
√

2i
dz = f(

√
2i) =

1

2
√

2i
.

Thus, ∫
γ

1

z2 + 2
dz =

π√
2
.
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• (c) The function z 7→ 1/(z2 − 2) is analytic everywhere except at the
points

z = ±
√

2,

which lie outside γ. Hence,∫
γ

1

z2 − 2
dz = 0

by Cauchy’s theorem.
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5. Define a function f : A→ C by

f(z) = e
√
z, A = {z ∈ C : z 6= 0 and arg z 6= π}

where we take the principle brach of the square root, and a function g : B →
C by

g(z) =
ez

z
, B = {z ∈ C : z 6= 0} .

Is there an analytic function F : A→ C such that F ′ = f on A? Is there an
analytic function G : B → C such that G′ = g on B? Justify your answers,
but do not try to find F or G explicitly if they exist.

Solution.

• The domain A is simply connected and the function f is analytic on
A. Hence, by the ‘antiderivative theorem’ (c.f. Theorem 2.2.5 in the
text) f has an antiderivative on A.

• To prove that A is simply connected, observe that the map z 7→
√
z,

where we take the principle branch of the square root function, is a
homeomorphism (i.e. a continuous, one-to-one, onto map with contin-
uous inverse) of A onto the right-half plane R = {z ∈ C : Re z > 0}.
The right-half plane is simply connected since it is convex, and any
set that is homeomorphic to a simple connected set is also simply con-
nected. (Note that A itself is not convex; for example, the line segment
from −1 + i ∈ A to −1− i ∈ A is not contained in A.)

• The domain B is connected but not simply connected, so we cannot
apply the antiderivative theorem even though g is analytic on B. In
fact, we claim that g does not have an antiderivative on B.

• To prove this, observe that if γ is the positively oriented unit circle
centered at 0, which is a closed curve in B, then by Cauchy’s integral
formula ∫

γ

ez

z
dz = 2πie0 6= 0.

Therefore by the ‘path independence theorem’ (c.f. Theorem 2.1.9 in
the text) g does not have an antiderivative on B.
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