COMPLEX ANALYSIS Math 185A, Winter 2010 Sample Final Exam Questions

1. (a) Consider the change of variables from (x, y) to (z, \overline{z}) given by

$$z = x + iy, \qquad \bar{z} = x - iy. \tag{1}$$

If ∂_z denotes the partial derivative with respect to z keeping \bar{z} fixed and $\partial_{\bar{z}}$ denotes the partial derivative with respect to \bar{z} keeping z fixed, show that

$$\partial_z = \frac{1}{2} \left(\partial_x - i \partial_y \right), \qquad \partial_{\bar{z}} = \frac{1}{2} \left(\partial_x + i \partial_y \right),$$

where ∂_x denotes the partial derivative with respect to x keeping y fixed and ∂_y denotes the partial derivative with respect to y keeping x fixed.

(b) Write a complex valued function $f: \mathbb{C} \to \mathbb{C}$ as

$$f(z,\bar{z}) = u(x,y) + iv(x,y)$$

where $u, v : \mathbb{R}^2 \to \mathbb{R}$ and (z, \overline{z}) are given in terms of (x, y) by (1). Show that f is analytic if and only if $\partial_{\overline{z}} f = 0$.

2. Let the simple closed curve γ be the positively oriented unit square with corners at z = 0, z = 1, z = 1 + i, z = i. Evaluate the following contour integrals:

(a)
$$\int_{\gamma} \bar{z} dz;$$
 (b) $\int_{\gamma} \frac{e^z}{z^2 - z + 1} dz.$

3. Find the radius of convergence of the following power series.

(a)
$$\sum_{n=0}^{\infty} \frac{n^3}{3^n} z^n$$
; (b) $\sum_{n=0}^{\infty} \frac{3^n}{1+2^n} z^n$; (c) $\sum_{n=0}^{\infty} \frac{1}{2^n} z^{3n}$.

4. Let γ be the circle of radius 3 center the origin. Evaluate

$$\int_{\gamma} \frac{e^z}{z^3 + 4z^2 + 4z} \, dz.$$

5. Prove that the function

$$f(z) = 1 + \sum_{n=1}^{\infty} \frac{1}{4n(4n-1)(4n-4)(4n-5)\cdots 4\cdot 3} z^{4n}$$

= 1 + $\frac{1}{4\cdot 3} z^4 + \frac{1}{8\cdot 7\cdot 4\cdot 3} z^8 + \frac{1}{12\cdot 11\cdot 8\cdot 7\cdot 4\cdot 3} z^{12} + \dots$

is a solution of the differential equation

$$f'' = z^2 f$$

for every $z \in \mathbb{C}$.

6. Find the image of the quarter plane

$$\Omega = \{ z \in \mathbb{C} : 0 < |z| < \infty, \, 0 < \arg z < \pi/2 \}$$

under the mapping $w = e^{iz^2}$. Is this a conformal map on Ω ? Is it one-to-one?