Closed Book. Give complete proofs.
You can use any standard theorem, provided you state it carefully.

1. [15%] Suppose that $\left(a_{n}\right)$ is a sequence of positive real numbers, and let

$$
r=\limsup _{n \rightarrow \infty} a_{n}^{1 / n} .
$$

Prove that $\sum_{n=1}^{\infty} a_{n}$ converges if $r<1$ and diverges if $r>1$. Give examples to show that a series may converge or diverge if $r=1$.
2. [15\%] If A, B are subsets of a normed linear space X, define

$$
A+B=\{x \in X \mid x=a+b \text { for } a \in A \text { and } b \in B\} .
$$

(a) Show that $A+B$ is open if A is open.
(b) Show that $A+B$ is closed if A is compact and B is closed.
(c) Give an example to show that $A+B$ need not be closed if A and B are closed.
3. [10\%] Let

$$
\begin{aligned}
\mathcal{F}= & \{f \in C([0,1]) \mid f(0)=f(1)=0, \\
& \left.|f(x)-f(y)| \leq|x-y|^{1 / 3} \text { for all } x, y \in[0,1]\right\} .
\end{aligned}
$$

Prove that \mathcal{F} is a compact subset of $C([0,1])$ (equipped with the sup-norm).
4. [15\%] Let c_{0} be the Banach space of real sequences $x=\left(x_{n}\right)$ such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, and c the Banach space of convergent real sequences, both equipped with the sup-norm $\|x\|=\sup _{n \in \mathbb{N}}\left|x_{n}\right|$.
(a) For any $x \in c_{0}$ with $\|x\|=1$, show that there exist $y, z \in c_{0}$ such that $y \neq z,\|y\|=\|z\|=1$, and

$$
x=\frac{1}{2}(y+z) .
$$

(b) Define what it means for two normed linear spaces to be isometrically isomorphic. Deduce from (a) that c_{0} and c are not isometrically isomorphic. (We saw in class that they are topologically isomorphic.)
5. [15\%] Suppose that $A \in \mathcal{B}(X)$ a bounded linear operator on a Banach space X.
(a) Show that for any $t \in \mathbb{R}$ the series

$$
f(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} A^{n}
$$

converges with respect to the operator norm in $\mathcal{B}(X)$, thus defining a function $f: \mathbb{R} \rightarrow \mathcal{B}(X)$.
(b) Prove that f is differentiable, in the sense that the limit

$$
f^{\prime}(t)=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

exists with respect to the operator norm convergence on $\mathcal{B}(X)$ for each $t \in \mathbb{R}$, and compute the derivative $f^{\prime}: \mathbb{R} \rightarrow \mathcal{B}(X)$.
6. [15\%] Show that if $|\lambda|<1$, the following nonlinear integral equation

$$
f(x)+\lambda \int_{-\infty}^{\infty} \frac{\cos [y f(y)]}{\left(1+x^{2}+y^{2}\right)^{2}} d y=0
$$

has a unique continuous solution $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
7. [15\%] For $n \in \mathbb{N}$, define $I_{n}: C([0,1]) \rightarrow \mathbb{R}$ by

$$
I_{n}(f)=\int_{0}^{1} f(x) \cos \left(n e^{x}\right) d x
$$

(a) Show that if p is a polynomial, then $I_{n}(p) \rightarrow 0$ as $n \rightarrow \infty$. Hint: Integration by parts.
(b) Show that $I_{n}(f) \rightarrow 0$ as $n \rightarrow \infty$ for any $f \in C([0,1])$.
(c) Show that $I_{n} \in C([0,1])^{*}$, where $C([0,1])$ is equipped with the sup-norm. Does the sequence $\left(I_{n}\right)$ converge with respect to the weak-* topology on $C([0,1])^{*}$? If so, what is its limit?

