Final Exam, Tuesday, December 9, 2003
This exam has 9 numbered pages. Show your work and explain your reasoning. If you use a theorem from the textbook, either refer to it by name or give its statement.

Your Name:

Problem	Max.	Your Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Problem 1. Let $f(x)=\sqrt{x}$ be defined on $[0,+\infty)$ with the usual metric.
a) (5 points) Is f Lipshitz continuous? Prove or disprove.
b) (5 points) Is f uniformly continuous? Prove or disprove.
c) (5 points) Now consider f restricted to the interval $[0,1]$, and suppose $\left(p_{n}\right)$ is a sequence of polynomial functions converging uniformly to f. Is the set $A=\left\{p_{n} \mid n \geq 1\right\} \cup\{f\}$ equicontinuous? Prove or disprove.
d) (5 points) Let C_{n} be the Lipshitz constants of the polynomials p_{n} of the previous part. Show that $C_{n}<\infty$, for all n, and $\lim _{n} C_{n}=+\infty$.

Problem 2. Let X be a Banach space.
a) (15 points) Let $B \subset X$ be a bounded closed set and $C \subset X$ a compact set, both nonempty. Define $B+C \equiv A=\{x+y \mid x \in B, y \in C\}$. Prove that A is compact iff B is compact.
b) (5 points) Give an example of a pair of non-empty sets $B, C \subset \mathbb{R}$, such that B is bounded and C is compact, $B+C$ is compact but B is not compact.

Problem 3. Let X be a Banach space over \mathbb{C}, and $\left(A_{n}\right)$ a sequence in $\mathcal{B}(X)$.
a) (10 points) Prove that if A_{n} is compact for all n, and $A_{n} \rightarrow A$ uniformly, then A is compact.
b) (10 points) Consider the operator K defined on $C([0,1])$ by

$$
K f(x)=\int_{0}^{1} k(x y) f(y) d y
$$

where $k \in C([0,1])$. Prove that K is a compact operator on $C([0,1])$ considered with the supremum norm.

Problem 4. Consider $A=\{0,1\}$ with the discrete topology, and define X as the cartesian product of a countable number of copies of A, i.e.,

$$
X=\left\{\left(b_{n}\right)_{n \geq 0} \mid b_{n} \in A, n \geq 0\right\}
$$

a) (5 points) Give a base for the product topology on X.
b) (5 points) Is the product topology on X metric? If so, give a metric that produces it. If not, explain why not.
c) (10 points) Show that a function $f: X \rightarrow \mathbb{C}$ is continuous iff

$$
\lim _{n} \sup \left\{\left|f(b)-f\left(b^{\prime}\right)\right| \mid b, b^{\prime} \in X, b_{k}=b_{k}^{\prime}, k=0, \ldots, n\right\}=0
$$

Problem 5. True or False?
a) (2 points) Every finite-dimensional complex Banach space is isometrically isomorphic to \mathbb{C}^{n}, for some integer $n \geq 0$.True. \square False.
b) (2 points) If a bounded linear transformation T on a Banach space X is one-to-one and onto, then it has unique a bounded inverseTrue. False.
c) (2 points) For every $f \in C(\mathbb{R})$ there is a sequence of polynomials $\left(p_{n}\right)$, such that $p_{n} \rightarrow f$ uniformly.

True. \square False.
d) (2 points) If a sequence $\left(A_{n}\right)$ in $\mathcal{B}(C([0,1]))$ converges in the strong operator topology to $A \in \mathcal{B}(C([0,1]))$, then it converges in the operator norm topology.True. \square False.
e) (2 points) Let X be a linear space equipped with a metric d. Then, $\|x\|=d(0, x)$, for all $x \in X$, defines a norm on X.True. \square False.
f) (2 points) For any convergent sequence, $\left(f_{n}\right)$, in $C([0,1])$ with the sup norm, the set $\left\{f_{n} \mid n \geq 1\right\}$ is equicontinuous.

True. \square False.
g) (2 points) For any two normed linear spaces, the space $\mathcal{B}(X, Y)$ considered with the operator norm is a Banach space.True.
False.
h) (2 points) Every linear functional on $\mathcal{B}(X)$, for some Banach space X, which is continuous for the strong operator topology on $\mathcal{B}(X)$, is also continuous for the operator norm.True. \square False.
i) (2 points) Let X be a metric space and $f: X \rightarrow \mathbb{R}$ a lower semi-continuous function. If X is compact, then f attains its infimum.True. \square False.
j) (2 points) The IVP (for a real-valued function u) given by

$$
\begin{aligned}
& \dot{u}(t)=|u(t)|^{1 / 3} \\
& u(1)=1
\end{aligned}
$$

has a unique solution defined for $t \in(0,2)$True. \square False.

