Problem Set 1
 Math 201A, Fall 2006

Due: Friday, Oct 6

Problem 1. Give an $\epsilon-\delta$ proof that

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

when $|x|<1$.

Problem 2. If x, y, z are points in a metric space (X, d), show that

$$
\begin{aligned}
d(x, y) & \geq|d(x, z)-d(y, z)| \\
d(x, y)+d(z, w) & \geq|d(x, z)-d(y, w)| .
\end{aligned}
$$

Prove that if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$, then $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.

Problem 3. If $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are metric spaces, show that $d=d_{X} \times d_{Y}$ defined by

$$
d\left(z_{1}, z_{2}\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)
$$

where $z_{1}=\left(x_{1}, y_{1}\right), z_{2}=\left(x_{2}, y_{2}\right)$, is a metric on the Cartesian product $Z=X \times Y$.
If $X=Y=\mathbb{R}$ and $d_{X}(x, y)=d_{Y}(x, y)=|x-y|$, describe the set

$$
\left\{z \in \mathbb{R}^{2} \mid d(z, 0)<1\right\}
$$

Problem 4. If X is a normed linear space with norm $\|\cdot\|$, define $\rho: X \rightarrow \mathbb{R}$ by

$$
\rho(x)=\frac{\|x\|}{1+\|x\|} .
$$

(a) Why isn't ρ a norm on X ?
(b) Define $r: X \times X \rightarrow \mathbb{R}$ by

$$
r(x, y)=\rho(x-y)
$$

Prove that r is a metric on X.
(c) Define the diameter of X with respect to a metric d by

$$
\operatorname{diam}(X)=\sup _{x, y \in X} d(x, y)
$$

What is the diameter of X with respect to the metric $d(x, y)=\|x-y\|$? What is the diameter of X with respect to the metric $r(x, y)=\rho(x-y)$?
(d) Prove that $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$ if and only if $r\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.

Problem 5. Let $\mathbb{N}=\{1,2,3, \ldots\}$ denote the natural numbers, and define

$$
d_{1}, d_{2}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}
$$

by

$$
d_{1}(n, m)=\left|\frac{1}{n}-\frac{1}{m}\right|, \quad d_{2}(n, m)=|n-m| .
$$

(a) Prove that d_{1}, d_{2} are metrics on \mathbb{N}.
(b) Determine whether or not \mathbb{N} is complete with respect each of the metrics d_{1}, d_{2}.

