Problem Set 2 Math 201A, Fall 2006

Due: Friday, Oct 13

Problem 1. Suppose that $\sum_{n=1}^{\infty} x_n$ is a series in a Banach space X such that $||x_n|| \leq a_n$. If $\sum_{n=1}^{\infty} a_n$ converges in \mathbb{R} , prove that $\sum_{n=1}^{\infty} x_n$ converges in X.

Problem 2. Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers, and define

$$R = \left(\limsup_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1},$$

with the obvious conventions for R=0 and $R=\infty$. Prove that the power series

$$\sum_{n=0}^{\infty} a_n x^n$$

for $x \in \mathbb{R}$ converges if |x| < R and diverges if |x| > R.

HINT. Consider $|x| \leq (1 - \epsilon)R$ and $|x| \geq (1 + \epsilon)R$ for any $\epsilon > 0$.

Problem 3. Consider a set of real numbers,

$$\{x_{n,\alpha} \mid n \in \mathbb{N}, \alpha \in \mathcal{A}\},\$$

indexed by $n \in \mathbb{N}$ and $\alpha \in \mathcal{A}$, where \mathcal{A} is an arbitrary set.

(a) Prove that

$$\limsup_{n \to \infty} \left(\inf_{\alpha \in \mathcal{A}} x_{n,\alpha} \right) \le \inf_{\alpha \in \mathcal{A}} \left(\limsup_{n \to \infty} x_{n,\alpha} \right). \tag{1}$$

HINT. Show that the number on the left is a lower bound of the set on the right.

- (b) By changing $x_{n,\alpha} \mapsto -x_{n,\alpha}$, deduce the corresponding inequality for \liminf and \sup .
- (c) Give an example to show that there may be strict inequality in (1).

Problem 4. Suppose that F and G are, respectively, closed and open subsets of a metric space (X,d) such that $F \subset G$. Show that there is a continuous function $f: X \to \mathbb{R}$ such that $0 \le f(x) \le 1$, f(x) = 1 for $x \in F$, and f(x) = 0 for $x \in G^c$.

HINT. Consider the function

$$f(x) = \frac{d(x, G^c)}{d(x, G^c) + d(x, F)}.$$

This result is called *Urysohn's lemma*.

Problem 5. A metric space (X, d) is said to be an ultrametric space if

$$d(x,y) \le \max \{d(x,z), d(z,y)\}$$
 for all $x, y, z \in X$.

Prove that in an ultrametric space, every open ball

$$B_r(x) = \{ y \in X \mid d(x, y) < r \}$$

is also closed.