Problem Set 3

Math 201A, Fall 2006
Due: Friday, October 20
Problem 1. Let X be the space of all real sequences of the form

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, 0,0, \ldots\right), \quad x_{i} \in \mathbb{R}
$$

whose terms are zero from some point on. Define

$$
\|x\|_{\infty}=\max _{i \in \mathbb{N}}\left|x_{i}\right|
$$

(a) Show that $\left(X,\|\cdot\|_{\infty}\right)$ is a normed linear space.
(b) Show that X is not complete.
(c) Give a description of the completion of X as a space of sequences.

Problem 2. Suppose that $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are metric spaces and $\left(Y, d_{Y}\right)$ is complete. If D is a dense subset of X and $f: D \rightarrow Y$ is uniformly continuous on D, prove that there exists a unique continuous function F : $X \rightarrow Y$ such that $\left.F\right|_{D}=f$.

Problem 3. Fix a prime number p. For any nonzero rational number $r \in \mathbb{Q}$ there is a unique integer $k \in \mathbb{Z}$ such that $r=m p^{k} / n$, where m, n are integers that are not divisible by p. We then define $|r|_{p}=p^{-k}$. We define $|0|_{p}=0$.
(a) Prove that $|\cdot|_{p}: \mathbb{Q} \rightarrow \mathbb{R}$ satisfies:

1. $|r|_{p} \geq 0$ and $|r|_{p}=0$ if and only if $r=0$;
2. $|-r|_{p}=\left|r_{p}\right|$;
3. $|r+s|_{p} \leq \max \left\{|r|_{p},|s|_{p}\right\}$.

Deduce that $d: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{R}$ defined by

$$
d(r, s)=|r-s|_{p}
$$

is an ultrametric on \mathbb{Q}. Show that (\mathbb{Q}, d) is not complete.
(b) Let $\left(\mathbb{Q}_{p}, d_{p}\right)$ denote the completion of (\mathbb{Q}, d). Use the result of Problem 2 to prove that addition $+: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$ extends to a unique continuous function $+_{p}: \mathbb{Q}_{p} \times \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$.
Remark. Elements of \mathbb{Q}_{p} are called p-adic numbers, which are important in algebraic number theory.

Problem 4. A metric space is said to be: connected if it is not the union of two disjoint non-empty open sets; totally disconnected if the only non-empty connected subspaces consist of a single point; and perfect if every point in the space is an accumulation point, meaning that it is a limit of a sequence of other points in the space.
Let $X=\{0,1\}^{\mathbb{N}}$ be the space of all sequences consisting of zeros or ones:

$$
X=\left\{\left(s_{1}, s_{2}, s_{3}, \ldots\right) \mid s_{n} \in\{0,1\}\right\}
$$

Define $d: X \times X \rightarrow \mathbb{R}$ by

$$
d(\mathbf{s}, \mathbf{t})=\sum_{n=1}^{\infty} \frac{\delta_{n}}{2^{n}}
$$

where $\mathbf{s}=\left(s_{1}, s_{2}, s_{3}, \ldots\right), \mathbf{t}=\left(t_{1}, t_{2}, t_{3}, \ldots\right)$, and

$$
\delta_{n}= \begin{cases}0 & \text { if } s_{n}=t_{n} \\ 1 & \text { if } s_{n} \neq t_{n}\end{cases}
$$

(a) Prove that d is a metric on X.
(b) Prove that X is compact, totally disconnected, and perfect.
(c) Prove that the Cantor set C, regarded as a metric subspace of $[0,1]$ with the standard metric, is homeomorphic to X. (You can assume that the Cantor set is in one-to-one correspondence with the set of numbers that have a base-three expansion $0 . b_{1} b_{2} b_{3} \ldots$ with no 1 's, and that for any such number this base-three expansion is unique.)
(d) Define the shift map $\sigma: X \rightarrow X$ by

$$
\sigma\left(s_{1}, s_{2}, s_{3}, \ldots\right)=\left(s_{2}, s_{3}, s_{4}, \ldots\right)
$$

Prove that σ is continuous.
(e) Let $\sigma^{n}=\sigma \circ \sigma \circ \ldots \circ \sigma$ denote the n-fold composition of σ with itself. Show that there exists a $\delta>0$ such that for any $\mathbf{s} \in X$ and any neighborhood U of \mathbf{s}, there exists $\mathbf{t} \in U$ and $n \in \mathbb{N}$ with

$$
d\left(\sigma^{n}(\mathbf{s}), \sigma^{n}(\mathbf{t})\right)>\delta
$$

(e) Prove that there is a point $\mathbf{s} \in X$ such that the orbit of \mathbf{s} under σ,

$$
\left\{\sigma^{n}(\mathbf{s}) \mid n=0,1,2, \ldots\right\}
$$

is dense in X.

