Analysis
Math 201A, Fall 2006
Problem Set 5

1. Suppose that $\left(x_{n}\right)$ is a bounded sequence of real numbers. Define a sequence $\left(y_{n}\right)$ by

$$
y_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

(a) Prove that

$$
\liminf _{n \rightarrow \infty} x_{n} \leq \liminf _{n \rightarrow \infty} y_{n} \leq \limsup _{n \rightarrow \infty} y_{n} \leq \limsup _{n \rightarrow \infty} x_{n} .
$$

(b) If $\left(x_{n}\right)$ converges, must $\left(y_{n}\right)$ converge? If $\left(y_{n}\right)$ converges, must $\left(x_{n}\right)$ converge? Prove your answers.
2. Let A be a subset of a metric space X. Define the characteristic function $\chi_{A}: X \rightarrow \mathbb{R}$ of A by

$$
\chi_{A}(x)= \begin{cases}1 & \text { if } x \in A, \\ 0 & \text { if } x \notin A .\end{cases}
$$

Prove that χ_{A} is lower semi-continuous if and only if A is open.
3. Let $C_{c}(\mathbb{R})$ be the space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with compact support, meaning that there exists an $R>0$ (depending on f) such that $f(x)=0$ for $|x|>R$. We define the sup-norm $\|\cdot\|_{\infty}$ and the L^{1}-norm $\|\cdot\|_{1}$ on $C_{c}(\mathbb{R})$ by

$$
\|f\|_{\infty}=\sup _{x \in \mathbb{R}}|f(x)|, \quad\|f\|_{1}=\int_{-\infty}^{\infty}|f(x)| d x
$$

(a) Show that $\|f\|_{\infty}$ and $\|f\|_{1}$ are finite for any $f \in C_{c}(\mathbb{R})$.
(b) Is $C_{c}(\mathbb{R})$ equipped with the sup-norm a Banach space? Prove your answer.
(c) Let $\left(f_{n}\right)$ be a sequence in $C_{c}(\mathbb{R})$. Answer the following questions, and give a proof or counterexample.

1. If $f_{n} \rightarrow f \in C_{c}(\mathbb{R})$ as $n \rightarrow \infty$ with respect to the L^{1}-norm, does $f_{n} \rightarrow f$ as $n \rightarrow \infty$ with respect to the sup-norm?
2. If $f_{n} \rightarrow f \in C_{c}(\mathbb{R})$ as $n \rightarrow \infty$ with respect to the sup-norm, does $f_{n} \rightarrow f$ as $n \rightarrow \infty$ with respect to the L^{1}-norm?
3. A collection of sets has the finite intersection property if every finite subcollection has nonempty intersection.
(a) Prove that a metric space X is compact if and only if every collection of closed sets with the finite intersection property has non-empty intersection.
(b) Give an example of a collection of closed subsets of $(0,1]$ (with its usual metric topology as a subset of \mathbb{R}) that has the finite intersection property but whose intersection is empty.
4. Let ℓ^{∞} be the space of real, bounded sequences,

$$
\ell^{\infty}=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mid x_{n} \in \mathbb{R}, \exists M>0 \text { s.t. }\left|x_{n}\right| \leq M \text { for all } n \in \mathbb{N}\right\}
$$

equipped with the sup-norm

$$
\left\|\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right| .
$$

Prove that the 'Hilbert cube'

$$
C=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mid 0 \leq x_{n} \leq 1 / n \text { for every } n \in \mathbb{N}\right\}
$$

is a compact subset of ℓ^{∞}. (You can assume that ℓ^{∞} is a Banach space.)

