ANALYSIS Math 201A, Fall 2006 Problem Set 6

1. Let $C^1([0,1])$ denote the space of continuously differentiable functions $f:[0,1] \to \mathbb{R}$, and define

$$||f|| = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|.$$

(a) Show that $\|\cdot\|$ is a norm on $C^1([0,1])$.

(b) Prove that $C^1([0,1])$ is a Banach space with respect to $\|\cdot\|$.

WARNING. The uniform convergence of (f_n) to f does not imply the convergence of (f'_n) to f'.

2. If $f : [0,1] \to \mathbb{R}$ is integrable, define $b_n \in \mathbb{R}$ by

$$b_n = \int_0^1 f(x) \sin(n\pi x) \, dx.$$

(a) Prove that $b_n \to 0$ as $n \to \infty$ for any polynomial.

(b) Prove that $b_n \to 0$ as $n \to \infty$ for any $f \in C([0, 1])$.

HINT. Integrate by parts for (a), and use the Weierstrass approximation theorem for (b).

3. A function $f:[0,1] \to \mathbb{R}$ is said to be Hölder continuous with exponent α if

$$[f]_{\alpha} = \sup_{x \neq y \in [0,1]} \left\{ \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \right\}$$

is finite. Given $0 < \alpha \leq 1$ and M > 0, define

$$\mathcal{F} = \{ f \in C([0,1]) \mid ||f||_{\infty} \le M, \quad [f]_{\alpha} \le M \}.$$

Prove that \mathcal{F} is a compact subset of C([0, 1]) equipped with the sup-norm $\|\cdot\|_{\infty}$.

4. Suppose that (f_n) is a sequence of continuous functions $f_n : [0,1] \to \mathbb{R}$ such that $|f_n(x)| \leq 1$ for all $n \in \mathbb{N}$, $x \in [0,1]$. Define $F_n : [0,1] \to \mathbb{R}$ by

$$F_n(x) = \int_0^x f_n(t) \, dt.$$

Prove that the sequence (F_n) has a subsequence that converges uniformly on [0, 1].

5. Suppose that

$$\{f_n: K \to \mathbb{R} \mid n \in \mathbb{N}\}$$

is an equicontinuous family of functions on a compact metric space K. If (f_n) converges pointwise to a function f, prove that f is continuous. Is the convergence necessarily uniform?