Problem Set 7
 Math 201A, Fall 2006

Due: Wednesday, November 22

Problem 1. Let $r_{n}=x_{n+1} / x_{n}$ be the ratio of successive terms in the Fibonacci sequence $\left(x_{n}\right)$ defined by $x_{n+1}=x_{n}+x_{n-1}$ with $x_{0}=x_{1}=1$. Prove that $r_{n} \rightarrow \phi$ as $n \rightarrow \infty$ where $\phi=(1+\sqrt{5}) / 2$ is the golden ratio.

Problem 2. Show that the mapping $T: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
T x=1+\log \left(1+e^{x}\right)
$$

satisfies

$$
|T x-T y|<|x-y| \quad \text { for all } x, y \in \mathbb{R} \text { with } x \neq y
$$

but T does not have any fixed points. Why doesn't this example contradict the contraction mapping theorem?

Problem 3. Suppose that X is a compact metric space and $T: X \rightarrow X$ satisfies

$$
d(T x, T y)<d(x, y) \quad \text { for all } x, y \in X \text { with } x \neq y
$$

Prove that T has a unique fixed point in X.
Problem 4. Consider the following nonlinear integral equation:

$$
f(x)-\frac{1}{\pi} \int_{0}^{1} \frac{f^{2}(y)}{1+x^{2}+y^{2}} d y=\frac{3}{4}, \quad 0 \leq x \leq 1
$$

Prove that there is a unique continuous solution $f:[0,1] \rightarrow \mathbb{R}$ of this equation with the property that $0 \leq f(x) \leq 1$ for all $0 \leq x \leq 1$.

