Problem Set 8

Math 201A, Fall 2006
Due: Friday, December 1

Problem 1. Recall that a function $f:[0,1] \rightarrow \mathbb{R}$ is Lipschitz continuous if its Lipschitz constant

$$
\operatorname{Lip}(f)=\sup _{x \neq y \in[0,1]} \frac{|f(x)-f(y)|}{|x-y|}
$$

is finite.
(a) For $M>0$, let

$$
L_{M}=\{f \in C([0,1]) \mid \operatorname{Lip}(f) \leq M\}
$$

Show that L_{M} is a closed subset of $C([0,1])$ equipped with the sup-norm.
(b) Let $L=\{f \in C([0,1]) \mid f$ is Lipschitz continuous $\}$. Prove that L is a linear subspace of $C([0,1])$.
(c) Is L a closed linear subspace of $C([0,1])$ equipped with the sup-norm?

Problem 2. Let $c_{0}(\mathbb{N})$ be the Banach space of real sequences $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, equipped with the sup norm

$$
\|x\|=\sup _{n \in \mathbb{N}}\left|x_{n}\right|
$$

(a) Let $e_{n}=(0,0, \ldots, 0,1,0, \ldots)$ be the sequence with nth term equal to 1 and all other terms equal to 0 . Show that $\left(e_{n}\right)_{n=1}^{\infty}$ is a Schauder basis of $c_{0}(\mathbb{N})$.
(b) Let

$$
f_{1}=\frac{1}{2} e_{1}, \quad f_{n}=\frac{1}{2} e_{n}-e_{n-1} \quad \text { for } n \geq 2 .
$$

Show that $\left\{f_{n} \mid n \in \mathbb{N}\right\}$ is a linearly independent set. Is $\left(f_{n}\right)_{n=1}^{\infty}$ a Schauder basis of $c_{0}(\mathbb{N})$?

Problem 3. Suppose that X, Y, Z are normed linear spaces and $A: X \rightarrow Y$, $B: Y \rightarrow Z$ are bounded linear operators. Prove that $B A: X \rightarrow Z$ is a bounded linear operator, and

$$
\|B A\| \leq\|A\|\|B\|
$$

Give an example to show that this inequality may be strict.
Problem 4. Let $\delta: C([0,1]) \rightarrow \mathbb{R}$ be the functional that evaluates a function at the origin, defined by $\delta(f)=f(0)$.
(a) Show that δ is a linear functional. What is the kernel of δ ? What is the range of δ ?
(b) If $C([0,1])$ is equipped with the sup-norm

$$
\|f\|_{\infty}=\sup _{0 \leq x \leq 1}|f(x)|
$$

show that δ is bounded and compute its norm.
(c) If $C([0,1])$ is equipped with the 1 -norm

$$
\|f\|_{1}=\int_{0}^{1}|f(x)| d x
$$

show that δ is unbounded.
(d) Give an example of a bounded linear functional $F: C([0,1]) \rightarrow \mathbb{R}$ where $C([0,1])$ is equipped with the 1 -norm and compute its norm.

