Problem Set 9
Math 201A, Fall 2006
Due: Friday, December 8

Problem 1. Let c be the Banach space of all convergent real sequences $\left(x_{n}\right)_{n=1}^{\infty}$, and c_{0} the subspace of sequences that converge to 0 , both equipped with the ∞-norm, $\left\|\left(x_{n}\right)\right\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right|$.
(a) Define $L: c \rightarrow \mathbb{R}$ by $L\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n}$. Prove that L is a bounded linear functional on c and compute its norm.
(b) For $x=\left(x_{n}\right) \in c$, define $T x=y$ where $y=\left(y_{n}\right)_{n=1}^{\infty}$ is given by

$$
y_{1}=L x, \quad y_{n+1}=x_{n}-L x \quad \text { for } n \geq 1
$$

Prove that $T: c \rightarrow c_{0}$ is a one-to-one, onto bounded linear map. (It follows from the open mapping theorem that T^{-1} is bounded, so c_{0} and c are topologically isomorphic Banach spaces.)

Problem 2. A sequence $\left(T_{n}\right)$ of bounded linear operators $T_{n}: X \rightarrow Y$ on normed linear spaces X, Y is said to converge strongly to $T: X \rightarrow Y$ if $T_{n} x \rightarrow T x$ in norm in Y for every $x \in X$.
(a) Show that if $T_{n} \rightarrow T$ uniformly (i.e. with respect to the operator norm), then $T_{n} \rightarrow T$ strongly.
(b) Let $C_{0}(\mathbb{R})$ be the Banach space of continuous functions that approach zero at ∞, equipped with the sup-norm. For $h \in \mathbb{R}$ define the translation operator $T_{h}: C_{0}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ by

$$
T_{h} f(x)=f(x+h)
$$

Prove that $T_{h} \rightarrow I$ strongly as $h \rightarrow 0$, where I is the identity operator on $C_{0}(\mathbb{R})$. Prove that T_{h} does not converge to I uniformly as $h \rightarrow 0$. Hint. Any $f \in C_{0}(\mathbb{R})$ is uniformly continuous.
(c) With T_{h} as in (b), define $A_{h}: C_{0}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ by

$$
A_{h}=\frac{T_{h}-I}{h} .
$$

Does A_{h} converge strongly as $h \rightarrow 0$? For what $f \in C_{0}(\mathbb{R})$ does $A_{h} f$ converge in norm as $h \rightarrow 0$? Compute the limit when it exists.

Problem 3. Suppose that $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map with $m \times n$ matrix $\left(a_{i j}\right)$ with respect to the standard bases on \mathbb{R}^{n} and \mathbb{R}^{m}.
(a) Compute the operator (or matrix) norm $\|A\|$ if the domain \mathbb{R}^{n} is equipped with the 1-norm,

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{1}=\left|x_{1}\right|+\ldots+\left|x_{n}\right|
$$

and the range \mathbb{R}^{m} is equipped with the ∞-norm,

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

(b) If the domain \mathbb{R}^{n} is equipped with the ∞-norm and the range \mathbb{R}^{m} is equipped with the 1 -norm, prove that

$$
\|A\| \leq \sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

with equality if $a_{i j} \geq 0$ for all $1 \leq i \leq m, 1 \leq j \leq n$.
Problem 4. Let $\ell^{2}(\mathbb{N})$ be the Banach space of square-sumable real sequences $x=\left(x_{i}\right)_{i=1}^{\infty}$ with norm

$$
\|x\|=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}\right)^{1 / 2}
$$

A sequence $\left(x^{(n)}\right)$ in $\ell^{2}(\mathbb{N})$,

$$
x^{(n)}=\left(x_{1}^{(n)}, x_{2}^{(n)}, x_{3}^{(n)}, \ldots\right)
$$

converges weakly to $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ as $n \rightarrow \infty$ if for every

$$
y=\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in \ell^{2}(\mathbb{N})
$$

we have

$$
\sum_{i=1}^{\infty} x_{i}^{(n)} y_{i} \rightarrow \sum_{i=1}^{\infty} x_{i} y_{i} \quad \text { as } n \rightarrow \infty
$$

Let $e^{(n)}=(0,0, \ldots 0,1,0, \ldots)$ be the element of $\ell^{2}(\mathbb{N})$ with $x_{i}=1$ when $i=n$ and $x_{i}=0$ otherwise.
(a) Prove that the sequence $\left(e^{(n)}\right)$ converges weakly to 0 as $n \rightarrow \infty$, but does not converge strongly (i.e. in norm) to any limit.
(b) Does the sequence $\left(n e^{(n)}\right)$ converge weakly as $n \rightarrow \infty$?

