
Solutions: Problem Set 1
Math 201A, Fall 2006

Problem 1. Give an ε-δ proof that

∞∑
n=0

xn =
1

1− x
,

when |x| < 1.

Solution.

• From the formula for the sum of a geometric series, we have

N∑
n=0

xn =
1− xN+1

1− x

when x 6= 1. Using this result, and assuming that |x| < 1, we find that∣∣∣∣∣
N∑

n=0

xn − 1

1− x

∣∣∣∣∣ ≤ |x|N+1

1− |x|
.

Let ε > 0 be given. Since |x|n → 0 as n → ∞, there exists an Nε ∈ N
such that n > Nε + 1 implies that

|x|n < (1− |x|)ε.

Then N > Nε implies that∣∣∣∣∣
N∑

n=0

xn − 1

1− x

∣∣∣∣∣ < ε,

which proves the result.

• Although it could simply be assumed, we prove that if 0 ≤ x < 1 then
xn → 0 as n → ∞. The sequence (xn) is monotone decreasing and



bounded below by 0, so the completeness of the reals implies that it
approaches a limit `. It follows that

` = lim
n→∞

xn

= lim
n→∞

x · xn−1

= x lim
n→∞

xn−1

= x`.

Since x 6= 1, we must have ` = 0.

Problem 2. If x, y, z are points in a metric space (X, d), show that

d(x, y) ≥ |d(x, z)− d(y, z)| ,
d(x, y) + d(z, w) ≥ |d(x, z)− d(y, w)| .

Prove that if xn → x and yn → y as n →∞, then d(xn, yn) → d(x, y).

Solution.

• The triangle inequality

d(x, y) + d(y, z) ≥ d(x, z)

implies that
d(x, y) ≥ d(x, z)− d(y, z).

Exchanging x and y, and using the symmetry of d, we also have

d(x, y) ≥ d(y, z)− d(x, z).

Hence
d(x, y) ≥ |d(x, z)− d(y, z)| .

• The triangle inequality implies that

d(x, y) ≥ d(x, z)− d(y, z),

d(z, w) ≥ d(z, y)− d(w, y).



Adding these equations, we get

d(x, y) + d(z, w) ≥ d(x, z)− d(w, y).

Similarly, we have

d(y, x) ≥ d(y, w)− d(x, w),

d(w, z) ≥ d(w, x)− d(z, x),

and
d(y, x) + d(w, z) ≥ d(y, w)− d(z, x).

Hence
d(x, y) + d(z, w) ≥ |d(x, z)− d(y, w)| . (1)

• Using (1), we have

0 ≤ |d (xn, yn)− d(x, y)| ≤ d(xn, x) + d (yn, y) ,

which implies that d (xn, yn) → d(x, y) as n → ∞ if d (xn, x) → 0 and
d (yn, y) → 0.

Problem 3. If (X, dX) and (Y, dY ) are metric spaces, show that d = dX×dY

defined by
d(z1, z2) = dX(x1, x2) + dY (y1, y2),

where z1 = (x1, y1), z2 = (x2, y2), is a metric on the Cartesian product
Z = X × Y .

If X = Y = R and dX(x, y) = dY (x, y) = |x− y|, describe the set{
z ∈ R2 | d(z, 0) < 1

}
.

Solution.

• We have d ≥ 0 since dX ≥ 0, dY ≥ 0. Moreover, d(z1, z2) = 0 implies
that dX(x1, x2) = 0, dY (y1, y2) = 0, so x1 = x2, y1 = y2, and z1 = z2.

• d(z2, z1) = dX(x2, x1) + dY (y2, y1) = dX(x1, x2) + dY (y1, y2) = d(z1, z2).



• If z3 = (x3, y3) then

d(z1, z2) = dX(x1, x2) + dY (y1, y2)

≤ dX(x1, x3) + dX(x3, x2) + dY (y1, y3) + dY (y3, y2)

≤ d(z1, z3) + d(z3, z2).

• The set is the interior of the ‘diamond’ with vertices (1, 0), (0, 1),
(−1, 0), and (0,−1).

Problem 4. If X is a normed linear space with norm ‖ · ‖, define ρ : X → R
by

ρ(x) =
‖x‖

1 + ‖x‖
.

(a) Why isn’t ρ a norm on X?

(b) Define r : X ×X → R by

r(x, y) = ρ(x− y).

Prove that r is a metric on X.

(c) Define the diameter of X with respect to a metric d by

diamd(X) = sup
x,y∈X

d(x, y).

What is the diameter of X with respect to the metric d(x, y) = ‖x − y‖?
What is the diameter of X with respect to the metric r(x, y) = ρ(x− y)?

(d) Prove that ‖xn−x‖ → 0 as n →∞ if and only if r(xn, x) → 0 as n →∞.

Solution.

• (a) The function ρ is not a norm since it does not satisfy the condition
ρ(λx) = λρ(x) for scalars λ if x ∈ X is nonzero. (We assume that X is
not the trivial normed linear space {0}.)

• (b) It is clear that r(x, y) = r(y, x), r(x, y) ≥ 0, and r(x, y) = 0 if and
only if x = y. To prove the triangle inequality, we use the following



inequalities, which follow from the proposition below: for s, t ≥ 0 and
0 ≤ t1 ≤ t2,

s + t

1 + s + t
≤ s

1 + s
+

t

1 + t
,

t1
1 + t1

≤ t2
1 + t2

.

Since ‖x− y‖ ≤ ‖x‖+ ‖y‖, we have

r(x, y) =
‖x− y‖

1 + ‖x− y‖

≤ ‖x‖+ ‖y‖
1 + ‖x‖+ ‖y‖

≤ ‖x‖
1 + ‖x‖

+
‖y‖

1 + ‖y‖
≤ r(x, z) + r(z, y).

Proposition 1 Suppose that f : [0,∞) → [0,∞) is a continuously
differentiable function such that f(0) = 0, and f ′ is non-negative and
monotone decreasing. Then for s, t ≥ 0

0 ≤ f(s + t) ≤ f(s) + f(t),

and for 0 ≤ t1 ≤ t2
0 ≤ f(t1) ≤ f(t2).

Proof. If x, s ≥ 0, then f ′(x + s) ≤ f ′(x), since f ′ is monotone
decreasing. It follows from the fundamental theorem of calculus that

f(s + t) =

∫ s+t

0

f ′(x) dx

=

∫ s

0

f ′(x) dx +

∫ t+s

s

f ′(x) dx

=

∫ s

0

f ′(x) dx +

∫ t

0

f ′(x + s) dx

≤
∫ s

0

f ′(x) dx +

∫ t

0

f ′(x) dx

≤ f(s) + f(t).



Since f ′ ≥ 0, the function f is monotone increasing. Hence 0 ≤ t1 ≤ t2
implies that f(t1) ≤ f(t2). �

We have
r(x, y) = f (‖x− y‖) ,

where

f(t) =
t

1 + t
.

Then f(0) = 0, and

f ′(t) =
1

1 + t2

is non-negative and monotone decreasing, so the inequalities used above
follow.

• (c) If x ∈ X is nonzero, then

sup
λ∈R

d(λx, 0) = sup
λ∈R

‖λx‖ = ∞,

sup
λ∈R

r(x, 0) = sup
λ∈R

‖λx‖
1 + ‖λx‖

= 1.

Since r(x, y) < 1 for all x, y ∈ X, it follows that

diamd(X) = ∞, diamr(X) = 1.

• (d) Since 0 ≤ r(xn, x) ≤ d(xn, x), it follows that d(xn, x) → 0 implies
r(xn, x) → 0. Conversely if r(xn, x) → 0, then f(‖xn − x‖) ≤ 1/2 for
all sufficiently large n. Since f is monotone increasing, it follows that
‖xn−x‖ ≤ 1, and in that case d(xn, x) ≤ 2r(xn, x). Hence, r(xn, x) → 0
implies that d(xn, x) → 0.

Remark. More generally, if (X, d) is any metric space, then (X, d′) with
metric

d′(x, y) =
d(x, y)

1 + d(x, y)

is a bounded metric space that has the same topology. There are many other
ways to define such a d′; for example

d′(x, y) = max{d(x, y), 1}.



Problem 5. Let N = {1, 2, 3, . . .} denote the natural numbers, and define

d1, d2 : N× N → R

by

d1(n, m) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ , d2(n, m) = |n−m| .

(a) Prove that d1, d2 are metrics on N.

(b) Determine whether or not N is complete with respect each of the metrics
d1, d2.

Solution.

• (a) It is easy to check that d1, d2 are metrics on N.

• (b) The metric space (N, d1) is not complete. For example, consider
the sequence (xn) with xn = n. If ε > 0 then m > n > 1/ε implies that

d1(xn, xm) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ <
1

n
< ε,

so the sequence is Cauchy. Suppose that d(xn, x) → 0 for some x ∈ N.
Then

1

x
= lim

n→∞

∣∣∣∣1x − 1

n

∣∣∣∣ = 0,

which is impossible. Thus, the sequence does not converge.

• The completion of (N, d1) can be obtained by adding a point ∞ to N
with d1(n,∞) = 1/n for all n ∈ N. This completion is isometrically
isomorphic to the subspace {1, 1/2, 1/3, . . . , 0} of R equipped with its
usual absolute value metric.

• The metric space (N, d2) is complete. If (xn) is a Cauchy sequence, then
d2(xn, xm) < 1 for all sufficient large n and m, which implies that the
terms are the same, and equal to x say. Then the sequence converges
to x.

• The metric d2 gives the discrete topology on N.


