Solutions: Problem Set 1

Math 201A, Fall 2006

Problem 1. Give an $\epsilon-\delta$ proof that

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

when $|x|<1$.

Solution.

- From the formula for the sum of a geometric series, we have

$$
\sum_{n=0}^{N} x^{n}=\frac{1-x^{N+1}}{1-x}
$$

when $x \neq 1$. Using this result, and assuming that $|x|<1$, we find that

$$
\left|\sum_{n=0}^{N} x^{n}-\frac{1}{1-x}\right| \leq \frac{|x|^{N+1}}{1-|x|}
$$

Let $\epsilon>0$ be given. Since $|x|^{n} \rightarrow 0$ as $n \rightarrow \infty$, there exists an $N_{\epsilon} \in \mathbb{N}$ such that $n>N_{\epsilon}+1$ implies that

$$
|x|^{n}<(1-|x|) \epsilon .
$$

Then $N>N_{\epsilon}$ implies that

$$
\left|\sum_{n=0}^{N} x^{n}-\frac{1}{1-x}\right|<\epsilon,
$$

which proves the result.

- Although it could simply be assumed, we prove that if $0 \leq x<1$ then $x^{n} \rightarrow 0$ as $n \rightarrow \infty$. The sequence $\left(x^{n}\right)$ is monotone decreasing and
bounded below by 0 , so the completeness of the reals implies that it approaches a limit ℓ. It follows that

$$
\begin{aligned}
\ell & =\lim _{n \rightarrow \infty} x^{n} \\
& =\lim _{n \rightarrow \infty} x \cdot x^{n-1} \\
& =x \lim _{n \rightarrow \infty} x^{n-1} \\
& =x \ell .
\end{aligned}
$$

Since $x \neq 1$, we must have $\ell=0$.

Problem 2. If x, y, z are points in a metric space (X, d), show that

$$
\begin{aligned}
d(x, y) & \geq|d(x, z)-d(y, z)| \\
d(x, y)+d(z, w) & \geq|d(x, z)-d(y, w)| .
\end{aligned}
$$

Prove that if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$, then $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.

Solution.

- The triangle inequality

$$
d(x, y)+d(y, z) \geq d(x, z)
$$

implies that

$$
d(x, y) \geq d(x, z)-d(y, z)
$$

Exchanging x and y, and using the symmetry of d, we also have

$$
d(x, y) \geq d(y, z)-d(x, z)
$$

Hence

$$
d(x, y) \geq|d(x, z)-d(y, z)| .
$$

- The triangle inequality implies that

$$
\begin{aligned}
d(x, y) & \geq d(x, z)-d(y, z), \\
d(z, w) & \geq d(z, y)-d(w, y) .
\end{aligned}
$$

Adding these equations, we get

$$
d(x, y)+d(z, w) \geq d(x, z)-d(w, y)
$$

Similarly, we have

$$
\begin{aligned}
d(y, x) & \geq d(y, w)-d(x, w), \\
d(w, z) & \geq d(w, x)-d(z, x),
\end{aligned}
$$

and

$$
d(y, x)+d(w, z) \geq d(y, w)-d(z, x)
$$

Hence

$$
\begin{equation*}
d(x, y)+d(z, w) \geq|d(x, z)-d(y, w)| . \tag{1}
\end{equation*}
$$

- Using (1), we have

$$
0 \leq\left|d\left(x_{n}, y_{n}\right)-d(x, y)\right| \leq d\left(x_{n}, x\right)+d\left(y_{n}, y\right)
$$

which implies that $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$ as $n \rightarrow \infty$ if $d\left(x_{n}, x\right) \rightarrow 0$ and $d\left(y_{n}, y\right) \rightarrow 0$.

Problem 3. If (X, d_{X}) and (Y, d_{Y}) are metric spaces, show that $d=d_{X} \times d_{Y}$ defined by

$$
d\left(z_{1}, z_{2}\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right),
$$

where $z_{1}=\left(x_{1}, y_{1}\right), z_{2}=\left(x_{2}, y_{2}\right)$, is a metric on the Cartesian product $Z=X \times Y$.
If $X=Y=\mathbb{R}$ and $d_{X}(x, y)=d_{Y}(x, y)=|x-y|$, describe the set

$$
\left\{z \in \mathbb{R}^{2} \mid d(z, 0)<1\right\} .
$$

Solution.

- We have $d \geq 0$ since $d_{X} \geq 0, d_{Y} \geq 0$. Moreover, $d\left(z_{1}, z_{2}\right)=0$ implies that $d_{X}\left(x_{1}, x_{2}\right)=0, d_{Y}\left(y_{1}, y_{2}\right)=0$, so $x_{1}=x_{2}, y_{1}=y_{2}$, and $z_{1}=z_{2}$.
- $d\left(z_{2}, z_{1}\right)=d_{X}\left(x_{2}, x_{1}\right)+d_{Y}\left(y_{2}, y_{1}\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)=d\left(z_{1}, z_{2}\right)$.
- If $z_{3}=\left(x_{3}, y_{3}\right)$ then

$$
\begin{aligned}
d\left(z_{1}, z_{2}\right) & =d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right) \\
& \leq d_{X}\left(x_{1}, x_{3}\right)+d_{X}\left(x_{3}, x_{2}\right)+d_{Y}\left(y_{1}, y_{3}\right)+d_{Y}\left(y_{3}, y_{2}\right) \\
& \leq d\left(z_{1}, z_{3}\right)+d\left(z_{3}, z_{2}\right)
\end{aligned}
$$

- The set is the interior of the 'diamond' with vertices $(1,0),(0,1)$, $(-1,0)$, and $(0,-1)$.

Problem 4. If X is a normed linear space with norm $\|\cdot\|$, define $\rho: X \rightarrow \mathbb{R}$ by

$$
\rho(x)=\frac{\|x\|}{1+\|x\|} .
$$

(a) Why isn't ρ a norm on X ?
(b) Define $r: X \times X \rightarrow \mathbb{R}$ by

$$
r(x, y)=\rho(x-y)
$$

Prove that r is a metric on X.
(c) Define the diameter of X with respect to a metric d by

$$
\operatorname{diam}_{d}(X)=\sup _{x, y \in X} d(x, y)
$$

What is the diameter of X with respect to the metric $d(x, y)=\|x-y\|$? What is the diameter of X with respect to the metric $r(x, y)=\rho(x-y)$?
(d) Prove that $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$ if and only if $r\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.

Solution.

- (a) The function ρ is not a norm since it does not satisfy the condition $\rho(\lambda x)=\lambda \rho(x)$ for scalars λ if $x \in X$ is nonzero. (We assume that X is not the trivial normed linear space $\{0\}$.)
- (b) It is clear that $r(x, y)=r(y, x), r(x, y) \geq 0$, and $r(x, y)=0$ if and only if $x=y$. To prove the triangle inequality, we use the following
inequalities, which follow from the proposition below: for $s, t \geq 0$ and $0 \leq t_{1} \leq t_{2}$,

$$
\frac{s+t}{1+s+t} \leq \frac{s}{1+s}+\frac{t}{1+t}, \quad \frac{t_{1}}{1+t_{1}} \leq \frac{t_{2}}{1+t_{2}}
$$

Since $\|x-y\| \leq\|x\|+\|y\|$, we have

$$
\begin{aligned}
r(x, y) & =\frac{\|x-y\|}{1+\|x-y\|} \\
& \leq \frac{\|x\|+\|y\|}{1+\|x\|+\|y\|} \\
& \leq \frac{\|x\|}{1+\|x\|}+\frac{\|y\|}{1+\|y\|} \\
& \leq r(x, z)+r(z, y) .
\end{aligned}
$$

Proposition 1 Suppose that $f:[0, \infty) \rightarrow[0, \infty)$ is a continuously differentiable function such that $f(0)=0$, and f^{\prime} is non-negative and monotone decreasing. Then for $s, t \geq 0$

$$
0 \leq f(s+t) \leq f(s)+f(t)
$$

and for $0 \leq t_{1} \leq t_{2}$

$$
0 \leq f\left(t_{1}\right) \leq f\left(t_{2}\right)
$$

Proof. If $x, s \geq 0$, then $f^{\prime}(x+s) \leq f^{\prime}(x)$, since f^{\prime} is monotone decreasing. It follows from the fundamental theorem of calculus that

$$
\begin{aligned}
f(s+t) & =\int_{0}^{s+t} f^{\prime}(x) d x \\
& =\int_{0}^{s} f^{\prime}(x) d x+\int_{s}^{t+s} f^{\prime}(x) d x \\
& =\int_{0}^{s} f^{\prime}(x) d x+\int_{0}^{t} f^{\prime}(x+s) d x \\
& \leq \int_{0}^{s} f^{\prime}(x) d x+\int_{0}^{t} f^{\prime}(x) d x \\
& \leq f(s)+f(t)
\end{aligned}
$$

Since $f^{\prime} \geq 0$, the function f is monotone increasing. Hence $0 \leq t_{1} \leq t_{2}$ implies that $f\left(t_{1}\right) \leq f\left(t_{2}\right)$.

We have

$$
r(x, y)=f(\|x-y\|),
$$

where

$$
f(t)=\frac{t}{1+t} .
$$

Then $f(0)=0$, and

$$
f^{\prime}(t)=\frac{1}{1+t^{2}}
$$

is non-negative and monotone decreasing, so the inequalities used above follow.

- (c) If $x \in X$ is nonzero, then

$$
\begin{aligned}
& \sup _{\lambda \in \mathbb{R}} d(\lambda x, 0)=\sup _{\lambda \in \mathbb{R}}\|\lambda x\|=\infty \\
& \sup _{\lambda \in \mathbb{R}} r(x, 0)=\sup _{\lambda \in \mathbb{R}} \frac{\|\lambda x\|}{1+\|\lambda x\|}=1 .
\end{aligned}
$$

Since $r(x, y)<1$ for all $x, y \in X$, it follows that

$$
\operatorname{diam}_{d}(X)=\infty, \quad \operatorname{diam}_{r}(X)=1
$$

- (d) Since $0 \leq r\left(x_{n}, x\right) \leq d\left(x_{n}, x\right)$, it follows that $d\left(x_{n}, x\right) \rightarrow 0$ implies $r\left(x_{n}, x\right) \rightarrow 0$. Conversely if $r\left(x_{n}, x\right) \rightarrow 0$, then $f\left(\left\|x_{n}-x\right\|\right) \leq 1 / 2$ for all sufficiently large n. Since f is monotone increasing, it follows that $\left\|x_{n}-x\right\| \leq 1$, and in that case $d\left(x_{n}, x\right) \leq 2 r\left(x_{n}, x\right)$. Hence, $r\left(x_{n}, x\right) \rightarrow 0$ implies that $d\left(x_{n}, x\right) \rightarrow 0$.

Remark. More generally, if (X, d) is any metric space, then $\left(X, d^{\prime}\right)$ with metric

$$
d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

is a bounded metric space that has the same topology. There are many other ways to define such a d^{\prime}; for example

$$
d^{\prime}(x, y)=\max \{d(x, y), 1\}
$$

Problem 5. Let $\mathbb{N}=\{1,2,3, \ldots\}$ denote the natural numbers, and define

$$
d_{1}, d_{2}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}
$$

by

$$
d_{1}(n, m)=\left|\frac{1}{n}-\frac{1}{m}\right|, \quad d_{2}(n, m)=|n-m| .
$$

(a) Prove that d_{1}, d_{2} are metrics on \mathbb{N}.
(b) Determine whether or not \mathbb{N} is complete with respect each of the metrics d_{1}, d_{2}.

Solution.

- (a) It is easy to check that d_{1}, d_{2} are metrics on \mathbb{N}.
- (b) The metric space $\left(\mathbb{N}, d_{1}\right)$ is not complete. For example, consider the sequence $\left(x_{n}\right)$ with $x_{n}=n$. If $\varepsilon>0$ then $m>n>1 / \varepsilon$ implies that

$$
d_{1}\left(x_{n}, x_{m}\right)=\left|\frac{1}{n}-\frac{1}{m}\right|<\frac{1}{n}<\varepsilon,
$$

so the sequence is Cauchy. Suppose that $d\left(x_{n}, x\right) \rightarrow 0$ for some $x \in \mathbb{N}$. Then

$$
\frac{1}{x}=\lim _{n \rightarrow \infty}\left|\frac{1}{x}-\frac{1}{n}\right|=0
$$

which is impossible. Thus, the sequence does not converge.

- The completion of $\left(\mathbb{N}, d_{1}\right)$ can be obtained by adding a point ∞ to \mathbb{N} with $d_{1}(n, \infty)=1 / n$ for all $n \in \mathbb{N}$. This completion is isometrically isomorphic to the subspace $\{1,1 / 2,1 / 3, \ldots, 0\}$ of \mathbb{R} equipped with its usual absolute value metric.
- The metric space $\left(\mathbb{N}, d_{2}\right)$ is complete. If $\left(x_{n}\right)$ is a Cauchy sequence, then $d_{2}\left(x_{n}, x_{m}\right)<1$ for all sufficient large n and m, which implies that the terms are the same, and equal to x say. Then the sequence converges to x.
- The metric d_{2} gives the discrete topology on \mathbb{N}.

