
Solutions: Problem Set 2
Math 201A, Fall 2006

Problem 1. Suppose that
∑∞

n=1 xn is a series in a Banach space X such
that ‖xn‖ ≤ an. If

∑∞
n=1 an converges in R, prove that

∑∞
n=1 xn converges in

X.

Solution.

• We denote the partial sums by

yN =
N∑

n=1

xn ∈ X, bN =
N∑

n=1

an ∈ R.

For M > N , we have

‖yM − yN‖ =

∥∥∥∥∥
M∑

n=N+1

xn

∥∥∥∥∥ ≤
M∑

n=N+1

‖xn‖ ≤
M∑

n=N+1

an = |bM − bN |.

Since
∑∞

n=1 an converges, the sequence (bN) is Cauchy in R, and there-
fore (yN) is Cauchy in X. Since X is complete, the sequence of partial
sums (yN), and hence the series

∑∞
n=1 xn, converges in X.

• For use in the next question, note that the convergence of
∑∞

n=1 xn

implies that xn → 0 as n → ∞. This follows immediately from the
Cauchy criterion for the partial sums and the fact that

xn =
n∑

i=1

xi −
n−1∑
i=1

xi.

The converse is not true: a series may diverge even though xn → 0.
(For example, the harmonic series

∑∞
n=1 1/n.)

• If
∑∞

n=1 ‖xn‖ converges, then we say that
∑∞

n=1 xn converges absolutely.
A series may converge without converging absolutely. (For example,
the alternating harmonic series

∑∞
n=1(−1)n+1/n is convergent but not

absolutely convergent.)



Problem 2. Let (an)∞n=0 be a sequence of real numbers, and define

R =

(
lim sup

n→∞

n
√
|an|

)−1

,

with the obvious conventions for R = 0 and R = ∞. Prove that the power
series

∞∑
n=0

anx
n

for x ∈ R converges if |x| < R and diverges if |x| > R.

Solution.

• Suppose that R = ∞, meaning that

lim sup
n→∞

n
√
|an| = 0.

Then given any x 6= 0, there exists an N such that n > N implies that
n
√
|an| < 1/(2|x|) or |anx

n| < 2−n. Since
∑∞

n=0 2−n converges, the result
of Problem 1 (with X = R) implies that the power series

∑∞
n=0 anx

n

converges absolutely for all x ∈ R.

• Suppose that R = 0, meaning that

lim sup
n→∞

n
√
|an| = ∞.

Then given any x 6= 0, there exist infinitely many n ∈ N such that
n
√
|an| > 1/|x| and |anx

n| > 1. Hence, anx
n does not converge to 0 as

n → ∞, and from Problem 1 the series does not converge. Thus, the
series converges only for x = 0.

• Suppose that 0 < R < ∞, meaning that

lim sup
n→∞

n
√
|an| =

1

R
.

• If |x| < R, then we can choose 0 < c < 1 such that |x|/c < R.
Since c/|x| > 1/R, it follows from the definition of the lim sup that
there exists N such that n > N implies n

√
|an| < c/|x|, and hence

|anx
n| < cn. Since

∑∞
n=0 cn converges, Problem 1 implies that the

power series converges absolutely.



• If |x| > R, then it follows from the definition of the lim sup that there
are infinitely many n ∈ N such that n

√
|an| > 1/|x|, and |anx

n| > 1.
Hence, anx

n does not converge to 0 as n → ∞, and the power series
does not converge.

• The power series may converge or diverge at the endpoints x = ±R.



Problem 3. Consider a set of real numbers,

{xn,α | n ∈ N, α ∈ A} ,

indexed by n ∈ N and α ∈ A, where A is an arbitrary set.

(a) Prove that

lim sup
n→∞

(
inf
α∈A

xn,α

)
≤ inf

α∈A

(
lim sup

n→∞
xn,α

)
. (1)

(b) By changing xn,α 7→ −xn,α, deduce the corresponding inequality for
lim inf and sup.

(c) Give an example to show that there may be strict inequality in (1).

Solution.

• (a) Fix n ∈ N. Since infα∈A xn,α is a lower bound of the set {xn,α | α ∈ A},
we have

inf
α∈A

xn,α ≤ xn,β

for every β ∈ A. (If {xn,α | α ∈ A} is not bounded from below, then its
infimum is −∞ and the inequality also holds.) Taking the lim supn→∞
of this inequality, we get that for every β ∈ A

lim sup
n→∞

(
inf
α∈A

xn,α

)
≤ lim sup

n→∞
xn,β.

This inequality implies that lim supn→∞ (infα∈A xn,α) is a lower bound
of the set {lim supn→∞ xn,β | β ∈ A}. Since the infimum of a set is the
greatest upper bound, it follows that

lim sup
n→∞

(
inf
α∈A

xn,α

)
≤ inf

α∈A

(
lim sup

n→∞
xn,α

)
.

• (b) The corresponding result for lim inf and sup follows from an appli-
cation of this inequality to the numbers (−xn,α):

lim sup
n→∞

(
inf
α∈A

(−xn,α)

)
≤ inf

α∈A

(
lim sup

n→∞
(−xn,α)

)
,



which implies that

− lim inf
n→∞

(
sup
α∈A

xn,α

)
≤ − sup

α∈A

(
lim inf
n→∞

xn,α

)
.

Hence,

sup
α

(
lim inf
n→∞

xn,α

)
≤ lim inf

n→∞

(
sup

α
xn,α

)
.

• (c) Let A = R (we could use A = N equally well) and define

xn,α =

{
0 if n ≤ α,
1 if n > α.

Then for every n ∈ N
inf
α∈R

xn,α = 0,

and hence

lim sup
n→∞

(
inf
α∈R

xn,α

)
= 0.

For every α ∈ R, the terms in the sequence (xn,α) are equal to 1 when
n is large enough, so that

lim sup
n→∞

xn,α = 1.

Thus,

inf
α∈R

(
lim sup

n→∞
xn,α

)
= 1,

and we have strict inequality in (1).



Problem 4. Suppose that F and G are, respectively, closed and open subsets
of a metric space (X, d) such that F ⊂ G. Show that there is a continuous
function f : X → R such that 0 ≤ f(x) ≤ 1, f(x) = 1 for x ∈ F , and
f(x) = 0 for x ∈ Gc.

Solution.

• We define the distance d(x, A) of a point x ∈ X from a set A ⊂ X by

d(x, A) = inf
a∈A

d(x, a).

As proved in class, the function x 7→ d(x, A) is continuous for any
A ⊂ X.

• We claim that d(x, Gc) + d(x, F ) > 0 for every x ∈ X. Suppose not.
Then

d(x, Gc) = d(x, F ) = 0

for some x ∈ X. It follows from the definition of the distance function
that there exist sequences (xn) in F and (yn) in Gc such that xn → x
and yn → x as n →∞. Since F and Gc are closed, x ∈ F ∩Gc, which
contradicts the assumption that F ⊂ G.

• The function f : X → R defined by

f(x) =
d(x, Gc)

d(x, Gc) + d(x, F )

is a composition of continuous functions, since the denominator is never
zero, so it is continuous. Since d(x, A) = 0 when x ∈ A, we see that f
has the required properties.



Problem 5. A metric space (X, d) is said to be an ultrametric space if

d(x, y) ≤ max {d(x, z), d(z, y)} for all x, y, z ∈ X.

Prove that in an ultrametric space, every open ball

Br(x) = {y ∈ X | d(x, y) < r}

is also closed.

Solution.

• Suppose that (yn) is a sequence in Br(x), and yn → y as n →∞. Then
d(yn, y) < r for some n ∈ N, since the sequence converges to y. Also
d(x, yn) < r since yn ∈ Br(x). Since d is an ultrametic, it follows that

d(x, y) ≤ max {d(x, yn), d(yn, y)} < r,

so y ∈ Br(x), which proves that Br(x) is closed.


