Solutions: Problem Set 2 Math 201A, Fall 2006

Problem 1. Suppose that $\sum_{n=1}^{\infty} x_n$ is a series in a Banach space X such that $||x_n|| \leq a_n$. If $\sum_{n=1}^{\infty} a_n$ converges in \mathbb{R} , prove that $\sum_{n=1}^{\infty} x_n$ converges in X.

Solution.

• We denote the partial sums by

$$y_N = \sum_{n=1}^N x_n \in X, \qquad b_N = \sum_{n=1}^N a_n \in \mathbb{R}$$

For M > N, we have

$$||y_M - y_N|| = \left\|\sum_{n=N+1}^M x_n\right\| \le \sum_{n=N+1}^M ||x_n|| \le \sum_{n=N+1}^M a_n = |b_M - b_N|.$$

Since $\sum_{n=1}^{\infty} a_n$ converges, the sequence (b_N) is Cauchy in \mathbb{R} , and therefore (y_N) is Cauchy in X. Since X is complete, the sequence of partial sums (y_N) , and hence the series $\sum_{n=1}^{\infty} x_n$, converges in X.

• For use in the next question, note that the convergence of $\sum_{n=1}^{\infty} x_n$ implies that $x_n \to 0$ as $n \to \infty$. This follows immediately from the Cauchy criterion for the partial sums and the fact that

$$x_n = \sum_{i=1}^n x_i - \sum_{i=1}^{n-1} x_i.$$

The converse is not true: a series may diverge even though $x_n \to 0$. (For example, the harmonic series $\sum_{n=1}^{\infty} 1/n$.)

• If $\sum_{n=1}^{\infty} ||x_n||$ converges, then we say that $\sum_{n=1}^{\infty} x_n$ converges absolutely. A series may converge without converging absolutely. (For example, the alternating harmonic series $\sum_{n=1}^{\infty} (-1)^{n+1}/n$ is convergent but not absolutely convergent.) **Problem 2.** Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers, and define

$$R = \left(\limsup_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1},$$

with the obvious conventions for R = 0 and $R = \infty$. Prove that the power series

$$\sum_{n=0}^{\infty} a_n x^n$$

for $x \in \mathbb{R}$ converges if |x| < R and diverges if |x| > R.

Solution.

• Suppose that $R = \infty$, meaning that

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = 0.$$

Then given any $x \neq 0$, there exists an N such that n > N implies that $\sqrt[n]{|a_n|} < 1/(2|x|)$ or $|a_n x^n| < 2^{-n}$. Since $\sum_{n=0}^{\infty} 2^{-n}$ converges, the result of Problem 1 (with $X = \mathbb{R}$) implies that the power series $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely for all $x \in \mathbb{R}$.

• Suppose that R = 0, meaning that

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \infty.$$

Then given any $x \neq 0$, there exist infinitely many $n \in \mathbb{N}$ such that $\sqrt[n]{|a_n|} > 1/|x|$ and $|a_n x^n| > 1$. Hence, $a_n x^n$ does not converge to 0 as $n \to \infty$, and from Problem 1 the series does not converge. Thus, the series converges only for x = 0.

• Suppose that $0 < R < \infty$, meaning that

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{R}.$$

• If |x| < R, then we can choose 0 < c < 1 such that |x|/c < R. Since c/|x| > 1/R, it follows from the definition of the lim sup that there exists N such that n > N implies $\sqrt[n]{|a_n|} < c/|x|$, and hence $|a_n x^n| < c^n$. Since $\sum_{n=0}^{\infty} c^n$ converges, Problem 1 implies that the power series converges absolutely.

- If |x| > R, then it follows from the definition of the lim sup that there are infinitely many $n \in \mathbb{N}$ such that $\sqrt[n]{|a_n|} > 1/|x|$, and $|a_n x^n| > 1$. Hence, $a_n x^n$ does not converge to 0 as $n \to \infty$, and the power series does not converge.
- The power series may converge or diverge at the endpoints $x = \pm R$.

Problem 3. Consider a set of real numbers,

$$\{x_{n,\alpha} \mid n \in \mathbb{N}, \alpha \in \mathcal{A}\},\$$

indexed by $n \in \mathbb{N}$ and $\alpha \in \mathcal{A}$, where \mathcal{A} is an arbitrary set. (a) Prove that

$$\limsup_{n \to \infty} \left(\inf_{\alpha \in \mathcal{A}} x_{n,\alpha} \right) \le \inf_{\alpha \in \mathcal{A}} \left(\limsup_{n \to \infty} x_{n,\alpha} \right).$$
(1)

(b) By changing $x_{n,\alpha} \mapsto -x_{n,\alpha}$, deduce the corresponding inequality for limit and sup.

(c) Give an example to show that there may be strict inequality in (1).

Solution.

• (a) Fix $n \in \mathbb{N}$. Since $\inf_{\alpha \in A} x_{n,\alpha}$ is a lower bound of the set $\{x_{n,\alpha} \mid \alpha \in A\}$, we have

$$\inf_{\alpha \in A} x_{n,\alpha} \le x_{n,\beta}$$

for every $\beta \in A$. (If $\{x_{n,\alpha} \mid \alpha \in A\}$ is not bounded from below, then its infimum is $-\infty$ and the inequality also holds.) Taking the $\limsup_{n\to\infty}$ of this inequality, we get that for every $\beta \in A$

$$\limsup_{n \to \infty} \left(\inf_{\alpha \in A} x_{n,\alpha} \right) \le \limsup_{n \to \infty} x_{n,\beta}.$$

This inequality implies that $\limsup_{n\to\infty} (\inf_{\alpha\in A} x_{n,\alpha})$ is a lower bound of the set $\{\limsup_{n\to\infty} x_{n,\beta} \mid \beta \in A\}$. Since the infimum of a set is the greatest upper bound, it follows that

$$\limsup_{n \to \infty} \left(\inf_{\alpha \in A} x_{n,\alpha} \right) \le \inf_{\alpha \in A} \left(\limsup_{n \to \infty} x_{n,\alpha} \right).$$

• (b) The corresponding result for lim inf and sup follows from an application of this inequality to the numbers $(-x_{n,\alpha})$:

$$\limsup_{n \to \infty} \left(\inf_{\alpha \in \mathcal{A}} \left(-x_{n,\alpha} \right) \right) \leq \inf_{\alpha \in \mathcal{A}} \left(\limsup_{n \to \infty} \left(-x_{n,\alpha} \right) \right),$$

which implies that

$$-\liminf_{n\to\infty}\left(\sup_{\alpha\in\mathcal{A}}x_{n,\alpha}\right)\leq-\sup_{\alpha\in\mathcal{A}}\left(\liminf_{n\to\infty}x_{n,\alpha}\right).$$

Hence,

$$\sup_{\alpha} \left(\liminf_{n \to \infty} x_{n,\alpha} \right) \le \liminf_{n \to \infty} \left(\sup_{\alpha} x_{n,\alpha} \right).$$

• (c) Let $\mathcal{A} = \mathbb{R}$ (we could use $\mathcal{A} = \mathbb{N}$ equally well) and define

$$x_{n,\alpha} = \begin{cases} 0 & \text{if } n \le \alpha, \\ 1 & \text{if } n > \alpha. \end{cases}$$

Then for every $n \in \mathbb{N}$

$$\inf_{\alpha \in \mathbb{R}} x_{n,\alpha} = 0,$$

and hence

$$\limsup_{n \to \infty} \left(\inf_{\alpha \in \mathbb{R}} x_{n,\alpha} \right) = 0.$$

For every $\alpha \in \mathbb{R}$, the terms in the sequence $(x_{n,\alpha})$ are equal to 1 when n is large enough, so that

$$\limsup_{n \to \infty} x_{n,\alpha} = 1.$$

Thus,

$$\inf_{\alpha \in \mathbb{R}} \left(\limsup_{n \to \infty} x_{n,\alpha} \right) = 1,$$

and we have strict inequality in (1).

Problem 4. Suppose that F and G are, respectively, closed and open subsets of a metric space (X, d) such that $F \subset G$. Show that there is a continuous function $f : X \to \mathbb{R}$ such that $0 \leq f(x) \leq 1$, f(x) = 1 for $x \in F$, and f(x) = 0 for $x \in G^c$.

Solution.

• We define the distance d(x, A) of a point $x \in X$ from a set $A \subset X$ by

$$d(x,A) = \inf_{a \in A} d(x,a).$$

As proved in class, the function $x \mapsto d(x, A)$ is continuous for any $A \subset X$.

• We claim that $d(x, G^c) + d(x, F) > 0$ for every $x \in X$. Suppose not. Then

$$d(x, G^c) = d(x, F) = 0$$

for some $x \in X$. It follows from the definition of the distance function that there exist sequences (x_n) in F and (y_n) in G^c such that $x_n \to x$ and $y_n \to x$ as $n \to \infty$. Since F and G^c are closed, $x \in F \cap G^c$, which contradicts the assumption that $F \subset G$.

• The function $f: X \to \mathbb{R}$ defined by

$$f(x) = \frac{d(x, G^c)}{d(x, G^c) + d(x, F)}$$

is a composition of continuous functions, since the denominator is never zero, so it is continuous. Since d(x, A) = 0 when $x \in A$, we see that fhas the required properties. **Problem 5.** A metric space (X, d) is said to be an ultrametric space if

 $d(x,y) \le \max \left\{ d(x,z), d(z,y) \right\} \qquad \text{for all } x,y,z \in X.$

Prove that in an ultrametric space, every open ball

$$B_r(x) = \{ y \in X \mid d(x, y) < r \}$$

is also closed.

Solution.

• Suppose that (y_n) is a sequence in $B_r(x)$, and $y_n \to y$ as $n \to \infty$. Then $d(y_n, y) < r$ for some $n \in \mathbb{N}$, since the sequence converges to y. Also $d(x, y_n) < r$ since $y_n \in B_r(x)$. Since d is an ultrametic, it follows that

$$d(x, y) \le \max \{ d(x, y_n), d(y_n, y) \} < r,$$

so $y \in B_r(x)$, which proves that $B_r(x)$ is closed.