Solutions: Problem Set 2

Math 201A, Fall 2006

Problem 1. Suppose that $\sum_{n=1}^{\infty} x_{n}$ is a series in a Banach space X such that $\left\|x_{n}\right\| \leq a_{n}$. If $\sum_{n=1}^{\infty} a_{n}$ converges in \mathbb{R}, prove that $\sum_{n=1}^{\infty} x_{n}$ converges in X.

Solution.

- We denote the partial sums by

$$
y_{N}=\sum_{n=1}^{N} x_{n} \in X, \quad b_{N}=\sum_{n=1}^{N} a_{n} \in \mathbb{R}
$$

For $M>N$, we have

$$
\left\|y_{M}-y_{N}\right\|=\left\|\sum_{n=N+1}^{M} x_{n}\right\| \leq \sum_{n=N+1}^{M}\left\|x_{n}\right\| \leq \sum_{n=N+1}^{M} a_{n}=\left|b_{M}-b_{N}\right|
$$

Since $\sum_{n=1}^{\infty} a_{n}$ converges, the sequence $\left(b_{N}\right)$ is Cauchy in \mathbb{R}, and therefore $\left(y_{N}\right)$ is Cauchy in X. Since X is complete, the sequence of partial sums $\left(y_{N}\right)$, and hence the series $\sum_{n=1}^{\infty} x_{n}$, converges in X.

- For use in the next question, note that the convergence of $\sum_{n=1}^{\infty} x_{n}$ implies that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. This follows immediately from the Cauchy criterion for the partial sums and the fact that

$$
x_{n}=\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n-1} x_{i} .
$$

The converse is not true: a series may diverge even though $x_{n} \rightarrow 0$. (For example, the harmonic series $\sum_{n=1}^{\infty} 1 / n$.)

- If $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ converges, then we say that $\sum_{n=1}^{\infty} x_{n}$ converges absolutely. A series may converge without converging absolutely. (For example, the alternating harmonic series $\sum_{n=1}^{\infty}(-1)^{n+1} / n$ is convergent but not absolutely convergent.)

Problem 2. Let $\left(a_{n}\right)_{n=0}^{\infty}$ be a sequence of real numbers, and define

$$
R=\left(\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}\right)^{-1}
$$

with the obvious conventions for $R=0$ and $R=\infty$. Prove that the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

for $x \in \mathbb{R}$ converges if $|x|<R$ and diverges if $|x|>R$.

Solution.

- Suppose that $R=\infty$, meaning that

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=0
$$

Then given any $x \neq 0$, there exists an N such that $n>N$ implies that $\sqrt[n]{\left|a_{n}\right|}<1 /(2|x|)$ or $\left|a_{n} x^{n}\right|<2^{-n}$. Since $\sum_{n=0}^{\infty} 2^{-n}$ converges, the result of Problem 1 (with $X=\mathbb{R}$) implies that the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges absolutely for all $x \in \mathbb{R}$.

- Suppose that $R=0$, meaning that

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty
$$

Then given any $x \neq 0$, there exist infinitely many $n \in \mathbb{N}$ such that $\sqrt[n]{\left|a_{n}\right|}>1 /|x|$ and $\left|a_{n} x^{n}\right|>1$. Hence, $a_{n} x^{n}$ does not converge to 0 as $n \rightarrow \infty$, and from Problem 1 the series does not converge. Thus, the series converges only for $x=0$.

- Suppose that $0<R<\infty$, meaning that

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\frac{1}{R}
$$

- If $|x|<R$, then we can choose $0<c<1$ such that $|x| / c<R$. Since $c /|x|>1 / R$, it follows from the definition of the limsup that there exists N such that $n>N$ implies $\sqrt[n]{\left|a_{n}\right|}<c /|x|$, and hence $\left|a_{n} x^{n}\right|<c^{n}$. Since $\sum_{n=0}^{\infty} c^{n}$ converges, Problem 1 implies that the power series converges absolutely.
- If $|x|>R$, then it follows from the definition of the lim sup that there are infinitely many $n \in \mathbb{N}$ such that $\sqrt[n]{\left|a_{n}\right|}>1 /|x|$, and $\left|a_{n} x^{n}\right|>1$. Hence, $a_{n} x^{n}$ does not converge to 0 as $n \rightarrow \infty$, and the power series does not converge.
- The power series may converge or diverge at the endpoints $x= \pm R$.

Problem 3. Consider a set of real numbers,

$$
\left\{x_{n, \alpha} \mid n \in \mathbb{N}, \alpha \in \mathcal{A}\right\}
$$

indexed by $n \in \mathbb{N}$ and $\alpha \in \mathcal{A}$, where \mathcal{A} is an arbitrary set.
(a) Prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\inf _{\alpha \in \mathcal{A}} x_{n, \alpha}\right) \leq \inf _{\alpha \in \mathcal{A}}\left(\limsup _{n \rightarrow \infty} x_{n, \alpha}\right) \tag{1}
\end{equation*}
$$

(b) By changing $x_{n, \alpha} \mapsto-x_{n, \alpha}$, deduce the corresponding inequality for lim inf and sup.
(c) Give an example to show that there may be strict inequality in (1).

Solution.

- (a) Fix $n \in \mathbb{N}$. Since $\inf _{\alpha \in A} x_{n, \alpha}$ is a lower bound of the set $\left\{x_{n, \alpha} \mid \alpha \in A\right\}$, we have

$$
\inf _{\alpha \in A} x_{n, \alpha} \leq x_{n, \beta}
$$

for every $\beta \in A$. (If $\left\{x_{n, \alpha} \mid \alpha \in A\right\}$ is not bounded from below, then its infimum is $-\infty$ and the inequality also holds.) Taking the limsup $\operatorname{sum}_{n \rightarrow \infty}$ of this inequality, we get that for every $\beta \in A$

$$
\limsup _{n \rightarrow \infty}\left(\inf _{\alpha \in A} x_{n, \alpha}\right) \leq \limsup _{n \rightarrow \infty} x_{n, \beta}
$$

This inequality implies that $\limsup _{n \rightarrow \infty}\left(\inf _{\alpha \in A} x_{n, \alpha}\right)$ is a lower bound of the set $\left\{\limsup _{n \rightarrow \infty} x_{n, \beta} \mid \beta \in A\right\}$. Since the infimum of a set is the greatest upper bound, it follows that

$$
\limsup _{n \rightarrow \infty}\left(\inf _{\alpha \in A} x_{n, \alpha}\right) \leq \inf _{\alpha \in A}\left(\limsup _{n \rightarrow \infty} x_{n, \alpha}\right)
$$

- (b) The corresponding result for lim inf and sup follows from an application of this inequality to the numbers $\left(-x_{n, \alpha}\right)$:

$$
\limsup _{n \rightarrow \infty}\left(\inf _{\alpha \in \mathcal{A}}\left(-x_{n, \alpha}\right)\right) \leq \inf _{\alpha \in \mathcal{A}}\left(\limsup _{n \rightarrow \infty}\left(-x_{n, \alpha}\right)\right)
$$

which implies that

$$
-\liminf _{n \rightarrow \infty}\left(\sup _{\alpha \in \mathcal{A}} x_{n, \alpha}\right) \leq-\sup _{\alpha \in \mathcal{A}}\left(\liminf _{n \rightarrow \infty} x_{n, \alpha}\right) .
$$

Hence,

$$
\sup _{\alpha}\left(\liminf _{n \rightarrow \infty} x_{n, \alpha}\right) \leq \liminf _{n \rightarrow \infty}\left(\sup _{\alpha} x_{n, \alpha}\right) .
$$

- (c) Let $\mathcal{A}=\mathbb{R}$ (we could use $\mathcal{A}=\mathbb{N}$ equally well) and define

$$
x_{n, \alpha}= \begin{cases}0 & \text { if } n \leq \alpha, \\ 1 & \text { if } n>\alpha .\end{cases}
$$

Then for every $n \in \mathbb{N}$

$$
\inf _{\alpha \in \mathbb{R}} x_{n, \alpha}=0,
$$

and hence

$$
\limsup _{n \rightarrow \infty}\left(\inf _{\alpha \in \mathbb{R}} x_{n, \alpha}\right)=0
$$

For every $\alpha \in \mathbb{R}$, the terms in the sequence $\left(x_{n, \alpha}\right)$ are equal to 1 when n is large enough, so that

$$
\limsup _{n \rightarrow \infty} x_{n, \alpha}=1
$$

Thus,

$$
\inf _{\alpha \in \mathbb{R}}\left(\limsup _{n \rightarrow \infty} x_{n, \alpha}\right)=1
$$

and we have strict inequality in (1).

Problem 4. Suppose that F and G are, respectively, closed and open subsets of a metric space (X, d) such that $F \subset G$. Show that there is a continuous function $f: X \rightarrow \mathbb{R}$ such that $0 \leq f(x) \leq 1, f(x)=1$ for $x \in F$, and $f(x)=0$ for $x \in G^{c}$.

Solution.

- We define the distance $d(x, A)$ of a point $x \in X$ from a set $A \subset X$ by

$$
d(x, A)=\inf _{a \in A} d(x, a) .
$$

As proved in class, the function $x \mapsto d(x, A)$ is continuous for any $A \subset X$.

- We claim that $d\left(x, G^{c}\right)+d(x, F)>0$ for every $x \in X$. Suppose not. Then

$$
d\left(x, G^{c}\right)=d(x, F)=0
$$

for some $x \in X$. It follows from the definition of the distance function that there exist sequences $\left(x_{n}\right)$ in F and $\left(y_{n}\right)$ in G^{c} such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow x$ as $n \rightarrow \infty$. Since F and G^{c} are closed, $x \in F \cap G^{c}$, which contradicts the assumption that $F \subset G$.

- The function $f: X \rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{d\left(x, G^{c}\right)}{d\left(x, G^{c}\right)+d(x, F)}
$$

is a composition of continuous functions, since the denominator is never zero, so it is continuous. Since $d(x, A)=0$ when $x \in A$, we see that f has the required properties.

Problem 5. A metric space (X, d) is said to be an ultrametric space if

$$
d(x, y) \leq \max \{d(x, z), d(z, y)\} \quad \text { for all } x, y, z \in X
$$

Prove that in an ultrametric space, every open ball

$$
B_{r}(x)=\{y \in X \mid d(x, y)<r\}
$$

is also closed.

Solution.

- Suppose that $\left(y_{n}\right)$ is a sequence in $B_{r}(x)$, and $y_{n} \rightarrow y$ as $n \rightarrow \infty$. Then $d\left(y_{n}, y\right)<r$ for some $n \in \mathbb{N}$, since the sequence converges to y. Also $d\left(x, y_{n}\right)<r$ since $y_{n} \in B_{r}(x)$. Since d is an ultrametic, it follows that

$$
d(x, y) \leq \max \left\{d\left(x, y_{n}\right), d\left(y_{n}, y\right)\right\}<r
$$

so $y \in B_{r}(x)$, which proves that $B_{r}(x)$ is closed.

