
Analysis
Solutions: Problem Set 3

Math 201A, Fall 2006

Problem 1. Let X be the space of all real sequences of the form

x = (x1, x2, x3, . . . , xn, 0, 0, . . .) , xi ∈ R

whose terms are zero from some point on. Define

‖x‖∞ = max
i∈N

|xi|.

(a) Show that (X, ‖ · ‖∞) is a normed linear space.

(b) Show that X is not complete.

(c) Give a description of the completion of X as a space of sequences.

Solution.

• (a) X is a linear space under component-wise addition and scalar mul-
tiplication: if λ ∈ R, x = (xi), y = (yi) then

λx = (λxi) , x + y = (xi + yi) .

The 0-vector is the sequence (0, 0, 0, . . .).

• We have: ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if xi = 0 for every i ∈ N, or
x = 0; for any λ ∈ R,

‖λx‖∞ = max
i∈N

|λxi| = |λ|max
i∈N

|xi| = |λ| ‖x‖∞;

and

‖x + y‖∞ = max
i∈N

|xi + yi|

≤ max
i∈N

{|xi|+ |yi|}

≤ max
i∈N

|xi|+ max
i∈N

|yi|

≤ ‖x‖∞ + ‖y‖∞.



• (b) Define a sequence (xn) in X by

xn =

(
1,

1

2
,
1

3
, . . . ,

1

n
, 0, 0, . . .

)
.

For m > n, we have

‖xm − xn‖∞ =
1

n + 1
,

which implies that the sequence is Cauchy.

• If y ∈ X, then y = (y1, y2, . . . , yN , 0, 0 . . .) for some N ∈ N. If n > N ,
then

‖xn − y‖∞ ≥ 1

N + 1
,

so (xn) does not converge to y as n →∞. Therefore, the sequence (xn)
has no limit in X, and X is not complete.

• (c) The completion of X is the space c0 of all real sequences (xi) such
that xi → 0 as i →∞. The norm on c0 is ‖ · ‖∞.

• The inclusion map φ : X → c0, where φ(x) = x, is an isometric imbed-
ding of X into c0, so by the uniqueness part of the completion theorem
we just need to show that X is dense in c0 and c0 is complete.

• Given y = (y1, y2, . . . , yi, . . .) ∈ c0 let

xn = (y1, y2, . . . , yn, 0, 0 . . .) ∈ X.

Since yi → 0 as i →∞, we have

‖xn − y‖∞ = max
i>n

|yi| → 0 as n →∞.

Thus, every point in c0 is a limit of a sequence in X, so X is dense in
c0.

• Suppose that (xn)∞n=1 is a Cauchy sequence in c0. Let xn = (xn,i)
∞
i=1.

For each i ∈ N we have

|xn,i − xm,i| ≤ ‖xn − xm‖∞,

so (xn,i)
∞
n=1 is a Cauchy sequence in R. Since R is complete, there exists

yi ∈ R such that xn,i → yi as n → ∞. Let y = (yi)
∞
i=1. We will show

that xn → y with respect to ‖ · ‖∞ and y ∈ c0.



• Since (xn) is Cauchy in c0, given ε > 0, there exists N depending only
on ε such that

‖xn − xm‖∞ < ε for all n, m > N.

Hence for each i ∈ N and all n, m > N ,

|xn,i − xm,i| < ε.

Taking the limit of this inequality as m →∞, we get

|xn,i − yi| ≤ ε for all i ∈ N and n > N.

Taking the supremum of this inequality over i, we find that

‖xn − y‖∞ ≤ ε for all n > N.

Hence ‖xn − y‖∞ → 0 as n →∞.

• Given ε > 0, there exists N ∈ N such that

‖xN − y‖∞ <
ε

2
.

Since xN,i → 0 as i →∞, there exists K ∈ N such that

|xN,i| <
ε

2
for i > K.

It follows that

|yi| ≤ |yi − xN,i|+ |xN,i| < ε for i > K.

Hence, yi → 0 as i →∞, so y ∈ c0, and c0 is complete.



Problem 2. Suppose that (X, dX) and (Y, dY ) are metric spaces and (Y, dY )
is complete. If D is a dense subset of X and f : D → Y is uniformly
continuous on D, prove that there exists a unique continuous function F :
X → Y such that F |D = f .

Solution.

• If x ∈ X then there exists a sequence (an) in D such that an → x as
n →∞, since D is dense in X. The sequence (an) is Cauchy in D, and
the uniform continuity of f implies that (f(an)) is Cauchy in Y . Since
Y is complete, there exists y ∈ Y such that f(an) → y as n →∞. We
define F (x) = y.

• This function F : X → Y is well-defined. If (an), (a′n) are two sequences
in D that converge to x ∈ X, then dX (an, a

′
n) → 0 as n →∞, and the

uniform continuity of f implies that

dY (f(an), f(a′n)) → 0 as n →∞.

It follows that
lim

n→∞
f(an) = lim

n→∞
f(a′n),

so the value F (x) is independent of the choice of sequence converging
to x.

• If a ∈ D, then we may choose an = a for every n ∈ N, which gives
F (a) = f(a), so that the restriction of F to D is equal to f .

• To prove the continuity of F , suppose that x, x′ ∈ X. Choose sequences
(an), (a′n) in D such that an → x, a′n → x′. Given ε > 0, the uniform
continuity of f implies that there exists δ > 0 such that a, a′ ∈ D and
dX (a, a′) < δ implies that dY (f(a), f(a′)) < ε/3. Choose N such that

d(aN , x) <
δ

3
, dY (f(aN), F (x)) <

ε

3
,

d(a′N , x′) <
δ

3
, dY (f(a′N), F (x′)) <

ε

3
.

Then

dX (aN , a′N) ≤ dX (aN , x) + dX (x, x′) + dX (x′, a′N) .



Hence, if dX (x, x′) < δ/3, then dX (aN , a′N) < δ, and

dY (F (x), F (x′)) ≤ dY (F (x), f(aN)) + dY (f(aN), f(a′N))

+dY (f(a′N), F (x′)) < ε.

It follows that F is uniformly continuous on X



Problem 3. Fix a prime number p. For any nonzero rational number r ∈ Q
there is a unique integer k ∈ Z such that r = mpk/n, where m, n are integers
that are not divisible by p. We then define |r|p = p−k. We define |0|p = 0.

(a) Prove that | · |p : Q → R satisfies:

1. |r|p ≥ 0 and |r|p = 0 if and only if r = 0;

2. | − r|p = |rp|;

3. |r + s|p ≤ max{|r|p, |s|p}.

Deduce that d : Q×Q → R defined by

d(r, s) = |r − s|p

is an ultrametric on Q. Show that (Q, d) is not complete.

(b) Let (Qp, dp) denote the completion of (Q, d). Use the result of Problem
2 to prove that addition + : Q × Q → Q extends to a unique continuous
function +p : Qp ×Qp → Qp.

Solution.

• (a) The first two properties follow directly from the definition. To prove
the last property, suppose that r = mpk/n and s = apj/b, where m, n,
a, b are integers that are not divisible by p and j ≥ k. Then

r + s =

(
bm + anpj−k

bn

)
pk.

Since d = bn is not divisible by p, we have

r + s =
cp`

d

where ` ≥ k = max{j, k}, so

|r + s|p =
1

p`
≤ max

{
1

pk
,

1

pj

}
= max {|r|p, |s|p} .

• The properties of | · |p imply immediately that d is an ultrametric.



• We only give a brief outline of a proof that (Q, d) is not complete.
(Perhaps there is a simpler one.) We use a long-division algorithm to
prove that every rational number r ∈ Q has a |·|p-convergent expansion
of the form

r =
∞∑

i=k

rip
i with k, ri ∈ Z and 0 ≤ ri ≤ p− 1 (1)

in which the ri are periodic functions of i.1 For example,

1

1− p
=

∞∑
i=0

pi ∈ Q.

It then follows that the partial sums of a series with non-periodic co-
efficients cannot converge to any rational number. For example, the
series (rn) defined by

rn =
n∑

i=1

pi! = p + p2 + p6 + . . . + pn!

is Cauchy in Qp but does not converge to any r ∈ Q.

• The completion Qp may be thought of concretely as the space of all
sequences of the form (1).

• (b) We equip Q×Q with the product metric dQ×Q = d× d,

dQ×Q ((r, s), (r′, s′)) = d(r, r′) + d(s, s′).

We will temporarily use the notation +(r, s) = r + s for the addition
function.

1To obtain this algorithm, write

m =
M∑
i=0

mip
i, n =

N∑
i=0

nip
i, r =

∑
i≥k

rip
i

where 0 ≤ mi, ni, ri ≤ p−1 and m0, n0 6= 0, multiply the series in the equation nr = mpk,
carry multiples of powers of p to the succeeding terms so that all coefficients of pi are
between 0 and p− 1, and equate coefficients of pi. One finds that ri is determined by the
previous N coefficients {ri−1, . . . , ri−N}. Since there are only finitely many such sequences,
a sequence must eventually repeat, and then the coefficients ri will repeat.



• If (r, s), (r′, s′) ∈ Q×Q, then by the ultrametric property of | · |p,

d (+(r, s), +(r′, s′)) = |r + s− (r′ + s′)|p
= |r − r′ + s− s′)|p
≤ max

{
|r − r′|p , |s− s′)|p

}
≤ |r − r′|p + |s− s′)|p
≤ dQ×Q ((r, s), (r′, s′)) ,

which proves that + : Q×Q → R is uniformly continuous.

• If (X, dX) and (Y, dY ) are metric spaces with completions (X̃, dX̃) and
(Ỹ , dỸ ), respectively, then the completion of (X × Y, dX × dY ) is (X̃ ×
Ỹ , dX̃ × dỸ ). (The proof is left as a exercise.) Thus, the completion
of (Q × Q, d × d) is (Qp × Qp, dp × dp), and it follows from the result
of Problem 2 that + : Q × Q → R extends to a unique uniformly
continuous map +|p : Qp ×Qp → R.

• The sum of p-adic numbers r, s ∈ Qp may be computed by adding their
series expansions and carrying any multiples of p. For example, if

r = 1 + 0p + 0p2 + . . . ,

s = (p− 1) + (p− 1)p + (p− 1)p2 + . . . ,

then r + s = 0, so s is the additive inverse of 1 in Qp, meaning that the
sum of the series for s is −1.

Remark. Elements of Qp are called p-adic numbers, important in algebraic
number theory. Multiplication of rational numbers also extends continuously
from Q to Qp, so Qp is a complete field. Analysis on (Qp, |·|p) is an ultrametric
analog of the more familiar analysis on the Euclidean real line (R, | · |).



Problem 4. A metric space is said to be: connected if it is not the union of
two disjoint non-empty open sets; totally disconnected if the only non-empty
connected subspaces consist of a single point; and perfect if every point in
the space is an accumulation point, meaning that it is a limit of a sequence
of other points in the space.

Let X = {0, 1}N be the space of all sequences consisting of zeros or ones:

X = {(s1, s2, s3, . . .) | sn ∈ {0, 1}} .

Define d : X ×X → R by

d(s, t) =
∞∑

n=1

δn

2n

where s = (s1, s2, s3, . . .), t = (t1, t2, t3, . . .), and

δn =

{
0 if sn = tn,
1 if sn 6= tn.

(a) Prove that d is a metric on X.

(b) Prove that X is compact, totally disconnected, and perfect.

(c) Prove that the Cantor set C, regarded as a metric subspace of [0, 1]
with the standard metric, is homeomorphic to X. (You can assume that the
Cantor set is in one-to-one correspondence with the set of numbers that have
a base-three expansion 0.b1b2b3 . . . with no 1’s, and that for any such number
this base-three expansion is unique.)

(d) Define the shift map σ : X → X by

σ(s1, s2, s3, . . .) = (s2, s3, s4, . . .).

Prove that σ is continuous.

(e) Let σn = σ◦σ◦. . .◦σ denote the n-fold composition of σ with itself. Show
that there exists a δ > 0 such that for any s ∈ X and any neighborhood U
of s, there exists t ∈ U and n ∈ N with

d (σn(s), σn(t)) > δ.

(f) Prove that there is a point s ∈ X such that the orbit of s under σ,

{σn(s) | n = 0, 1, 2, . . .},



is dense in X.

Solution.

• (a) The series defining d converges, since the terms are bounded by the
terms 2−n of a convergent geometric series. The function d is clearly
symmetric and nonnegative. If d(s, t) = 0, then δn = 0 and sn = tn for
every n ∈ N, so s = t. Finally, if s = (s1, s2, s3, . . .), t = (t1, t2, t3, . . .),
r = (r1, r2, r3, . . .), and

δn =

{
0 if sn = tn,
1 if sn 6= tn,

εn =

{
0 if tn = rn,
1 if tn 6= rn,

ηn =

{
0 if sn = rn,
1 if sn 6= rn,

then ηn ≤ δn + εn, so d(s, r) ≤ d(s, t) + d(t, r).

• (b) To show that X is compact, we prove that it is complete and totally
bounded. We use the following properties of the metric:

1. if d(s, t) < 1/2N then sn = tn for 1 ≤ n ≤ N ;

2. if ε > 1/2N and sn = tn for 1 ≤ n ≤ N then d(s, t) < ε.

• Suppose that (sk)
∞
k=1 is a Cauchy sequence in X. We write

sk = (s1,k, s2,k, . . . , sn,k, . . .) .

For any N ∈ N, there exists K ∈ N such that d(sj, sk) < 1/2N for all
j, k > K, and hence sn,j = sn,k for all n ≤ N . Thus, the terms in the
sequences are eventually the same. We denote the eventual common
value of (sn,k)

∞
k=1 by sn, and define

s = (s1, s2, . . . , sn, . . .).

Then for k > K we have

d(sk, s) ≤
∞∑

n=N+1

1

2n

≤ 1

2N
.

It follows that sk → s as k →∞, so X is complete.



• Given ε > 0, choose N ∈ N such that ε > 1/2N . If

s = (s1, s2, s3, . . . , sN , sN+1, sN+2, . . .)

then the open ball Bε(s) contains all sequences of the form

t = (s1, . . . , sN , tN+1, tN+2 . . .) where tn ∈ {0, 1} for n > N.

There are 2N initial sequences (s1, . . . , sN) ∈ {0, 1}N , so X is covered
by 2N balls of radius ε, and X is totally bounded.

• Next we show that X is totally disconnected. Given N ∈ N, let

UN = {s ∈ X | sN = 0} , VN = {s ∈ X | sN = 1} .

Then UN and VN are open. For example, suppose s ∈ UN . If d(s, t) <
1/2N then tN = sN = 0, so t ∈ UN , meaning that B1/2N (s) ⊂ UN ,
so UN is open. (It follows that X = UN ∪ VN is the disjoint union of
non-empty open sets so it is not connected.)

• Suppose that A ⊂ X contains at least two distinct points s, t. There
exists N ∈ N such that sN 6= tN . Let U = A∩UN and V = A∩VN . Then
U , V are disjoint, non-empty sets that are open in A, and A = U ∪ V .
Hence A is not connected and X is totally disconnected.

• Suppose that s = (s1, s2, . . . , sn, . . .) ∈ X and define

sk = (s1,k, s2,k, . . . , sn,k, . . .) ∈ X

by sn,k = sn if n 6= k and sn,k 6= sn if n = k. Thus, sk differs from s
only in the kth term. Then sk 6= s and d(sk, s) = 1/2k. Hence sk → s
as k →∞, and X is perfect.

• Compare the Cantor set with the closed interval [0, 1] — a compact
space that is perfect but connected — and the finite set {1, 2, . . . , N}
with the discrete metric — a compact space that is totally disconnected
but not perfect.

• (c) If a ∈ C has the base-three expansion a = 0.a1a2a3 . . . with no 1’s,
we define φ(a) = s ∈ X where s = (s1, s2, s3, . . .) is given by

sn =

{
0 if an = 0,
1 if an = 2.



Then φ : C → X is one-to-one and onto. We need to show that φ and
its inverse are continuous.

• The metric on C ⊂ [0, 1] is the Euclidean metric d(a, b) = |a − b|.
Suppose that a = 0.a1a2a3 . . ., b = 0.b1b2b3 . . . are the base-three ex-
pansions (without 1’s) of a, b ∈ C. If an = bn for 1 ≤ n ≤ N , then

|a− b| ≤
∞∑

n=N+1

2

3n
=

1

3N
,

since the furthest such numbers (the endpoints of one of the closed
intervals in the construction of the Cantor set) have the expansions
0.a1 . . . aN222 . . ., 0.a1 . . . aN000 . . .. If aN 6= bN , then

|a− b| ≥ 2

3N
−

∞∑
n=N+1

2

3n
=

1

3N
,

since the closest such numbers have the expansions 0.a1, . . . , aN−12000 . . .,
0.a1, . . . , aN−10222 . . ..

• Let φ(a) = s, φ(b) = t. If N ∈ N and |a− b| < 1/3N , then an = bn for
1 ≤ n ≤ N , so sn = tn for 1 ≤ n ≤ N , and d(φ(a), φ(b)) ≤ 1/2N . This
proves that φ : C → X is continuous.

• If d(s, t) < 1/2N , then sn = tn for 1 ≤ n ≤ N , so an = bn for 1 ≤ n ≤
N , and |φ−1(s) − φ−1(t)| ≤ 1/3N . This proves that φ−1 : X → C is
continuous. Thus, φ is a homeomorphism.

• (d) We have

d (σ(s), σ(t)) =
∞∑

n=1

δn+1

2n
= 2

∞∑
n=2

δn

2n
≤ 2d (s, t) ,

which implies that σ is continuous.

• (e) The stated condition holds for any 0 < δ < 1. If U is a neighborhood
of s ∈ X, then U contains a ball Bε(s) for some ε > 0. Choose N ∈ N
such that 1/2N < ε, and define t ∈ X by tn = sn for 1 ≤ n ≤ N and



tn 6= sn for n ≥ N + 1. Then d(s, t) = 1/2N < ε, so t ∈ U . On the
other hand,

σN(s) = (sN+1, sN+2, . . .), σN(t) = (tN+1, tN+2, . . .)

differ in every term, so

d
(
σN(s), σN(s

)
= 1 > δ.

• (f) Define s ∈ X by listing all one-term sequences, followed by all two-
term sequences, followed by all three-term sequences, and so on. For
example, we could define

s = (0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, . . .).

Then for every t ∈ X and every N ∈ N there exists an n ∈ N such that
σn(s) and t have the same first N terms. Hence, d(σn(s), t) ≤ 1/2N ,
which proves that the orbit of s under σ is dense in X.

Remark. The metric space X is an example of a symbol space. Such symbol
spaces arise in the study of chaotic dynamical systems, and the representa-
tion of chaotic dynamical systems by shift maps on symbol spaces is called
symbolic dynamics. In this context, the property in (e) is called ‘sensitive
dependence on initial conditions.’

For example, consider the logistic map Fµ : Λ ⊂ [0, 1] → [0, 1] defined by
Fµ(x) = µx(1− x). For µ > 4 the map Fµ has an invariant Cantor set Λ of
points that remain in [0, 1] under all iterates F n

µ . One can prove that there
is a homeomorphism φ : Λ → X such that Fµ = φ−1 ◦ σ ◦ φ is topologically
conjugate to the shift map σ.


