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Math 201A, Fall 2006

Problem 1. Give an example of a sequence (fn) of continuous functions
fn : [0, 1] → R that converges to 0 with respect to the L1-norm,

‖f‖1 =

∫ 1

0

|f(x)| dx,

such that the real sequence of pointwise values (fn(x)) does not converge for
any 0 ≤ x ≤ 1. Verify that there is a subsequence that converges pointwise-
a.e. to 0.

Solution.

• Let f : R → R be a continuous function such that

f(x) =

{
1 if 0 ≤ x ≤ 1,
0 if x ≤ −1 or x ≥ 2.

Such a function exists by Urysohn’s lemma; an explicit example is the
piecewise-linear function

f(x) =


0 if x ≤ −1,
x + 1 if −1 < x < 0,
1 if 0 ≤ x ≤ 1,
2− x if 1 < x < 2,
0 if x ≥ 2.

• We may write n ∈ N uniquely as n = 2m + k where m = 0, 1, 2, . . . and
k = 0, 1, . . . , 2m − 1. We then define fn : [0, 1] → R by

fn(x) = f (2mx− k) .

The graphs of the functions in the sequence (fn) consist of thinner and
thinner ‘plateaus’ of height 1 that sweep successively across the interval
[0, 1].



• Making the change of variables t = 2mx− k, we compute that∫ 1

0

|fn(x)| dx ≤ 1

2m

∫
R
|f (t)| dt → 0 as n →∞.

Hence, fn → 0 with respect to ‖ · ‖1.

• For any x ∈ [0, 1], the sequence (fn(x)) of pointwise values contains
infinitely many 0’s and infinitely many 1’s, so it does not converge.

• The subsequence (gm) of (fn) defined by gm(x) = f(2mx) converges
pointwise to 0 except at x = 0, where it converges to 1. Since a set
consisting of a single point has Lebesgue measure zero, (gm) converges
pointwise a.e. to 0 on [0, 1].

Problem 2. The sequence space `∞ is the Banach space of all bounded real
sequences,

`∞ = {(x1, x2, . . . , xn, . . .) | xn ∈ R, ∃M ∈ R s.t. |xn| ≤ M for all n ∈ N} ,

with the norm
‖(x1, x2, . . . , xn, . . .)‖ = sup

n∈N
|xn|.

Let
B = {(x1, x2, . . . , xn, . . .) | 0 ≤ xn ≤ 1 for all n ∈ N} .

Show that B is a closed, bounded subset of `∞ that is not compact. (You
don’t need to verify that `∞ is a Banach space.)

Solution.

• We have ‖x‖ ≤ 1 for every x ∈ B, so B is bounded.

• Suppose that (xk)
∞
k=1 is a convergent sequence in B, with limit y ∈ `∞.

We write xk = (xn,k)
∞
n=1 and y = (yn)∞n=1. The definition of the norm

implies that
|xn,k − yn| ≤ ‖xk − y‖,

for every n ∈ N, so xn,k → yn in R as k → ∞. Since xk ∈ B, we have
0 ≤ xn,k ≤ 1, and taking the limit of this equation as k → ∞ we get
0 ≤ yn ≤ 1. It follows that y ∈ B, so B is closed.



• Define a sequence (xk)
∞
k=1 in B by xk = (xn,k)

∞
n=1 with

xn,k =

{
1 if n = k,
0 if n 6= k.

That is, x1 = (1, 0, 0, . . .), x2 = (0, 1, 0, . . .), x3 = (0, 0, 1, . . .), and so
on. Then ‖xj−xk‖ = 1 for every j 6= k. It follows that no subsequence
of (xk) is Cauchy, so no subsequence converges. Therefore B is not
compact.

Problem 3. Suppose that (xn) is a sequence in a compact metric space with
the property that every convergent subsequence has the same limit x. Prove
that xn → x as n →∞.

Solution.

• Suppose for contradiction that the sequence does not converge to x.
Then there exists a neighborhood U of x such that infinitely many
terms of the sequence do not belong to U . We may therefore pick a
subsequence (yk), with yk = xnk

, such that yk /∈ U for any k ∈ N.

• Since the metric space is compact, the sequence (yk) has a convergent
subsequence (zj), with zj = ykj

. This sequence (zj) is a convergent
subsequence of the original sequence (xn), but it cannot converge to x
since zj /∈ U for any j. This contradiction proves the result.

Problem 4. (a) Prove that a real-valued function f : X → R is sequentially
lower semi-continuous on X if and only if for every a ∈ R the set f−1 ((a,∞))
is open in X.

(b) If X is a compact metric space and f : X → R is sequentially lower
semi-continuous on X, prove that f is bounded from below and attains its
minimum value. Give examples to show that such an f need not be bounded
from above and need not attain its supremum even if it is.

Solution.



• (a) Suppose that f−1 ((a,∞)) is open in X for every a ∈ R. Let (xn)
be a sequence in X converging to x. If

f(x) > a,

then U = f−1 ((a,∞)) is an open neighborhood of x, so xn ∈ U for all
sufficiently large n. Hence, f(xn) > a for all sufficiently large n, and

lim inf
n→∞

f(xn) ≥ a.

It follows that
f(x) ≤ lim inf

n→∞
f(xn),

(otherwise choosing f(x) > a > lim infn→∞ f(xn) leads to a contradic-
tion), so f is sequentially lower semi-continuous.

• For the converse, suppose that f−1 ((a,∞)) is not open in X for some
a ∈ R. Then the complement

f−1 ((a,∞))c = f−1 ((−∞, a])

is not closed, and there exists a sequence (xn) in f−1 ((−∞, a]) con-
verging to x ∈ f−1 ((a,∞)). Since f(xn) ≤ a and f(x) > a,

f(x) > lim inf
n→∞

f(xn),

so f is not sequentially lower semi-continuous.

• (b) The collection of intervals {(a,∞) | a ∈ R} covers R, so{
f−1 ((a,∞)) | a ∈ R

}
covers X. Since f is lower semi-continuous this is an open cover of X,
and since X is compact there is a finite subcover{

f−1 ((an,∞)) | 1 ≤ n ≤ N
}

.

It follows that

f(X) ⊂
N⋃

n=1

(an,∞),

so f is bounded from below by min{an | 1 ≤ n ≤ N}.



• Let
m = inf

x∈X
f(x). (1)

This infimum is finite since f is bounded from below. Choose a sequence
(xn)∞n=1 in X such that f(xn) → m. Since X is compact there exists a
convergent subsequence (xnk

)∞k=1. Let

x = lim
k→∞

xnk
.

• By the sequential lower semi-continuity of f , we have

f(x) ≤ lim inf
k→∞

f(xnk)

≤ m.

On the other hand, by the definition of m in (1), we have

f(x) ≥ m.

It follows that f(x) = m, so f attains its infimum on X.

• Define functions f, g : [0, 1] → R by

f(x) =

{
1/x if 0 < x ≤ 1,
0 if x = 0,

g(x) =

{
x if 0 ≤ x < 1,
0 if x = 1.

Then f , g are lower semi-continuous on the compact set [0, 1]. The
function f is not bounded from above, and g is bounded from above
with

sup
x∈[0,1]

g(x) = 1,

but g(x) 6= 1 for any x ∈ [0, 1].


