Analysis

Solutions: Problem Set 4

Math 201A, Fall 2006
Problem 1. Give an example of a sequence $\left(f_{n}\right)$ of continuous functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ that converges to 0 with respect to the L^{1}-norm,

$$
\|f\|_{1}=\int_{0}^{1}|f(x)| d x
$$

such that the real sequence of pointwise values $\left(f_{n}(x)\right)$ does not converge for any $0 \leq x \leq 1$. Verify that there is a subsequence that converges pointwisea.e. to 0 .

Solution.

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that

$$
f(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } x \leq-1 \text { or } x \geq 2\end{cases}
$$

Such a function exists by Urysohn's lemma; an explicit example is the piecewise-linear function

$$
f(x)= \begin{cases}0 & \text { if } x \leq-1 \\ x+1 & \text { if }-1<x<0 \\ 1 & \text { if } 0 \leq x \leq 1 \\ 2-x & \text { if } 1<x<2 \\ 0 & \text { if } x \geq 2\end{cases}
$$

- We may write $n \in \mathbb{N}$ uniquely as $n=2^{m}+k$ where $m=0,1,2, \ldots$ and $k=0,1, \ldots, 2^{m}-1$. We then define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=f\left(2^{m} x-k\right) .
$$

The graphs of the functions in the sequence $\left(f_{n}\right)$ consist of thinner and thinner 'plateaus' of height 1 that sweep successively across the interval $[0,1]$.

- Making the change of variables $t=2^{m} x-k$, we compute that

$$
\int_{0}^{1}\left|f_{n}(x)\right| d x \leq \frac{1}{2^{m}} \int_{\mathbb{R}}|f(t)| d t \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence, $f_{n} \rightarrow 0$ with respect to $\|\cdot\|_{1}$.

- For any $x \in[0,1]$, the sequence $\left(f_{n}(x)\right)$ of pointwise values contains infinitely many 0 's and infinitely many 1 's, so it does not converge.
- The subsequence $\left(g_{m}\right)$ of $\left(f_{n}\right)$ defined by $g_{m}(x)=f\left(2^{m} x\right)$ converges pointwise to 0 except at $x=0$, where it converges to 1 . Since a set consisting of a single point has Lebesgue measure zero, $\left(g_{m}\right)$ converges pointwise a.e. to 0 on $[0,1]$.

Problem 2. The sequence space ℓ^{∞} is the Banach space of all bounded real sequences,

$$
\ell^{\infty}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \mid x_{n} \in \mathbb{R}, \exists M \in \mathbb{R} \text { s.t. }\left|x_{n}\right| \leq M \text { for all } n \in \mathbb{N}\right\}
$$

with the norm

$$
\left\|\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)\right\|=\sup _{n \in \mathbb{N}}\left|x_{n}\right| .
$$

Let

$$
B=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \mid 0 \leq x_{n} \leq 1 \text { for all } n \in \mathbb{N}\right\}
$$

Show that B is a closed, bounded subset of ℓ^{∞} that is not compact. (You don't need to verify that ℓ^{∞} is a Banach space.)

Solution.

- We have $\|x\| \leq 1$ for every $x \in B$, so B is bounded.
- Suppose that $\left(x_{k}\right)_{k=1}^{\infty}$ is a convergent sequence in B, with limit $y \in \ell^{\infty}$. We write $x_{k}=\left(x_{n, k}\right)_{n=1}^{\infty}$ and $y=\left(y_{n}\right)_{n=1}^{\infty}$. The definition of the norm implies that

$$
\left|x_{n, k}-y_{n}\right| \leq\left\|x_{k}-y\right\|,
$$

for every $n \in \mathbb{N}$, so $x_{n, k} \rightarrow y_{n}$ in \mathbb{R} as $k \rightarrow \infty$. Since $x_{k} \in B$, we have $0 \leq x_{n, k} \leq 1$, and taking the limit of this equation as $k \rightarrow \infty$ we get $0 \leq y_{n} \leq 1$. It follows that $y \in B$, so B is closed.

- Define a sequence $\left(x_{k}\right)_{k=1}^{\infty}$ in B by $x_{k}=\left(x_{n, k}\right)_{n=1}^{\infty}$ with

$$
x_{n, k}= \begin{cases}1 & \text { if } n=k, \\ 0 & \text { if } n \neq k\end{cases}
$$

That is, $x_{1}=(1,0,0, \ldots), x_{2}=(0,1,0, \ldots), x_{3}=(0,0,1, \ldots)$, and so on. Then $\left\|x_{j}-x_{k}\right\|=1$ for every $j \neq k$. It follows that no subsequence of $\left(x_{k}\right)$ is Cauchy, so no subsequence converges. Therefore B is not compact.

Problem 3. Suppose that $\left(x_{n}\right)$ is a sequence in a compact metric space with the property that every convergent subsequence has the same limit x. Prove that $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

Solution.

- Suppose for contradiction that the sequence does not converge to x. Then there exists a neighborhood U of x such that infinitely many terms of the sequence do not belong to U. We may therefore pick a subsequence $\left(y_{k}\right)$, with $y_{k}=x_{n_{k}}$, such that $y_{k} \notin U$ for any $k \in \mathbb{N}$.
- Since the metric space is compact, the sequence $\left(y_{k}\right)$ has a convergent subsequence $\left(z_{j}\right)$, with $z_{j}=y_{k_{j}}$. This sequence $\left(z_{j}\right)$ is a convergent subsequence of the original sequence $\left(x_{n}\right)$, but it cannot converge to x since $z_{j} \notin U$ for any j. This contradiction proves the result.

Problem 4. (a) Prove that a real-valued function $f: X \rightarrow \mathbb{R}$ is sequentially lower semi-continuous on X if and only if for every $a \in \mathbb{R}$ the set $f^{-1}((a, \infty))$ is open in X.
(b) If X is a compact metric space and $f: X \rightarrow \mathbb{R}$ is sequentially lower semi-continuous on X, prove that f is bounded from below and attains its minimum value. Give examples to show that such an f need not be bounded from above and need not attain its supremum even if it is.

Solution.

- (a) Suppose that $f^{-1}((a, \infty))$ is open in X for every $a \in \mathbb{R}$. Let $\left(x_{n}\right)$ be a sequence in X converging to x. If

$$
f(x)>a,
$$

then $U=f^{-1}((a, \infty))$ is an open neighborhood of x, so $x_{n} \in U$ for all sufficiently large n. Hence, $f\left(x_{n}\right)>a$ for all sufficiently large n, and

$$
\liminf _{n \rightarrow \infty} f\left(x_{n}\right) \geq a
$$

It follows that

$$
f(x) \leq \liminf _{n \rightarrow \infty} f\left(x_{n}\right)
$$

(otherwise choosing $f(x)>a>\liminf _{n \rightarrow \infty} f\left(x_{n}\right)$ leads to a contradiction), so f is sequentially lower semi-continuous.

- For the converse, suppose that $f^{-1}((a, \infty))$ is not open in X for some $a \in \mathbb{R}$. Then the complement

$$
f^{-1}((a, \infty))^{c}=f^{-1}((-\infty, a])
$$

is not closed, and there exists a sequence $\left(x_{n}\right)$ in $f^{-1}((-\infty, a])$ converging to $x \in f^{-1}((a, \infty))$. Since $f\left(x_{n}\right) \leq a$ and $f(x)>a$,

$$
f(x)>\liminf _{n \rightarrow \infty} f\left(x_{n}\right)
$$

so f is not sequentially lower semi-continuous.

- (b) The collection of intervals $\{(a, \infty) \mid a \in \mathbb{R}\}$ covers \mathbb{R}, so

$$
\left\{f^{-1}((a, \infty)) \mid a \in \mathbb{R}\right\}
$$

covers X. Since f is lower semi-continuous this is an open cover of X, and since X is compact there is a finite subcover

$$
\left\{f^{-1}\left(\left(a_{n}, \infty\right)\right) \mid 1 \leq n \leq N\right\}
$$

It follows that

$$
f(X) \subset \bigcup_{n=1}^{N}\left(a_{n}, \infty\right)
$$

so f is bounded from below by $\min \left\{a_{n} \mid 1 \leq n \leq N\right\}$.

- Let

$$
\begin{equation*}
m=\inf _{x \in X} f(x) . \tag{1}
\end{equation*}
$$

This infimum is finite since f is bounded from below. Choose a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in X such that $f\left(x_{n}\right) \rightarrow m$. Since X is compact there exists a convergent subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$. Let

$$
x=\lim _{k \rightarrow \infty} x_{n_{k}} .
$$

- By the sequential lower semi-continuity of f, we have

$$
\begin{aligned}
f(x) & \leq \liminf _{k \rightarrow \infty} f\left(x_{\left.n_{k}\right)}\right. \\
& \leq m .
\end{aligned}
$$

On the other hand, by the definition of m in (1), we have

$$
f(x) \geq m
$$

It follows that $f(x)=m$, so f attains its infimum on X.

- Define functions $f, g:[0,1] \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& f(x)= \begin{cases}1 / x & \text { if } 0<x \leq 1, \\
0 & \text { if } x=0,\end{cases} \\
& g(x)= \begin{cases}x & \text { if } 0 \leq x<1, \\
0 & \text { if } x=1\end{cases}
\end{aligned}
$$

Then f, g are lower semi-continuous on the compact set $[0,1]$. The function f is not bounded from above, and g is bounded from above with

$$
\sup _{x \in[0,1]} g(x)=1,
$$

but $g(x) \neq 1$ for any $x \in[0,1]$.

